New model for PandaPushDense-v2
Browse files- README.md +37 -0
- a2c-PandaPushDense-v2.zip +3 -0
- a2c-PandaPushDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaPushDense-v2/data +94 -0
- a2c-PandaPushDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaPushDense-v2/policy.pth +3 -0
- a2c-PandaPushDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaPushDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPushDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPushDense-v2
|
16 |
+
type: PandaPushDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -7.11 +/- 2.95
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPushDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPushDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPushDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3c2310b11d4945a7680b792a9a30469348fe38330260d7721ecc34cf1960d77
|
3 |
+
size 122762
|
a2c-PandaPushDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaPushDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6bbbcf69d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f6bbbd64d50>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVygMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLEoWUaBpoHSiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLEoWUaCB0lFKUaCNoHSiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLEoWUaCB0lFKUaChoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDJoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.], (18,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674346248106859309,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9EOtvwvJI79E1FY941mfP+pNab5E1FY98QDEPpnMoz9E1FY96ZxYv3riAz9E1FY9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtOc9vpJpyr/UYqoy7QnHPyFboj/UYqoySMSxP/T5jz/UYqoyClo+P1/EKL/UYqoylGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADa+Uo8g0+ZPU2gYL7n9uQ9jv7XPGgznTz0Q62/C8kjv0TUVj14npq7VTcPvbg2OrxBp6s69mYsPO5ZuTwyfyG7swVdvIvsBLva+Uo8g0+ZPU2gYL7n9uQ9jv7XPGgznTzjWZ8/6k1pvkTUVj14npq7VTcPvbg2OrxBp6s69mYsPO5ZuTwyfyG7swVdvIvsBLva+Uo8g0+ZPU2gYL7n9uQ9jv7XPGgznTzxAMQ+mcyjP0TUVj14npq7VTcPvbg2OrxBp6s69mYsPO5ZuTwyfyG7swVdvIvsBLva+Uo8g0+ZPU2gYL7n9uQ9jv7XPGgznTzpnFi/euIDP0TUVj14npq7VTcPvbg2OrxBp6s69mYsPO5ZuTwyfyG7swVdvIvsBLuUaA5LBEsShpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[-1.3536363 -0.6397864 0.05244853]\n [ 1.2449306 -0.22783628 0.05244853]\n [ 0.38281968 1.2796813 0.05244853]\n [-0.84614426 0.5151745 0.05244853]]",
|
60 |
+
"desired_goal": "[[-1.8545419e-01 -1.5813468e+00 1.9835547e-08]\n [ 1.5549904e+00 1.2684060e+00 1.9835547e-08]\n [ 1.3888025e+00 1.1248155e+00 1.9835547e-08]\n [ 7.4356139e-01 -6.5924639e-01 1.9835547e-08]]",
