{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a266bf101f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a266bf10280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a266bf10310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a266bf103a0>", "_build": "<function ActorCriticPolicy._build at 0x7a266bf10430>", "forward": "<function ActorCriticPolicy.forward at 0x7a266bf104c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a266bf10550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a266bf105e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a266bf10670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a266bf10700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a266bf10790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a266bf10820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a266bf0c940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1500160, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712742980180794001, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE1ZHj32xGW6Mq8+OhoN5jTwDVo627JeuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00010666666666669933, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBnZ/smfGyMAWyUS9yMAXSUR0CkXGh+nZTRdX2UKGgGR0BxODxgAp8XaAdL8WgIR0CkXalzltCRdX2UKGgGR0BzrZKGtZFHaAdL0GgIR0CkXjyxZ+x4dX2UKGgGR0BwVEp7TlT4aAdL92gIR0CkXuxyXD3udX2UKGgGR0Bz05rLyMDPaAdL7mgIR0CkX8RU3n6mdX2UKGgGR0BvVdE/jbSJaAdL0mgIR0CkYUZIg/1QdX2UKGgGR0BC85rP+n63aAdLlWgIR0CkYdaLXL/0dX2UKGgGR0BxLd4Y77sOaAdL82gIR0CkYsxf4REndX2UKGgGR0Bu5D0QK8cuaAdL0GgIR0CkY2Y5tFa0dX2UKGgGR0BxUdf5ULlWaAdL4mgIR0CkZASV4X41dX2UKGgGR0Bh/fU+cH4XaAdN6ANoCEdApGd2CkGiYnV9lChoBkdAclzk2P1cuGgHS8BoCEdApGf5f4REnnV9lChoBkdAR36CBf8dgmgHS7RoCEdApGkMGVzIWHV9lChoBkdAcLE+tr9ETmgHS99oCEdApGmuz0HyE3V9lChoBkdAcMcYr8R+SmgHS91oCEdApGpJZSvTw3V9lChoBkdAcSSyRjjJdWgHS+FoCEdApGro0CRwInV9lChoBkdATjtGy5Zr6GgHS8BoCEdApGtxNoJzDHV9lChoBkdAcWyrUb1h9mgHS7ZoCEdApGyPcSGrS3V9lChoBkdAcToTWXkYGmgHS+BoCEdApG0vgccU/XV9lChoBkdAcvoALRa5gGgHS+9oCEdApG3c4FRpDnV9lChoBkdAcJTs7dSEUWgHS8xoCEdApG5tv0h/zHV9lChoBkdAcX3HOKO1fGgHS+RoCEdApG+mLiuMdnV9lChoBkdAcOsG0eEIxGgHS+5oCEdApHBKXpnpS3V9lChoBkdASIvzOHFglWgHS69oCEdApHDTBInSfHV9lChoBkfAN0DpX6qKg2gHS4doCEdApHExpJwsG3V9lChoBkdAb7etga3qiWgHS+NoCEdApHHcVi4J/3V9lChoBkdAcT2W9lEqlWgHS/RoCEdApHMgCW/rSnV9lChoBkdAcb9Ippeu3mgHS7loCEdApHOn9P1tf3V9lChoBkdAcigD63y7PWgHS/loCEdApHRVIVdonXV9lChoBkdAYef1lGwzL2gHTegDaAhHQKR4EIi1Rch1fZQoaAZHQHDtiBoVVPxoB0vzaAhHQKR440D2alV1fZQoaAZHQENBKdQO4G5oB0umaAhHQKR5gvvBrN51fZQoaAZHQHFEhjJ+2E1oB0vFaAhHQKR64HNX5nF1fZQoaAZHQG+Io6CDmKZoB0vQaAhHQKR7ct8NQTF1fZQoaAZHQHAdJdWyTpxoB0vAaAhHQKR7+y+pOvd1fZQoaAZHQHHWueSSvDBoB0vhaAhHQKR8o1c+qzZ1fZQoaAZHQHHHqYE4ecRoB0vWaAhHQKR9OTzND+l1fZQoaAZHQHPnw0TDfm9oB0vuaAhHQKR+cDZDiOx1fZQoaAZHQHEufQnhKlJoB0viaAhHQKR/DwI+nqF1fZQoaAZHQHG1Z5AyEctoB0vJaAhHQKR/mnOSntR1fZQoaAZHQHHlXbZezD5oB0vDaAhHQKSAJt2LYPJ1fZQoaAZHQHFu3xaxHG1oB0v1aAhHQKSA2IhQm/p1fZQoaAZHQHFTyXpnpStoB0uvaAhHQKSB5JEpiJB1fZQoaAZHQHC0p2ZAprloB0vDaAhHQKSCcU6gdwN1fZQoaAZHQFoE7dBSk0toB03oA2gIR0Ckhd2FvhqCdX2UKGgGR0BxNYpiI+GHaAdL7WgIR0Ckhoz9sJpndX2UKGgGR0A7GybhFVkuaAdLqmgIR0CkhwYCIUJwdX2UKGgGR0BC7mQjlgc+aAdLimgIR0Ckh3KifxtpdX2UKGgGR0BwuuB6KLsKaAdLzWgIR0CkiAkrwvxpdX2UKGgGR0BxH2fh/Aj6aAdL32gIR0CkiUVlGwzMdX2UKGgGR0Bxg6D3/PxAaAdLzmgIR0CkidVHFxXGdX2UKGgGR0Bx/zdyksSTaAdL5mgIR0Ckin6t9x6wdX2UKGgGR0BzFyPn0TURaAdL2mgIR0Ckixj4pMHsdX2UKGgGR0ByFDRG+bmVaAdL5GgIR0CkjE7SJCSidX2UKGgGR0BxEOgbp/wzaAdN1AJoCEdApI5tsenyeHV9lChoBkdAcyOBSUC7smgHS8poCEdApI804ecQRXV9lChoBkdAcM4VjqfOEGgHS8JoCEdApJCw9xIatXV9lChoBkdAcUM5rgwXZWgHS9ZoCEdApJGILThHb3V9lChoBkdAcMUAWSEDhmgHS9toCEdApJI4uTRplHV9lChoBkdAVIVPwd8zAWgHS5hoCEdApJKmVC5VfnV9lChoBkdAcAK+4smOVGgHS9hoCEdApJM6pPykK3V9lChoBkdAcK0RtP557mgHS8ZoCEdApJRcD2alUXV9lChoBkdAc3whcZ9/jWgHS+FoCEdApJT/Zh8YynV9lChoBkdAboPtk4FRpGgHS8RoCEdApJWITTOPenV9lChoBkdAcRgied07sGgHS9RoCEdApJYa1G9YfXV9lChoBkdAcnmwyZa3Z2gHS8poCEdApJaslC1JDnV9lChoBkdAcQA9QXQ+lmgHS8VoCEdApJfOMQ2/BXV9lChoBkdAcs/hew9q12gHS9ZoCEdApJhmZeAuqXV9lChoBkdAc9vCZ4Oc2GgHS/JoCEdApJkX/NqxknV9lChoBkdAcwEXv6TGHmgHS+RoCEdApJm2JrLyMHV9lChoBkdAcA2T4L1EmmgHS+BoCEdApJrrHKfWc3V9lChoBkdAcPDR2KVIJGgHS+xoCEdApJuSZtvXLHV9lChoBkdAcnA+3H7xeGgHTQEBaAhHQKScRPTodMl1fZQoaAZHQGOKUnXumaZoB03oA2gIR0Ckn6zOxB3SdX2UKGgGR0AHEkMTewcHaAdLa2gIR0Ckn/fVI7NjdX2UKGgGR0Buns4BFNL2aAdL5mgIR0CkoJmJFb3XdX2UKGgGR0Byt/dqL0jDaAdNCQFoCEdApKHvLmp2lnV9lChoBkdAcIqow22oemgHS9VoCEdApKKHwG4ZuXV9lChoBkdAcd3Tm4iHI2gHS/NoCEdApKM4xtYSx3V9lChoBkdAcHYj7Q9idGgHS9ZoCEdApKPOVeKKpHV9lChoBkdAcaphzeXRgWgHS+poCEdApKRzpmmLtXV9lChoBkdAcd/Eg4ffXWgHS/VoCEdApKW9D2Jzk3V9lChoBkdAcGD5N47ihmgHS+hoCEdApKaeR1X/53V9lChoBkdAcp9AXl8w6GgHS+loCEdApKdy/fwZwXV9lChoBkdAcG0uHN5dGGgHS81oCEdApKgpdQfp2XV9lChoBkdAbmqKpkwvg2gHS+VoCEdApKnDmr8zh3V9lChoBkdAcRpn9vS+g2gHS9hoCEdApKpbsniNsHV9lChoBkdAc3fgeA/cFmgHTWUCaAhHQKSsERGMGX51fZQoaAZHQHA9VHSWqtJoB0vNaAhHQKStSjopx3p1fZQoaAZHQHHkW07bL2ZoB0vVaAhHQKSt4hEBsAN1fZQoaAZHQHBNJAt4A0doB007AmgIR0Ckr3pyIYWMdX2UKGgGR0BwqCmQ8wHraAdL5GgIR0CksLEPMB6sdX2UKGgGR0Bv/5X4j8k2aAdL6WgIR0CksWeV9nbqdX2UKGgGR0BOGOAiFCb+aAdLuWgIR0CksfG4I8hcdX2UKGgGR0BwuUfKZDzAaAdL5GgIR0CkspsT37DVdX2UKGgGR0BxJSf5DZ13aAdL7mgIR0Cks0TreIl/dX2UKGgGR0Bx/myKNyYHaAdL0GgIR0CktHlLvkR0dX2UKGgGR0BvKp3Tuv2XaAdL1mgIR0CktRTBqKxcdX2UKGgGR0Bxec3Ov+wUaAdL2WgIR0CktbI0ZWJadX2UKGgGR0Bwp83gk1MuaAdL6WgIR0CktluJLuhLdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5860, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |