DivyaMereddy007 commited on
Commit
a5dd439
1 Parent(s): c50a6d5

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:1746
10
+ - loss:CosineSimilarityLoss
11
+ base_model: sentence-transformers/distilbert-base-nli-mean-tokens
12
+ datasets: []
13
+ widget:
14
+ - source_sentence: Cheeseburger Potato Soup ["6 baking potatoes", "1 lb. of extra
15
+ lean ground beef", "2/3 c. butter or margarine", "6 c. milk", "3/4 tsp. salt",
16
+ "1/2 tsp. pepper", "1 1/2 c (6 oz.) shredded Cheddar cheese, divided", "12 sliced
17
+ bacon, cooked, crumbled and divided", "4 green onion, chopped and divided", "1
18
+ (8 oz.) carton sour cream (optional)"] ["Wash potatoes; prick several times with
19
+ a fork.", "Microwave them with a wet paper towel covering the potatoes on high
20
+ for 6-8 minutes.", "The potatoes should be soft, ready to eat.", "Let them cool
21
+ enough to handle.", "Cut in half lengthwise; scoop out pulp and reserve.", "Discard
22
+ shells.", "Brown ground beef until done.", "Drain any grease from the meat.",
23
+ "Set aside when done.", "Meat will be added later.", "Melt butter in a large kettle
24
+ over low heat; add flour, stirring until smooth.", "Cook 1 minute, stirring constantly.
25
+ Gradually add milk; cook over medium heat, stirring constantly, until thickened
26
+ and bubbly.", "Stir in potato, ground beef, salt, pepper, 1 cup of cheese, 2 tablespoons
27
+ of green onion and 1/2 cup of bacon.", "Cook until heated (do not boil).", "Stir
28
+ in sour cream if desired; cook until heated (do not boil).", "Sprinkle with remaining
29
+ cheese, bacon and green onions."]
30
+ sentences:
31
+ - Nolan'S Pepper Steak ["1 1/2 lb. round steak (1-inch thick), cut into strips",
32
+ "1 can drained tomatoes, cut up (save liquid)", "1 3/4 c. water", "1/2 c. onions",
33
+ "1 1/2 Tbsp. Worcestershire sauce", "2 green peppers, diced", "1/4 c. oil"] ["Roll
34
+ steak strips in flour.", "Brown in skillet.", "Salt and pepper.", "Combine tomato
35
+ liquid, water, onions and browned steak. Cover and simmer for one and a quarter
36
+ hours.", "Uncover and stir in Worcestershire sauce.", "Add tomatoes, green peppers
37
+ and simmer for 5 minutes.", "Serve over hot cooked rice."]
38
+ - Fresh Strawberry Pie ["1 baked pie shell", "1 qt. cleaned strawberries", "1 1/2
39
+ c. water", "4 Tbsp. cornstarch", "1 c. sugar", "1/8 tsp. salt", "4 Tbsp. strawberry
40
+ jello"] ["Mix water, cornstarch, sugar and salt in saucepan.", "Stir constantly
41
+ and boil until thick and clear.", "Remove from heat and stir in jello.", "Set
42
+ aside to cool.", "But don't allow it to set. Layer strawberries in baked crust.",
43
+ "Pour cooled glaze over. Continue layering berries and glaze.", "Refrigerate.",
44
+ "Serve with whipped cream."]
45
+ - Vegetable-Burger Soup ["1/2 lb. ground beef", "2 c. water", "1 tsp. sugar", "1
46
+ pkg. Cup-a-Soup onion soup mix (dry)", "1 lb. can stewed tomatoes", "1 (8 oz.)
47
+ can tomato sauce", "1 (10 oz.) pkg. frozen mixed vegetables"] ["Lightly brown
48
+ beef in soup pot.", "Drain off excess fat.", "Stir in tomatoes, tomato sauce,
49
+ water, frozen vegetables, soup mix and sugar.", "Bring to a boil.", "Reduce heat
50
+ and simmer for 20 minutes. Serve."]
51
+ - source_sentence: Summer Spaghetti ["1 lb. very thin spaghetti", "1/2 bottle McCormick
52
+ Salad Supreme (seasoning)", "1 bottle Zesty Italian dressing"] ["Prepare spaghetti
53
+ per package.", "Drain.", "Melt a little butter through it.", "Marinate overnight
54
+ in Salad Supreme and Zesty Italian dressing.", "Just before serving, add cucumbers,
55
+ tomatoes, green peppers, mushrooms, olives or whatever your taste may want."]
56
+ sentences:
57
+ - Prize-Winning Meat Loaf ["1 1/2 lb. ground beef", "1 c. tomato juice", "3/4 c.
58
+ oats (uncooked)", "1 egg, beaten", "1/4 c. chopped onion", "1/4 tsp. pepper",
59
+ "1 1/2 tsp. salt"] ["Mix well.", "Press firmly into an 8 1/2 x 4 1/2 x 2 1/2-inch
60
+ loaf pan.", "Bake in preheated moderate oven.", "Bake at 350\u00b0 for 1 hour.",
61
+ "Let stand 5 minutes before slicing.", "Makes 8 servings."]
62
+ - Cuddy Farms Marinated Turkey ["2 c. 7-Up or Sprite", "1 c. vegetable oil", "1
63
+ c. Kikkoman soy sauce", "garlic salt"] ["Buy whole turkey breast; remove all skin
64
+ and bones. Cut into pieces about the size of your hand. Pour marinade over turkey
65
+ and refrigerate for at least 8 hours (up to 48 hours). The longer it marinates,
66
+ the less cooking time it takes."]
67
+ - Pear-Lime Salad ["1 (16 oz.) can pear halves, undrained", "1 (3 oz.) pkg. lime
68
+ gelatin", "1 (8 oz.) pkg. cream cheese, softened", "1 (8 oz.) carton lemon yogurt"]
69
+ ["Drain pears, reserving juice.", "Bring juice to a boil, stirring constantly.",
70
+ "Remove from heat.", "Add gelatin, stirring until dissolved.", "Let cool slightly.",
71
+ "Coarsely chop pear halves. Combine cream cheese and yogurt; beat at medium speed
72
+ of electric mixer until smooth.", "Add gelatin and beat well.", "Stir in pears.",
73
+ "Pour into an oiled 4-cup mold or Pyrex dish.", "Chill."]
74
+ - source_sentence: Millionaire Pie ["1 large container Cool Whip", "1 large can crushed
75
+ pineapple", "1 can condensed milk", "3 lemons", "1 c. pecans", "2 graham cracker
76
+ crusts"] ["Empty Cool Whip into a bowl.", "Drain juice from pineapple.", "Mix
77
+ Cool Whip and pineapple.", "Add condensed milk.", "Squeeze lemons, remove seeds
78
+ and add to Cool Whip and pineapple.", "Chop nuts into small pieces and add to
79
+ mixture.", "Stir all ingredients together and mix well.", "Pour into a graham
80
+ cracker crust.", "Use top from crust to cover top of pie.", "Chill overnight.",
81
+ "Makes 2 pies."]
82
+ sentences:
83
+ - Jewell Ball'S Chicken ["1 small jar chipped beef, cut up", "4 boned chicken breasts",
84
+ "1 can cream of mushroom soup", "1 carton sour cream"] ["Place chipped beef on
85
+ bottom of baking dish.", "Place chicken on top of beef.", "Mix soup and cream
86
+ together; pour over chicken. Bake, uncovered, at 275\u00b0 for 3 hours."]
87
+ - Quick Peppermint Puffs ["8 marshmallows", "2 Tbsp. margarine, melted", "1/4 c.
88
+ crushed peppermint candy", "1 can crescent rolls"] ["Dip marshmallows in melted
89
+ margarine; roll in candy. Wrap a crescent triangle around each marshmallow, completely
90
+ covering the marshmallow and square edges of dough tightly to seal.", "Dip in
91
+ margarine and place in a greased muffin tin.", "Bake at 375\u00b0 for 10 to 15
92
+ minutes; remove from pan."]