|
61 |
+
"observation": "[[ 1.23886708e-02 7.48586878e-02 -2.19361499e-01 1.11799054e-01\n 2.63664983e-02 1.91895515e-02 -1.35363626e+00 -6.39786422e-01\n 5.24485260e-02 -4.71859798e-03 -3.49648781e-02 -1.13655850e-02\n 1.30961102e-03 1.05225947e-02 2.26258896e-02 -2.46424647e-03\n -1.34901283e-02 -2.02825922e-03]\n [ 1.23886708e-02 7.48586878e-02 -2.19361499e-01 1.11799054e-01\n 2.63664983e-02 1.91895515e-02 1.24493062e+00 -2.27836281e-01\n 5.24485260e-02 -4.71859798e-03 -3.49648781e-02 -1.13655850e-02\n 1.30961102e-03 1.05225947e-02 2.26258896e-02 -2.46424647e-03\n -1.34901283e-02 -2.02825922e-03]\n [ 1.23886708e-02 7.48586878e-02 -2.19361499e-01 1.11799054e-01\n 2.63664983e-02 1.91895515e-02 3.82819682e-01 1.27968132e+00\n 5.24485260e-02 -4.71859798e-03 -3.49648781e-02 -1.13655850e-02\n 1.30961102e-03 1.05225947e-02 2.26258896e-02 -2.46424647e-03\n -1.34901283e-02 -2.02825922e-03]\n [ 1.23886708e-02 7.48586878e-02 -2.19361499e-01 1.11799054e-01\n 2.63664983e-02 1.91895515e-02 -8.46144259e-01 5.15174508e-01\n 5.24485260e-02 -4.71859798e-03 -3.49648781e-02 -1.13655850e-02\n 1.30961102e-03 1.05225947e-02 2.26258896e-02 -2.46424647e-03\n -1.34901283e-02 -2.02825922e-03]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7HooPXAeyrwK16M8lhEUPolB4r0K16M89wGZPM1HYz0K16M80L0rvVQEpj0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABOWUveHgl70K16M81UQTPj1zJT0K16M88TdUvdtNsr0K16M88ml/PW+5cT0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADseig9cB7KvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACWERQ+iUHivQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAD3AZk8zUdjPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADQvSu9VASmPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LBEsShpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 0.04113285 -0.02467272 0.02 ]\n [ 0.14459834 -0.11047656 0.02 ]\n [ 0.01867769 0.0554884 0.02 ]\n [-0.04192907 0.08106294 0.02 ]]",
|
71 |
+
"desired_goal": "[[-0.07270244 -0.07415939 0.02 ]\n [ 0.14381726 0.0403931 0.02 ]\n [-0.05181116 -0.08706256 0.02 ]\n [ 0.0623569 0.05901473 0.02 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 4.1132852e-02 -2.4672717e-02\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.4459834e-01 -1.1047656e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.8677695e-02 5.5488396e-02\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -4.1929066e-02 