93
+ - Double Cherry Delight ["1 (17 oz.) can dark sweet pitted cherries", "1/2 c. ginger
94
+ ale", "1 (6 oz.) pkg. Jell-O cherry flavor gelatin", "2 c. boiling water", "1/8
95
+ tsp. almond extract", "1 c. miniature marshmallows"] ["Drain cherries, measuring
96
+ syrup.", "Cut cherries in half.", "Add ginger ale and enough water to syrup to
97
+ make 1 1/2 cups.", "Dissolve gelatin in boiling water.", "Add measured liquid
98
+ and almond extract. Chill until very thick.", "Fold in marshmallows and the cherries.
99
+ Spoon into 6-cup mold.", "Chill until firm, at least 4 hours or overnight.", "Unmold.",
100
+ "Makes about 5 1/3 cups."]
101
+ - source_sentence: Prize-Winning Meat Loaf ["1 1/2 lb. ground beef", "1 c. tomato
102
+ juice", "3/4 c. oats (uncooked)", "1 egg, beaten", "1/4 c. chopped onion", "1/4
103
+ tsp. pepper", "1 1/2 tsp. salt"] ["Mix well.", "Press firmly into an 8 1/2 x 4
104
+ 1/2 x 2 1/2-inch loaf pan.", "Bake in preheated moderate oven.", "Bake at 350\u00b0
105
+ for 1 hour.", "Let stand 5 minutes before slicing.", "Makes 8 servings."]
106
+ sentences:
107
+ - Beer Bread ["3 c. self rising flour", "1 - 12 oz. can beer", "1 Tbsp. sugar"]
108
+ ["Stir the ingredients together and put in a greased and floured loaf pan.", "Bake
109
+ at 425 degrees for 50 minutes.", "Drizzle melted butter on top."]
110
+ - Artichoke Dip ["2 cans or jars artichoke hearts", "1 c. mayonnaise", "1 c. Parmesan
111
+ cheese"] ["Drain artichokes and chop.", "Mix with mayonnaise and Parmesan cheese.",
112
+ "After well mixed, bake, uncovered, for 20 to 30 minutes at 350\u00b0.", "Serve
113
+ with crackers."]
114
+ - 'One Hour Rolls ["1 c. milk", "2 Tbsp. sugar", "1 pkg. dry yeast", "1 Tbsp. salt",
115
+ "3 Tbsp. Crisco oil", "2 c. plain flour"] ["Put flour into a large mixing bowl.",
116
+ "Combine sugar, milk, salt and oil in a saucepan and heat to boiling; remove from
117
+ heat and let cool to lukewarm.", "Add yeast and mix well.", "Pour into flour and
118
+ stir.", "Batter will be sticky.", "Roll out batter on a floured board and cut
119
+ with biscuit cutter.", "Lightly brush tops with melted oleo and fold over.", "Place
120
+ rolls on a cookie sheet, put in a warm place and let rise for 1 hour.", "Bake
121
+ at 350\u00b0 for about 20 minutes. Yield: 2 1/2 dozen."]'
122
+ - source_sentence: Watermelon Rind Pickles ["7 lb. watermelon rind", "7 c. sugar",
123
+ "2 c. apple vinegar", "1/2 tsp. oil of cloves", "1/2 tsp. oil of cinnamon"] ["Trim
124
+ off green and pink parts of watermelon rind; cut to 1-inch cubes.", "Parboil until
125
+ tender, but not soft.", "Drain. Combine sugar, vinegar, oil of cloves and oil
126
+ of cinnamon; bring to boiling and pour over rind.", "Let stand overnight.", "In
127
+ the morning, drain off syrup.", "Heat and put over rind.", "The third morning,
128
+ heat rind and syrup; seal in hot, sterilized jars.", "Makes 8 pints.", "(Oil of
129
+ cinnamon and clove keeps rind clear and transparent.)"]
130
+ sentences:
131
+ - Summer Chicken ["1 pkg. chicken cutlets", "1/2 c. oil", "1/3 c. red vinegar",
132
+ "2 Tbsp. oregano", "2 Tbsp. garlic salt"] ["Double recipe for more chicken."]
133
+ - Summer Spaghetti ["1 lb. very thin spaghetti", "1/2 bottle McCormick Salad Supreme
134
+ (seasoning)", "1 bottle Zesty Italian dressing"] ["Prepare spaghetti per package.",
135
+ "Drain.", "Melt a little butter through it.", "Marinate overnight in Salad Supreme
136
+ and Zesty Italian dressing.", "Just before serving, add cucumbers, tomatoes, green
137
+ peppers, mushrooms, olives or whatever your taste may want."]
138
+ - Chicken Funny ["1 large whole chicken", "2 (10 1/2 oz.) cans chicken gravy", "1
139
+ (10 1/2 oz.) can cream of mushroom soup", "1 (6 oz.) box Stove Top stuffing",
140
+ "4 oz. shredded cheese"] ["Boil and debone chicken.", "Put bite size pieces in
141
+ average size square casserole dish.", "Pour gravy and cream of mushroom soup over
142
+ chicken; level.", "Make stuffing according to instructions on box (do not make
143
+ too moist).", "Put stuffing on top of chicken and gravy; level.", "Sprinkle shredded
144
+ cheese on top and bake at 350\u00b0 for approximately 20 minutes or until golden
145
+ and bubbly."]
146
+ pipeline_tag: sentence-similarity
147
+ ---
148
+
149
+ # SentenceTransformer based on sentence-transformers/distilbert-base-nli-mean-tokens
150
+
151
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/distilbert-base-nli-mean-tokens](https://huggingface.co/sentence-transformers/distilbert-base-nli-mean-tokens). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
152
+
153
+ ## Model Details
154
+
155
+ ### Model Description
156
+ - **Model Type:** Sentence Transformer
157
+ - **Base model:** [sentence-transformers/distilbert-base-nli-mean-tokens](https://huggingface.co/sentence-transformers/distilbert-base-nli-mean-tokens) <!-- at revision 2781c006adbf3726b509caa8649fc8077ff0724d -->
158
+ - **Maximum Sequence Length:** 128 tokens
159
+ - **Output Dimensionality:** 768 tokens
160
+ - **Similarity Function:** Cosine Similarity
161
+ <!-- - **Training Dataset:** Unknown -->
162
+ <!-- - **Language:** Unknown -->
163
+ <!-- - **License:** Unknown -->
164
+
165
+ ### Model Sources
166
+
167
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
168
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
169
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
170
+
171
+ ### Full Model Architecture
172
+
173
+ ```
174
+ SentenceTransformer(
175
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
176
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
177
+ )
178
+ ```
179
+
180
+ ## Usage
181
+
182
+ ### Direct Usage (Sentence Transformers)
183
+
184
+ First install the Sentence Transformers library:
185
+
186
+ ```bash
187
+ pip install -U sentence-transformers
188
+ ```
189
+
190
+ Then you can load this model and run inference.
191
+ ```python
192
+ from sentence_transformers import SentenceTransformer
193
+
194
+ # Download from the 🤗 Hub
195
+ model = SentenceTransformer("DivyaMereddy007/RecipeBert_v5original_epoc50Copy_of_TrainSetenceTransforme-Finetuning_v5_DistilledBert")
196
+ # Run inference
197
+ sentences = [
198
+ 'Watermelon Rind Pickles ["7 lb. watermelon rind", "7 c. sugar", "2 c. apple vinegar", "1/2 tsp. oil of cloves", "1/2 tsp. oil of cinnamon"] ["Trim off green and pink parts of watermelon rind; cut to 1-inch cubes.", "Parboil until tender, but not soft.", "Drain. Combine sugar, vinegar, oil of cloves and oil of cinnamon; bring to boiling and pour over rind.", "Let stand overnight.", "In the morning, drain off syrup.", "Heat and put over rind.", "The third morning, heat rind and syrup; seal in hot, sterilized jars.", "Makes 8 pints.", "(Oil of cinnamon and clove keeps rind clear and transparent.)"]',
199
+ 'Summer Chicken ["1 pkg. chicken cutlets", "1/2 c. oil", "1/3 c. red vinegar", "2 Tbsp. oregano", "2 Tbsp. garlic salt"] ["Double recipe for more chicken."]',
200
+ 'Summer Spaghetti ["1 lb. very thin spaghetti", "1/2 bottle McCormick Salad Supreme (seasoning)", "1 bottle Zesty Italian dressing"] ["Prepare spaghetti per package.", "Drain.", "Melt a little butter through it.", "Marinate overnight in Salad Supreme and Zesty Italian dressing.", "Just before serving, add cucumbers, tomatoes, green peppers, mushrooms, olives or whatever your taste may want."]',
201
+ ]
202
+ embeddings = model.encode(sentences)
203
+ print(embeddings.shape)
204
+ # [3, 768]
205
+
206
+ # Get the similarity scores for the embeddings
207
+ similarities = model.similarity(embeddings, embeddings)
208
+ print(similarities.shape)
209
+ # [3, 3]
210
+ ```
211
+
212
+ <!--
213
+ ### Direct Usage (Transformers)
214
+
215
+ <details><summary>Click to see the direct usage in Transformers</summary>
216
+
217
+ </details>
218
+ -->
219
+
220
+ <!--
221
+ ### Downstream Usage (Sentence Transformers)
222
+
223
+ You can finetune this model on your own dataset.