8.1062943e-02\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXOffLvtdJMCUhpRSlIwBbJRLMowBdJRHQKhAilUp/gB1fZQoaAZoCWgPQwiD3htDAOAhwJSGlFKUaBVLMmgWR0CoQFBVU+9rdX2UKGgGaAloD0MIbATidf1CGMCUhpRSlGgVSzJoFkdAqEAVvVEux3V9lChoBmgJaA9DCESKARJN0BvAlIaUUpRoFUsyaBZHQKg/28DB/I91fZQoaAZoCWgPQwhvSKMCJ5sZwJSGlFKUaBVLMmgWR0CoQalkQPI5dX2UKGgGaAloD0MIwMsMG2X9DMCUhpRSlGgVSzJoFkdAqEFvcafjCHV9lChoBmgJaA9DCOIEptO6DSDAlIaUUpRoFUsyaBZHQKhBNPPcBU91fZQoaAZoCWgPQwg+Xd2x2J4lwJSGlFKUaBVLMmgWR0CoQPr5hz/7dX2UKGgGaAloD0MIebKbGf2AJ8CUhpRSlGgVSzJoFkdAqELL7CSA6XV9lChoBmgJaA9DCJynOuRm2A7AlIaUUpRoFUsyaBZHQKhCkeGwiaB1fZQoaAZoCWgPQwjZsnxdhk8ZwJSGlFKUaBVLMmgWR0CoQlc9wFTvdX2UKGgGaAloD0MIrMWnABi/FsCUhpRSlGgVSzJoFkdAqEIdTJhfB3V9lChoBmgJaA9DCOG04EVfARjAlIaUUpRoFUsyaBZHQKhD9YuCf6J1fZQoaAZoCWgPQwhkrDb/r2ovwJSGlFKUaBVLMmgWR0CoQ7tr0rbydX2UKGgGaAloD0MIahZod0ixE8CUhpRSlGgVSzJoFkdAqEOA0IkZ8HV9lChoBmgJaA9DCCsSE9TwTTHAlIaUUpRoFUsyaBZHQKhDR+l0o0B1fZQoaAZoCWgPQwj0GVBvRl0WwJSGlFKUaBVLMmgWR0CoRRwhwEQodX2UKGgGaAloD0MId4cUAySKKcCUhpRSlGgVSzJoFkdAqETiOWBz3nV9lChoBmgJaA9DCCoAxjNocCbAlIaUUpRoFUsyaBZHQKhEp0g8r7R1fZQoaAZoCWgPQwjiWu1hL2QVwJSGlFKUaBVLMmgWR0CoRG1FQVKxdX2UKGgGaAloD0MIycfuAiW1JsCUhpRSlGgVSzJoFkdAqEZQBRyfc3V9lChoBmgJaA9DCAvuBzww6CDAlIaUUpRoFUsyaBZHQKhGFgMtsep1fZQoaAZoCWgPQwhmwcQfRX0cwJSGlFKUaBVLMmgWR0CoRdto8IRidX2UKGgGaAloD0MIB/AWSFA8GsCUhpRSlGgVSzJoFkdAqEWhYT0xunV9lChoBmgJaA9DCO/IWG3+dyfAlIaUUpRoFUsyaBZHQKhHbdxAB1d1fZQoaAZoCWgPQwgi+yDLgskDwJSGlFKUaBVLMmgWR0CoRzPVmSQpdX2UKGgGaAloD0MIwhcmUwVzK8CUhpRSlGgVSzJoFkdAqEb5CKJl8XV9lChoBmgJaA9DCGJp4Ec1HCjAlIaUUpRoFUsyaBZHQKhGvwUg0TF1fZQoaAZoCWgPQwh88rBQa4ohwJSGlFKUaBVLMmgWR0CoSJj/lyR0dX2UKGgGaAloD0MIG/Z7Yp2KIMCUhpRSlGgVSzJoFkdAqEhfIjnmrHV9lChoBmgJaA9DCM3qHW6HRvu/lIaUUpRoFUsyaBZHQKhIJIgeRxN1fZQoaAZoCWgPQwgvpwTEJNQqwJSGlFKUaBVLMmgWR0CoR+qZtvXLdX2UKGgGaAloD0MIYtwNorWSGMCUhpRSlGgVSzJoFkdAqEnLRBu4w3V9lChoBmgJaA9DCI7qdCDrcSPAlIaUUpRoFUsyaBZHQKhJkUM5OrR1fZQoaAZoCWgPQwjjNEQV/kz2v5SGlFKUaBVLMmgWR0CoSVafBeoldX2UKGgGaAloD0MIQUZAhSPQK8CUhpRSlGgVSzJoFkdAqEkclHBk7XV9lChoBmgJaA9DCAWk/Q+w1hfAlIaUUpRoFUsyaBZHQKhK6z2vjfh1fZQoaAZoCWgPQwinWDUIc5sTwJSGlFKUaBVLMmgWR0CoSrEZR8+idX2UKGgGaAloD0MIaY8X0uGRJMCUhpRSlGgVSzJoFkdAqEp2eOGTLXV9lChoBmgJaA9DCAKetHBZBQfAlIaUUpRoFUsyaBZHQKhKPI3BHkN1fZQoaAZoCWgPQwhLWvENhX8cwJSGlFKUaBVLMmgWR0CoTAS2x6fKdX2UKGgGaAloD0MIS8yzklbEJsCUhpRSlGgVSzJoFkdAqEvKlenhsXV9lChoBmgJaA9DCDqVDABVzBrAlIaUUpRoFUsyaBZHQKhLj8NQTEl1fZQoaAZoCWgPQwg6kzZV9wgNwJSGlFKUaBVLMmgWR0CoS1Xf642CdX2UKGgGaAloD0MIiIIZU7AeIsCUhpRSlGgVSzJoFkdAqE0zg2qDLHV9lChoBmgJaA9DCN/F+3H7hQHAlIaUUpRoFUsyaBZHQKhM+YlY2bZ1fZQoaAZoCWgPQwhvRzgteFHkv5SGlFKUaBVLMmgWR0CoTL8E/0NCdX2UKGgGaAloD0MIKsjPRq4rHsCUhpRSlGgVSzJoFkdAqEyFIwudw3V9lChoBmgJaA9DCLvUCP1MNS/AlIaUUpRoFUsyaBZHQKhOXWAf+0h1fZQoaAZoCWgPQwhJSnoYWl38v5SGlFKUaBVLMmgWR0CoTiOAiFCcdX2UKGgGaAloD0MIYytoWmLlG8CUhpRSlGgVSzJoFkdAqE3o+t8uz3V9lChoBmgJaA9DCPHVjuIcNRzAlIaUUpRoFUsyaBZHQKhNrwEQoTh1fZQoaAZoCWgPQwg1mIbhIwopwJSGlFKUaBVLMmgWR0CoT4gB91EFdX2UKGgGaAloD0MIIO9VKxNOEcCUhpRSlGgVSzJoFkdAqE9ODHwPRXV9lChoBmgJaA9DCJAuNq0UggLAlIaUUpRoFUsyaBZHQKhPE3HaN+91fZQoaAZoCWgPQwhoQSjv44gbwJSGlFKUaBVLMmgWR0CoTtk2pAD8dX2UKGgGaAloD0MIgzP4+8WMAcCUhpRSlGgVSzJoFkdAqFDsZ3s5XHV9lChoBmgJaA9DCPZ+ox03DCXAlIaUUpRoFUsyaBZHQKhQsp1ie/Z1fZQoaAZoCWgPQwjmB67yBJInwJSGlFKUaBVLMmgWR0CoUHjvd/KAdX2UKGgGaAloD0MINj/+0qIuGsCUhpRSlGgVSzJoFkdAqFA/KB/ZunV9lChoBmgJaA9DCLyzdtuFphnAlIaUUpRoFUsyaBZHQKhSKiqQzUJ1fZQoaAZoCWgPQwj5wI7/ApEgwJSGlFKUaBVLMmgWR0CoUfAeaKDTdX2UKGgGaAloD0MIW86luKpsGMCUhpRSlGgVSzJoFkdAqFG1lAeJYXV9lChoBmgJaA9DCBa+vtalFhrAlIaUUpRoFUsyaBZHQKhRe4lQdjp1fZQoaAZoCWgPQwggCmZMwboXwJSGlFKUaBVLMmgWR0CoU1Bvze41dX2UKGgGaAloD0MIRML3/gZ1IcCUhpRSlGgVSzJoFkdAqFMWcc2itnV9lChoBmgJaA9DCEF/oUeMPgzAlIaUUpRoFUsyaBZHQKhS29oN/fB1fZQoaAZoCWgPQwhHOC140f8pwJSGlFKUaBVLMmgWR0CoUqHKfWc0dX2UKGgGaAloD0MIWU3XE12XAMCUhpRSlGgVSzJoFkdAqFR83VCoj3V9lChoBmgJaA9DCHpSJjW00RTAlIaUUpRoFUsyaBZHQKhUQulGgBd1fZQoaAZoCWgPQwjmB67yBNISwJSGlFKUaBVLMmgWR0CoVAhW5paidX2UKGgGaAloD0MI5ZmXw+4rHMCUhpRSlGgVSzJoFkdAqFPOXAuZkXV9lChoBmgJaA9DCDkJpS+EHBjAlIaUUpRoFUsyaBZHQKhVoGpMpPR1fZQoaAZoCWgPQwgnnx7bMhAUwJSGlFKUaBVLMmgWR0CoVWZx7zCldX2UKGgGaAloD0MI+RG/Yg0HIcCUhpRSlGgVSzJoFkdAqFUr7Gecx3V9lChoBmgJaA9DCKJBCp5CzinAlIaUUpRoFUsyaBZHQKhU8dCE6DJ1fZQoaAZoCWgPQwjxn26gwAMzwJSGlFKUaBVLMmgWR0CoVtSHuZ1FdX2UKGgGaAloD0MIN8R4zatiKMCUhpRSlGgVSzJoFkdAqFaal3yI6HV9lChoBmgJaA9DCPiKbr2m5wrAlIaUUpRoFUsyaBZHQKhWX/vOQhh1fZQoaAZoCWgPQwiOVyB6UtJDwJSGlFKUaBVLMmgWR0CoViX5vcagdX2UKGgGaAloD0MIz8DIy5r4DsCUhpRSlGgVSzJoFkdAqFgLlmvnsHV9lChoBmgJaA9DCI1+NJwyBx7AlIaUUpRoFUsyaBZHQKhX0e0Xxe91fZQoaAZoCWgPQwg57//jhCkfwJSGlFKUaBVLMmgWR0CoV5dn003wdX2UKGgGaAloD0MIJhx6i4f3G8CUhpRSlGgVSzJoFkdAqFddnXd0rHV9lChoBmgJaA9DCGoxeJj2VSLAlIaUUpRoFUsyaBZHQKhZOMtsen11fZQoaAZoCWgPQwjfap24HO8ZwJSGlFKUaBVLMmgWR0CoWP7CBPKudX2UKGgGaAloD0MIwZDVrZ5jJMCUhpRSlGgVSzJoFkdAqFjEIX0oSnV9lChoBmgJaA9DCKvsuyL4rxLAlIaUUpRoFUsyaBZHQKhYiisXBP91fZQoaAZoCWgPQwh1AwXeyR8iwJSGlFKUaBVLMmgWR0CoWlnlfZ27dX2UKGgGaAloD0MILVqAttXcEMCUhpRSlGgVSzJoFkdAqFof8fmtAHV9lChoBmgJaA9DCOEkzR/TGh/AlIaUUpRoFUsyaBZHQKhZ5SkTHsF1fZQoaAZoCWgPQwjScTWyK60awJSGlFKUaBVLMmgWR0CoWar8rI5pdX2UKGgGaAloD0MIC5krg2oD+b+UhpRSlGgVSzJoFkdAqFt4uh9LH3V9lChoBmgJaA9DCD6uDRXjDBvAlIaUUpRoFUsyaBZHQKhbPsWweNl1fZQoaAZoCWgPQwjS5GIMrOsjwJSGlFKUaBVLMmgWR0CoWwRA0KqodX2UKGgGaAloD0MIrvAuF/H9KMCUhpRSlGgVSzJoFkdAqFrKK3uuzXV9lChoBmgJaA9DCP60UZ0O5Oe/lIaUUpRoFUsyaBZHQKhcpR1HOKR1fZQoaAZoCWgPQwhoA7ABEYITwJSGlFKUaBVLMmgWR0CoXGsQumJndX2UKGgGaAloD0MI8BRypZ6FMcCUhpRSlGgVSzJoFkdAqFwwmmce83V9lChoBmgJaA9DCLRZ9bnaSh3AlIaUUpRoFUsyaBZHQKhb9oQnQY11ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50323,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaPushDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95a677b1c0277829ca1fe69dbe4f9c643cdfe13273bcca39b036f5254a80bf9c
|
3 |
+
size 50878
|
a2c-PandaPushDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84facd8cf8b6ae2389bdcc3e07e69e9f8d55f015d440ddfec84eefbb9cb5c14a
|
3 |
+
size 52158
|
a2c-PandaPushDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaPushDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6bbbcf69d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6bbbd64d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVygMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLEoWUaBpoHSiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLEoWUaCB0lFKUaCNoHSiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLEoWUaCB0lFKUaChoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDJoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.], (18,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674346248106859309, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9EOtvwvJI79E1FY941mfP+pNab5E1FY98QDEPpnMoz9E1FY96ZxYv3riAz9E1FY9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtOc9vpJpyr/UYqoy7QnHPyFboj/UYqoySMSxP/T5jz/UYqoyClo+P1/EKL/UYqoylGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADa+Uo8g0+ZPU2gYL7n9uQ9jv7XPGgznTz0Q62/C8kjv0TUVj14npq7VTcPvbg2OrxBp6s69mYsPO5ZuTwyfyG7swVdvIvsBLva+Uo8g0+ZPU2gYL7n9uQ9jv7XPGgznTzjWZ8/6k1pvkTUVj14npq7VTcPvbg2OrxBp6s69mYsPO5ZuTwyfyG7swVdvIvsBLva+Uo8g0+ZPU2gYL7n9uQ9jv7XPGgznTzxAMQ+mcyjP0TUVj14npq7VTcPvbg2OrxBp6s69mYsPO5ZuTwyfyG7swVdvIvsBLva+Uo8g0+ZPU2gYL7n9uQ9jv7XPGgznTzpnFi/euIDP0TUVj14npq7VTcPvbg2OrxBp6s69mYsPO5ZuTwyfyG7swVdvIvsBLuUaA5LBEsShpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.3536363 -0.6397864 0.05244853]\n [ 1.2449306 -0.22783628 0.05244853]\n [ 0.38281968 1.2796813 0.05244853]\n [-0.84614426 0.5151745 0.05244853]]", "desired_goal": "[[-1.8545419e-01 -1.5813468e+00 1.9835547e-08]\n [ 1.5549904e+00 1.2684060e+00 1.9835547e-08]\n [ 1.3888025e+00 1.1248155e+00 1.9835547e-08]\n [ 7.4356139e-01 -6.5924639e-01 1.9835547e-08]]", "observation": "[[ 1.23886708e-02 7.48586878e-02 -2.19361499e-01 1.11799054e-01\n 2.63664983e-02 1.91895515e-02 -1.35363626e+00 -6.39786422e-01\n 5.24485260e-02 -4.71859798e-03 -3.49648781e-02 -1.13655850e-02\n 1.30961102e-03 1.05225947e-02 2.26258896e-02 -2.46424647e-03\n -1.34901283e-02 -2.02825922e-03]\n [ 1.23886708e-02 7.48586878e-02 -2.19361499e-01 1.11799054e-01\n 2.63664983e-02 1.91895515e-02 1.24493062e+00 -2.27836281e-01\n 5.24485260e-02 -4.71859798e-03 -3.49648781e-02 -1.13655850e-02\n 1.30961102e-03 1.05225947e-02 2.26258896e-02 -2.46424647e-03\n -1.34901283e-02 -2.02825922e-03]\n [ 1.23886708e-02 7.48586878e-02 -2.19361499e-01 1.11799054e-01\n 2.63664983e-02 1.91895515e-02 3.82819682e-01 1.27968132e+00\n 5.24485260e-02 -4.71859798e-03 -3.49648781e-02 -1.13655850e-02\n 1.30961102e-03 1.05225947e-02 2.26258896e-02 -2.46424647e-03\n -1.34901283e-02 -2.02825922e-03]\n [ 1.23886708e-02 7.48586878e-02 -2.19361499e-01 1.11799054e-01\n 2.63664983e-02 1.91895515e-02 -8.46144259e-01 5.15174508e-01\n 5.24485260e-02 -4.71859798e-03 -3.49648781e-02 -1.13655850e-02\n 1.30961102e-03 1.05225947e-02 2.26258896e-02 -2.46424647e-03\n -1.34901283e-02 -2.02825922e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7HooPXAeyrwK16M8lhEUPolB4r0K16M89wGZPM1HYz0K16M80L0rvVQEpj0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABOWUveHgl70K16M81UQTPj1zJT0K16M88TdUvdtNsr0K16M88ml/PW+5cT0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADseig9cB7KvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACWERQ+iUHivQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAD3AZk8zUdjPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADQvSu9VASmPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LBEsShpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.04113285 -0.02467272 0.02 ]\n [ 0.14459834 -0.11047656 0.02 ]\n [ 0.01867769 0.0554884 0.02 ]\n [-0.04192907 0.08106294 0.02 ]]", "desired_goal": "[[-0.07270244 -0.07415939 0.02 ]\n [ 0.14381726 0.0403931 0.02 ]\n [-0.05181116 -0.08706256 0.02 ]\n [ 0.0623569 0.05901473 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 4.1132852e-02 -2.4672717e-02\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.4459834e-01 -1.1047656e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.8677695e-02 5.5488396e-02\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -4.1929066e-02 8.1062943e-02\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXOffLvtdJMCUhpRSlIwBbJRLMowBdJRHQKhAilUp/gB1fZQoaAZoCWgPQwiD3htDAOAhwJSGlFKUaBVLMmgWR0CoQFBVU+9rdX2UKGgGaAloD0MIbATidf1CGMCUhpRSlGgVSzJoFkdAqEAVvVEux3V9lChoBmgJaA9DCESKARJN0BvAlIaUUpRoFUsyaBZHQKg/28DB/I91fZQoaAZoCWgPQwhvSKMCJ5sZwJSGlFKUaBVLMmgWR0CoQalkQPI5dX2UKGgGaAloD0MIwMsMG2X9DMCUhpRSlGgVSzJoFkdAqEFvcafjCHV9lChoBmgJaA9DCOIEptO6DSDAlIaUUpRoFUsyaBZHQKhBNPPcBU91fZQoaAZoCWgPQwg+Xd2x2J4lwJSGlFKUaBVLMmgWR0CoQPr5hz/7dX2UKGgGaAloD0MIebKbGf2AJ8CUhpRSlGgVSzJoFkdAqELL7CSA6XV9lChoBmgJaA9DCJynOuRm2A7AlIaUUpRoFUsyaBZHQKhCkeGwiaB1fZQoaAZoCWgPQwjZsnxdhk8ZwJSGlFKUaBVLMmgWR0CoQlc9wFTvdX2UKGgGaAloD0MIrMWnABi/FsCUhpRSlGgVSzJoFkdAqEIdTJhfB3V9lChoBmgJaA9DCOG04EVfARjAlIaUUpRoFUsyaBZHQKhD9YuCf6J1fZQoaAZoCWgPQwhkrDb/r2ovwJSGlFKUaBVLMmgWR0CoQ7tr0rbydX2UKGgGaAloD0MIahZod0ixE8CUhpRSlGgVSzJoFkdAqEOA0IkZ8HV9lChoBmgJaA9DCCsSE9TwTTHAlIaUUpRoFUsyaBZHQKhDR+l0o0B1fZQoaAZoCWgPQwj0GVBvRl0WwJSGlFKUaBVLMmgWR0CoRRwhwEQodX2UKGgGaAloD0MId4cUAySKKcCUhpRSlGgVSzJoFkdAqETiOWBz3nV9lChoBmgJaA9DCCoAxjNocCbAlIaUUpRoFUsyaBZHQKhEp0g8r7R1fZQoaAZoCWgPQwjiWu1hL2QVwJSGlFKUaBVLMmgWR0CoRG1FQVKxdX2UKGgGaAloD0MIycfuAiW1JsCUhpRSlGgVSzJoFkdAqEZQBRyfc3V9lChoBmgJaA9DCAvuBzww6CDAlIaUUpRoFUsyaBZHQKhGFgMtsep1fZQoaAZoCWgPQwhmwcQfRX0cwJSGlFKUaBVLMmgWR0CoRdto8IRidX2UKGgGaAloD0MIB/AWSFA8GsCUhpRSlGgVSzJoFkdAqEWhYT0xunV9lChoBmgJaA9DCO/IWG3+dyfAlIaUUpRoFUsyaBZHQKhHbdxAB1d1fZQoaAZoCWgPQwgi+yDLgskDwJSGlFKUaBVLMmgWR0CoRzPVmSQpdX2UKGgGaAloD0MIwhcmUwVzK8CUhpRSlGgVSzJoFkdAqEb5CKJl8XV9lChoBmgJaA9DCGJp4Ec1HCjAlIaUUpRoFUsyaBZHQKhGvwUg0TF1fZQoaAZoCWgPQwh88rBQa4ohwJSGlFKUaBVLMmgWR0CoSJj/lyR0dX2UKGgGaAloD0MIG/Z7Yp2KIMCUhpRSlGgVSzJoFkdAqEhfIjnmrHV9lChoBmgJaA9DCM3qHW6HRvu/lIaUUpRoFUsyaBZHQKhIJIgeRxN1fZQoaAZoCWgPQwgvpwTEJNQqwJSGlFKUaBVLMmgWR0CoR+qZtvXLdX2UKGgGaAloD0MIYtwNorWSGMCUhpRSlGgVSzJoFkdAqEnLRBu4w3V9lChoBmgJaA9DCI7qdCDrcSPAlIaUUpRoFUsyaBZHQKhJkUM5OrR1fZQoaAZoCWgPQwjjNEQV/kz2v5SGlFKUaBVLMmgWR0CoSVafBeoldX2UKGgGaAloD0MIQUZAhSPQK8CUhpRSlGgVSzJoFkdAqEkclHBk7XV9lChoBmgJaA9DCAWk/Q+w1hfAlIaUUpRoFUsyaBZHQKhK6z2vjfh1fZQoaAZoCWgPQwinWDUIc5sTwJSGlFKUaBVLMmgWR0CoSrEZR8+idX2UKGgGaAloD0MIaY8X0uGRJMCUhpRSlGgVSzJoFkdAqEp2eOGTLXV9lChoBmgJaA9DCAKetHBZBQfAlIaUUpRoFUsyaBZHQKhKPI3BHkN1fZQoaAZoCWgPQwhLWvENhX8cwJSGlFKUaBVLMmgWR0CoTAS2x6fKdX2UKGgGaAloD0MIS8yzklbEJsCUhpRSlGgVSzJoFkdAqEvKlenhsXV9lChoBmgJaA9DCDqVDABVzBrAlIaUUpRoFUsyaBZHQKhLj8NQTEl1fZQoaAZoCWgPQwg6kzZV9wgNwJSGlFKUaBVLMmgWR0CoS1Xf642CdX2UKGgGaAloD0MIiIIZU7AeIsCUhpRSlGgVSzJoFkdAqE0zg2qDLHV9lChoBmgJaA9DCN/F+3H7hQHAlIaUUpRoFUsyaBZHQKhM+YlY2bZ1fZQoaAZoCWgPQwhvRzgteFHkv5SGlFKUaBVLMmgWR0CoTL8E/0NCdX2UKGgGaAloD0MIKsjPRq4rHsCUhpRSlGgVSzJoFkdAqEyFIwudw3V9lChoBmgJaA9DCLvUCP1MNS/AlIaUUpRoFUsyaBZHQKhOXWAf+0h1fZQoaAZoCWgPQwhJSnoYWl38v5SGlFKUaBVLMmgWR0CoTiOAiFCcdX2UKGgGaAloD0MIYytoWmLlG8CUhpRSlGgVSzJoFkdAqE3o+t8uz3V9lChoBmgJaA9DCPHVjuIcNRzAlIaUUpRoFUsyaBZHQKhNrwEQoTh1fZQoaAZoCWgPQwg1mIbhIwopwJSGlFKUaBVLMmgWR0CoT4gB91EFdX2UKGgGaAloD0MIIO9VKxNOEcCUhpRSlGgVSzJoFkdAqE9ODHwPRXV9lChoBmgJaA9DCJAuNq0UggLAlIaUUpRoFUsyaBZHQKhPE3HaN+91fZQoaAZoCWgPQwhoQSjv44gbwJSGlFKUaBVLMmgWR0CoTtk2pAD8dX2UKGgGaAloD0MIgzP4+8WMAcCUhpRSlGgVSzJoFkdAqFDsZ3s5XHV9lChoBmgJaA9DCPZ+ox03DCXAlIaUUpRoFUsyaBZHQKhQsp1ie/Z1fZQoaAZoCWgPQwjmB67yBJInwJSGlFKUaBVLMmgWR0CoUHjvd/KAdX2UKGgGaAloD0MINj/+0qIuGsCUhpRSlGgVSzJoFkdAqFA/KB/ZunV9lChoBmgJaA9DCLyzdtuFphnAlIaUUpRoFUsyaBZHQKhSKiqQzUJ1fZQoaAZoCWgPQwj5wI7/ApEgwJSGlFKUaBVLMmgWR0CoUfAeaKDTdX2UKGgGaAloD0MIW86luKpsGMCUhpRSlGgVSzJoFkdAqFG1lAeJYXV9lChoBmgJaA9DCBa+vtalFhrAlIaUUpRoFUsyaBZHQKhRe4lQdjp1fZQoaAZoCWgPQwggCmZMwboXwJSGlFKUaBVLMmgWR0CoU1Bvze41dX2UKGgGaAloD0MIRML3/gZ1IcCUhpRSlGgVSzJoFkdAqFMWcc2itnV9lChoBmgJaA9DCEF/oUeMPgzAlIaUUpRoFUsyaBZHQKhS29oN/fB1fZQoaAZoCWgPQwhHOC140f8pwJSGlFKUaBVLMmgWR0CoUqHKfWc0dX2UKGgGaAloD0MIWU3XE12XAMCUhpRSlGgVSzJoFkdAqFR83VCoj3V9lChoBmgJaA9DCHpSJjW00RTAlIaUUpRoFUsyaBZHQKhUQulGgBd1fZQoaAZoCWgPQwjmB67yBNISwJSGlFKUaBVLMmgWR0CoVAhW5paidX2UKGgGaAloD0MI5ZmXw+4rHMCUhpRSlGgVSzJoFkdAqFPOXAuZkXV9lChoBmgJaA9DCDkJpS+EHBjAlIaUUpRoFUsyaBZHQKhVoGpMpPR1fZQoaAZoCWgPQwgnnx7bMhAUwJSGlFKUaBVLMmgWR0CoVWZx7zCldX2UKGgGaAloD0MI+RG/Yg0HIcCUhpRSlGgVSzJoFkdAqFUr7Gecx3V9lChoBmgJaA9DCKJBCp5CzinAlIaUUpRoFUsyaBZHQKhU8dCE6DJ1fZQoaAZoCWgPQwjxn26gwAMzwJSGlFKUaBVLMmgWR0CoVtSHuZ1FdX2UKGgGaAloD0MIN8R4zatiKMCUhpRSlGgVSzJoFkdAqFaal3yI6HV9lChoBmgJaA9DCPiKbr2m5wrAlIaUUpRoFUsyaBZHQKhWX/vOQhh1fZQoaAZoCWgPQwiOVyB6UtJDwJSGlFKUaBVLMmgWR0CoViX5vcagdX2UKGgGaAloD0MIz8DIy5r4DsCUhpRSlGgVSzJoFkdAqFgLlmvnsHV9lChoBmgJaA9DCI1+NJwyBx7AlIaUUpRoFUsyaBZHQKhX0e0Xxe91fZQoaAZoCWgPQwg57//jhCkfwJSGlFKUaBVLMmgWR0CoV5dn003wdX2UKGgGaAloD0MIJhx6i4f3G8CUhpRSlGgVSzJoFkdAqFddnXd0rHV9lChoBmgJaA9DCGoxeJj2VSLAlIaUUpRoFUsyaBZHQKhZOMtsen11fZQoaAZoCWgPQwjfap24HO8ZwJSGlFKUaBVLMmgWR0CoWP7CBPKudX2UKGgGaAloD0MIwZDVrZ5jJMCUhpRSlGgVSzJoFkdAqFjEIX0oSnV9lChoBmgJaA9DCKvsuyL4rxLAlIaUUpRoFUsyaBZHQKhYiisXBP91fZQoaAZoCWgPQwh1AwXeyR8iwJSGlFKUaBVLMmgWR0CoWlnlfZ27dX2UKGgGaAloD0MILVqAttXcEMCUhpRSlGgVSzJoFkdAqFof8fmtAHV9lChoBmgJaA9DCOEkzR/TGh/AlIaUUpRoFUsyaBZHQKhZ5SkTHsF1fZQoaAZoCWgPQwjScTWyK60awJSGlFKUaBVLMmgWR0CoWar8rI5pdX2UKGgGaAloD0MIC5krg2oD+b+UhpRSlGgVSzJoFkdAqFt4uh9LH3V9lChoBmgJaA9DCD6uDRXjDBvAlIaUUpRoFUsyaBZHQKhbPsWweNl1fZQoaAZoCWgPQwjS5GIMrOsjwJSGlFKUaBVLMmgWR0CoWwRA0KqodX2UKGgGaAloD0MIrvAuF/H9KMCUhpRSlGgVSzJoFkdAqFrKK3uuzXV9lChoBmgJaA9DCP60UZ0O5Oe/lIaUUpRoFUsyaBZHQKhcpR1HOKR1fZQoaAZoCWgPQwhoA7ABEYITwJSGlFKUaBVLMmgWR0CoXGsQumJndX2UKGgGaAloD0MI8BRypZ6FMcCUhpRSlGgVSzJoFkdAqFwwmmce83V9lChoBmgJaA9DCLRZ9bnaSh3AlIaUUpRoFUsyaBZHQKhb9oQnQY11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50323, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (854 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -7.109649745374918, "std_reward": 2.947095401117817, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T00:59:23.341019"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7f45772d32988dc83ce99c91aff961a10bf9b81980a0edff19a13358cbe2fcb
|
3 |
+
size 3529
|