224
+
225
+ <details><summary>Click to expand</summary>
226
+
227
+ </details>
228
+ -->
229
+
230
+ <!--
231
+ ### Out-of-Scope Use
232
+
233
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
234
+ -->
235
+
236
+ <!--
237
+ ## Bias, Risks and Limitations
238
+
239
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
240
+ -->
241
+
242
+ <!--
243
+ ### Recommendations
244
+
245
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
246
+ -->
247
+
248
+ ## Training Details
249
+
250
+ ### Training Dataset
251
+
252
+ #### Unnamed Dataset
253
+
254
+
255
+ * Size: 1,746 training samples
256
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
257
+ * Approximate statistics based on the first 1000 samples:
258
+ | | sentence_0 | sentence_1 | label |
259
+ |:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------|
260
+ | type | string | string | float |
261
+ | details | <ul><li>min: 63 tokens</li><li>mean: 118.82 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 63 tokens</li><li>mean: 118.59 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.19</li><li>max: 1.0</li></ul> |
262
+ * Samples:
263
+ | sentence_0 | sentence_1 | label |
264
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
265
+ | <code>Tuna Macaroni Casserole ["1 box macaroni and cheese", "1 can tuna, drained", "1 small jar pimentos", "1 medium onion, chopped"] ["Prepare macaroni and cheese as directed.", "Add drained tuna, pimento and onion.", "Mix.", "Serve hot or cold."]</code> | <code>Easy Fudge ["1 (14 oz.) can sweetened condensed milk", "1 (12 oz.) pkg. semi-sweet chocolate chips", "1 (1 oz.) sq. unsweetened chocolate (if desired)", "1 1/2 c. chopped nuts (if desired)", "1 tsp. vanilla"] ["Butter a square pan, 8 x 8 x 2-inches.", "Heat milk, chocolate chips and unsweetened chocolate over low heat, stirring constantly, until chocolate is melted and mixture is smooth. Remove from heat.", "Stir in nuts and vanilla.", "Spread in pan."]</code> | <code>0.05</code> |
266
+ | <code>Scalloped Corn ["1 can cream-style corn", "1 can whole kernel corn", "1/2 pkg. (approximately 20) saltine crackers, crushed", "1 egg, beaten", "6 tsp. butter, divided", "pepper to taste"] ["Mix together both cans of corn, crackers, egg, 2 teaspoons of melted butter and pepper and place in a buttered baking dish.", "Dot with remaining 4 teaspoons of butter.", "Bake at 350\u00b0 for 1 hour."]</code> | <code>Quick Peppermint Puffs ["8 marshmallows", "2 Tbsp. margarine, melted", "1/4 c. crushed peppermint candy", "1 can crescent rolls"] ["Dip marshmallows in melted margarine; roll in candy. Wrap a crescent triangle around each marshmallow, completely covering the marshmallow and square edges of dough tightly to seal.", "Dip in margarine and place in a greased muffin tin.", "Bake at 375\u00b0 for 10 to 15 minutes; remove from pan."]</code> | <code>0.1</code> |
267
+ | <code>Beer Bread ["3 c. self rising flour", "1 - 12 oz. can beer", "1 Tbsp. sugar"] ["Stir the ingredients together and put in a greased and floured loaf pan.", "Bake at 425 degrees for 50 minutes.", "Drizzle melted butter on top."]</code> | <code>Rhubarb Coffee Cake ["1 1/2 c. sugar", "1/2 c. butter", "1 egg", "1 c. buttermilk", "2 c. flour", "1/2 tsp. salt", "1 tsp. soda", "1 c. buttermilk", "2 c. rhubarb, finely cut", "1 tsp. vanilla"] ["Cream sugar and butter.", "Add egg and beat well.", "To creamed butter, sugar and egg, add alternately buttermilk with mixture of flour, salt and soda.", "Mix well.", "Add rhubarb and vanilla.", "Pour into greased 9 x 13-inch pan and add Topping."]</code> | <code>0.4</code> |
268
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
269
+ ```json
270
+ {
271
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
272
+ }
273
+ ```
274
+
275
+ ### Training Hyperparameters
276
+ #### Non-Default Hyperparameters
277
+
278
+ - `per_device_train_batch_size`: 16
279
+ - `per_device_eval_batch_size`: 16
280
+ - `num_train_epochs`: 50
281
+ - `multi_dataset_batch_sampler`: round_robin
282
+
283
+ #### All Hyperparameters
284
+ <details><summary>Click to expand</summary>
285
+
286
+ - `overwrite_output_dir`: False
287
+ - `do_predict`: False
288
+ - `eval_strategy`: no
289
+ - `prediction_loss_only`: True
290
+ - `per_device_train_batch_size`: 16
291
+ - `per_device_eval_batch_size`: 16
292
+ - `per_gpu_train_batch_size`: None
293
+ - `per_gpu_eval_batch_size`: None
294
+ - `gradient_accumulation_steps`: 1
295
+ - `eval_accumulation_steps`: None
296
+ - `learning_rate`: 5e-05
297
+ - `weight_decay`: 0.0
298
+ - `adam_beta1`: 0.9
299
+ - `adam_beta2`: 0.999
300
+ - `adam_epsilon`: 1e-08
301
+ - `max_grad_norm`: 1
302
+ - `num_train_epochs`: 50
303
+ - `max_steps`: -1
304
+ - `lr_scheduler_type`: linear
305
+ - `lr_scheduler_kwargs`: {}
306
+ - `warmup_ratio`: 0.0
307
+ - `warmup_steps`: 0
308
+ - `log_level`: passive
309
+ - `log_level_replica`: warning
310
+ - `log_on_each_node`: True
311
+ - `logging_nan_inf_filter`: True
312
+ - `save_safetensors`: True
313
+ - `save_on_each_node`: False
314
+ - `save_only_model`: False
315
+ - `restore_callback_states_from_checkpoint`: False
316
+ - `no_cuda`: False
317
+ - `use_cpu`: False
318
+ - `use_mps_device`: False
319
+ - `seed`: 42
320
+ - `data_seed`: None
321
+ - `jit_mode_eval`: False
322
+ - `use_ipex`: False
323
+ - `bf16`: False
324
+ - `fp16`: False
325
+ - `fp16_opt_level`: O1
326
+ - `half_precision_backend`: auto
327
+ - `bf16_full_eval`: False
328
+ - `fp16_full_eval`: False
329
+ - `tf32`: None
330
+ - `local_rank`: 0
331
+ - `ddp_backend`: None
332
+ - `tpu_num_cores`: None
333
+ - `tpu_metrics_debug`: False
334
+ - `debug`: []
335
+ - `dataloader_drop_last`: False
336
+ - `dataloader_num_workers`: 0
337
+ - `dataloader_prefetch_factor`: None
338
+ - `past_index`: -1
339
+ - `disable_tqdm`: False
340
+ - `remove_unused_columns`: True
341
+ - `label_names`: None
342
+ - `load_best_model_at_end`: False
343
+ - `ignore_data_skip`: False
344
+ - `fsdp`: []
345
+ - `fsdp_min_num_params`: 0
346
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
347
+ - `fsdp_transformer_layer_cls_to_wrap`: None
348
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
349
+ - `deepspeed`: None
350
+ - `label_smoothing_factor`: 0.0
351
+ - `optim`: adamw_torch
352
+ - `optim_args`: None
353
+ - `adafactor`: False
354
+ - `group_by_length`: False
355
+ - `length_column_name`: length
356
+ - `ddp_find_unused_parameters`: None
357
+ - `ddp_bucket_cap_mb`: None
358
+ - `ddp_broadcast_buffers`: False
359
+ - `dataloader_pin_memory`: True
360
+ - `dataloader_persistent_workers`: False
361
+ - `skip_memory_metrics`: True
362
+ - `use_legacy_prediction_loop`: False
363
+ - `push_to_hub`: False
364
+ - `resume_from_checkpoint`: None
365
+ - `hub_model_id`: None
366
+ - `hub_strategy`: every_save
367
+ - `hub_private_repo`: False
368
+ - `hub_always_push`: False
369
+ - `gradient_checkpointing`: False
370
+ - `gradient_checkpointing_kwargs`: None
371
+ - `include_inputs_for_metrics`: False
372
+ - `eval_do_concat_batches`: True
373
+ - `fp16_backend`: auto
374
+ - `push_to_hub_model_id`: None
375
+ - `push_to_hub_organization`: None
376
+ - `mp_parameters`:
377
+ - `auto_find_batch_size`: False
378
+ - `full_determinism`: False
379
+ - `torchdynamo`: None
380
+ - `ray_scope`: last
381
+ - `ddp_timeout`: 1800
382
+ - `torch_compile`: False
383
+ - `torch_compile_backend`: None
384
+ - `torch_compile_mode`: None
385
+ - `dispatch_batches`: None
386
+ - `split_batches`: None
387
+ - `include_tokens_per_second`: False
388
+ - `include_num_input_tokens_seen`: False
389
+ - `neftune_noise_alpha`: None
390
+ - `optim_target_modules`: None
391
+ - `batch_eval_metrics`: False
392
+ - `batch_sampler`: batch_sampler
393
+ - `multi_dataset_batch_sampler`: round_robin
394
+
395
+ </details>
396
+
397
+ ### Training Logs
398
+ | Epoch | Step | Training Loss |
399
+ |:-------:|:----:|:-------------:|
400
+ | 4.5455 | 500 | 0.0092 |
401
+ | 9.0909 | 1000 | 0.0091 |
402
+ | 13.6364 | 1500 | 0.0081 |
403
+ | 18.1818 | 2000 | 0.0074 |
404
+ | 22.7273 | 2500 | 0.0071 |
405
+ | 27.2727 | 3000 | 0.0069 |
406
+ | 31.8182 | 3500 | 0.0066 |
407
+ | 36.3636 | 4000 | 0.0065 |
408
+ | 40.9091 | 4500 | 0.0061 |
409
+ | 45.4545 | 5000 | 0.006 |
410
+ | 50.0 | 5500 | 0.0056 |
411
+
412
+
413
+ ### Framework Versions
414
+ - Python: 3.10.12
415
+ - Sentence Transformers: 3.0.1
416
+ - Transformers: 4.41.2
417
+ - PyTorch: 2.3.0+cu121
418
+ - Accelerate: 0.31.0
419
+ - Datasets: 2.19.2
420
+ - Tokenizers: 0.19.1
421
+
422
+ ## Citation
423
+
424
+ ### BibTeX
425
+
426
+ #### Sentence Transformers
427
+ ```bibtex
428
+ @inproceedings{reimers-2019-sentence-bert,
429
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
430
+ author = "Reimers, Nils and Gurevych, Iryna",
431
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
432
+ month = "11",
433
+ year = "2019",
434
+ publisher = "Association for Computational Linguistics",
435
+ url = "https://arxiv.org/abs/1908.10084",
436
+ }
437
+ ```
438
+
439
+ <!--
440
+ ## Glossary
441
+
442
+ *Clearly define terms in order to be accessible across audiences.*
443
+ -->
444
+
445
+ <!--
446
+ ## Model Card Authors
447
+
448
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
449
+ -->
450
+
451
+ <!--
452
+ ## Model Card Contact
453
+
454
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
455
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/distilbert-base-nli-mean-tokens",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6684cddab498c707b62f83092ed9260c4f814ef054aee7310013c4a7be0af49
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 128,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "DistilBertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff