DiegoD616 commited on
Commit
4904140
1 Parent(s): 61674b0

New model for AntBulletEnv-v0

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 824.29 +/- 295.00
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 673.89 +/- 143.98
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cb78e62f3eb755200f6272fa4d81dadc5430f3480368a989e87356ce896f9646
3
- size 129260
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07c75e623e019b101eb86fb8b770353e42515f111c57425fc693f0cc3b994a10
3
+ size 129256
a2c-AntBulletEnv-v0/data CHANGED
@@ -4,22 +4,22 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f36ac54ca60>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36ac54caf0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36ac54cb80>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36ac54cc10>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f36ac54cca0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f36ac54cd30>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f36ac54cdc0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36ac54ce50>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f36ac54cee0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36ac54cf70>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36ac551040>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36ac5510d0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7f36ac542fc0>"
21
  },
22
- "verbose": 0,
23
  "policy_kwargs": {
24
  ":type:": "<class 'dict'>",
25
  ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
@@ -59,12 +59,12 @@
59
  "_np_random": null
60
  },
61
  "n_envs": 4,
62
- "num_timesteps": 2000000,
63
- "_total_timesteps": 2000000,
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
- "start_time": 1674171579478260419,
68
  "learning_rate": 0.00096,
69
  "tensorboard_log": null,
70
  "lr_schedule": {
@@ -73,7 +73,7 @@
73
  },
74
  "_last_obs": {
75
  ":type:": "<class 'numpy.ndarray'>",
76
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAONegL+AmX+/jmkmPYeelr+YSBm/cQawP9cgcL/9GSE+8ogIwNDzsj2k7gi/JEaOvrgq1z9H5wG/jaJbP8slIj2Gxiu+egR2vwLMo7z606+/Na03QH/8gbsSKzK/0sHBu5orWT9Cwd4+MUgTPwdRjL+pS5C/0AgFQODu37/vNJu/Xby4PiNflD07Ks8/m6gZPxA7PcC/mb08iZGBv780v7vbmKq/6YnSO1MigL91wrY7vufFv05aYzzbewI/rWwXPL8TOEBtTqI8Yzoyv5Eb5rzc4pa/QsHePjFIEz94h2k/32tcQHPSqLyBQyA/1KSFv5KYI74KsQC/HPFiva88FT/OjZG/Q39wv695EsBCScM/ecO+POYWyr8/RRZAYjSsv8KED7/Ac92/bizwPwxyEsAv8GU/os0awJ/DCMDENoO83OKWv3caE8AZfN6/B1GMv1OcXL+uwwg/AQsWP6AUUr+3XWM/mqG1P+CtED9MSkc+aKjov7xdo73pSYe/dQW2PuowfL8kETQ/d5wfvgsxhL9S33m/oCIgP6KPGT+2Ut8+5LanPU2B5j6UIPy+4f09vtzilr9Cwd4+MUgTP3iHaT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
@@ -81,7 +81,7 @@
81
  },
82
  "_last_original_obs": {
83
  ":type:": "<class 'numpy.ndarray'>",
84
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADegLg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJwaivQAAAADAivu/AAAAAExnuDwAAAAA5v3nPwAAAACSvMY9AAAAAFbA5z8AAAAAYDUjvQAAAAD7C/+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9AgNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKzRDz0AAAAA4mgAwAAAAAC2DAy9AAAAAFaB6T8AAAAAoDHhPQAAAAChF/g/AAAAAC/jib0AAAAAkfjdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAObcxLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICBEBE+AAAAAMQV7L8AAAAAD5I9PQAAAAC7xPA/AAAAAEfU6LwAAAAA6ID4PwAAAAD67wQ+AAAAAJhg7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtdd00AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWOe8vAAAAABh6+a/AAAAAM4cuj0AAAAACSPgPwAAAAB76r29AAAAAEgb6z8AAAAAaDKUOwAAAADfMe6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
  },
86
  "_episode_num": 0,
87
  "use_sde": true,
@@ -89,13 +89,13 @@
89
  "_current_progress_remaining": 0.0,
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
- ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJXIQlKK50+MAWyUTegDjAF0lEdAp51oW+GoJnV9lChoBkdAk1rCqlxffGgHTegDaAhHQKegRfO2RaJ1fZQoaAZHQJQKRpudf9hoB03oA2gIR0CnoXSwfQrudX2UKGgGR0CPID2L5ylvaAdN6ANoCEdAp6cUoF3Y+XV9lChoBkdAitE2sq8UVWgHTegDaAhHQKepUZjQRf51fZQoaAZHQJdsFU3n6mBoB03oA2gIR0CnrDhSk0rLdX2UKGgGR0CDECzru6VdaAdN6ANoCEdAp61pEfDDTHV9lChoBkdAmmTc6FM7EGgHTegDaAhHQKey6mZ3LV51fZQoaAZHQJjtzUwztTloB03oA2gIR0CntSXIdU83dX2UKGgGR0CU2qZPEbYLaAdN6ANoCEdAp7goFmnO0XV9lChoBkdAljLRkqc3EWgHTegDaAhHQKe5YHryDqZ1fZQoaAZHQJc2IMG5c1RoB03oA2gIR0Cnvxgq/dqMdX2UKGgGR0CSFPNzr/sFaAdN6ANoCEdAp8F8E9t/F3V9lChoBkdAhv8x9w3o92gHTegDaAhHQKfEq/1QIld1fZQoaAZHQH8kXh4t6HFoB03oA2gIR0CnxfLGipNsdX2UKGgGR0CB46Lzf779aAdN6ANoCEdAp8uqXSjQA3V9lChoBkdAk//xW5paimgHTegDaAhHQKfN/5a/yoZ1fZQoaAZHQJd1HkHUtqZoB03oA2gIR0Cn0QchTwUhdX2UKGgGR0CXYxWY4Qz2aAdN6ANoCEdAp9I+uTzNEHV9lChoBkdAmE81iSaEz2gHTegDaAhHQKfXvF5OafB1fZQoaAZHQJl0LDKoybhoB03oA2gIR0Cn2fpFCswMdX2UKGgGR0CZAFHdGiHqaAdN6ANoCEdAp90FdHDrJXV9lChoBkdAi/Qmr8zhxmgHTegDaAhHQKfeO8brC3x1fZQoaAZHQIz9JZuAI6doB03oA2gIR0Cn48FVtGd7dX2UKGgGR0CWTRhVU+9raAdN6ANoCEdAp+YDCJoCdXV9lChoBkdAldj5wXIlt2gHTegDaAhHQKfpC4RVZLZ1fZQoaAZHQI1DyVt4zJpoB03oA2gIR0Cn6kIRAbADdX2UKGgGR0CMD7fTCtRvaAdN6ANoCEdAp+/2Ya5wwXV9lChoBkdAjGeZrgwXZWgHTegDaAhHQKfyNhLGrCF1fZQoaAZHQI5Txc7hegNoB03oA2gIR0Cn9UOrIYFadX2UKGgGR0CZORvwmVqvaAdN6ANoCEdAp/Z6t7rs0HV9lChoBkdAhgCNdqtYCGgHTegDaAhHQKf8C6mO2iN1fZQoaAZHQJHUb7EYO2BoB03oA2gIR0Cn/lw6ySmqdX2UKGgGR0CRVHTP0I1MaAdN6ANoCEdAqAF/tQbdanV9lChoBkdAlV9WE4//vWgHTegDaAhHQKgCz4FA3UB1fZQoaAZHQIzs4kE9t/FoB03oA2gIR0CoCIBz/6wddX2UKGgGR0CRr2I7Njb0aAdN6ANoCEdAqAr1UADJVHV9lChoBkdAhBbZaFEiMmgHTegDaAhHQKgOE4yXUpd1fZQoaAZHQIV97RrrPdFoB03oA2gIR0CoD1HlXA/LdX2UKGgGR0CHODwkPczqaAdN6ANoCEdAqBUZK+SKWXV9lChoBkdAhVUTmfXf7GgHTegDaAhHQKgXdzQNTcZ1fZQoaAZHQISV6rR0EHNoB03oA2gIR0CoGo3B55Z9dX2UKGgGR0CK4clWOp84aAdN6ANoCEdAqBvvkNnXd3V9lChoBkdAhMThttQ9BGgHTegDaAhHQKghzQeFL391fZQoaAZHQITt8olUp/hoB03oA2gIR0CoJCYHPeHjdX2UKGgGR0CE59mXgLqmaAdN6ANoCEdAqCdJ8neBQXV9lChoBkdAiVDpOnEVFmgHTegDaAhHQKgokLronrp1fZQoaAZHQI2kNsvZh8ZoB03oA2gIR0CoLmCmdiDvdX2UKGgGR0CD+0dwvQF+aAdN6ANoCEdAqDCylYU343V9lChoBkdAjCGNe2NNrWgHTegDaAhHQKgzwJeE7GN1fZQoaAZHQInIgxgy/K1oB03oA2gIR0CoNPw9aEBbdX2UKGgGR0CReBCMxXXAaAdN6ANoCEdAqDqr0aqCH3V9lChoBkdAjJFIfbKzRmgHTegDaAhHQKg89iFTNt91fZQoaAZHQJkb5RR/EwZoB03oA2gIR0CoP+/hl18tdX2UKGgGR0CZxggZ0jkdaAdN6ANoCEdAqEEn3vhIfHV9lChoBkdAmOS7blA/s2gHTegDaAhHQKhGz1oQFs51fZQoaAZHQJiPXT9bX6JoB03oA2gIR0CoSR38GcFydX2UKGgGR0CUlbHRkVesaAdN6ANoCEdAqEwgdCE6DHV9lChoBkdAiO/GGucME2gHTegDaAhHQKhNhA44p+d1fZQoaAZHQJgbmv6j325oB03oA2gIR0CoUxh3JPqLdX2UKGgGR0B9VyslsxfwaAdN4AFoCEdAqFNIxxkupXV9lChoBkdAknV86NlyzWgHTegDaAhHQKhVUI5YHPh1fZQoaAZHQJIwZ57gKnhoB03oA2gIR0CoWFDXvphXdX2UKGgGR0CUfFpljEvTaAdN6ANoCEdAqF71aEBbOnV9lChoBkdAmLWQDzRQamgHTegDaAhHQKhfJblijL11fZQoaAZHQJmUJbkfcN9oB03oA2gIR0CoYTB68g6mdX2UKGgGR0CcRFXD3ueCaAdN6ANoCEdAqGQYQSSNfnV9lChoBkdAlr5RZZB9kWgHTegDaAhHQKhq2ojv/ip1fZQoaAZHQJlu3K+zt1JoB03oA2gIR0CoawvmYBvKdX2UKGgGR0CbSVEkSmIkaAdN6ANoCEdAqG0X/Pw/gXV9lChoBkdAlYYyLEUCaWgHTegDaAhHQKhwHocrAgx1fZQoaAZHQJg1ftv4ubtoB03oA2gIR0CoduUQCjk/dX2UKGgGR0CW6GzpX6qLaAdN6ANoCEdAqHce+PBBRnV9lChoBkdAmD450KZ2IWgHTegDaAhHQKh5KgJ1JUZ1fZQoaAZHQJjIaQhfShJoB03oA2gIR0CofCf/FR51dX2UKGgGR0CY6bKfnOjZaAdN6ANoCEdAqIMMQbuMM3V9lChoBkdAk9XuYtxuK2gHTegDaAhHQKiDSYb83uN1fZQoaAZHQIa5LYI0IkZoB03oA2gIR0CohW5xiobXdX2UKGgGR0CWNcifxtpFaAdN6ANoCEdAqIhyi7Ciy3V9lChoBkdAkFR0RnOB2GgHTegDaAhHQKiPYQ0XP7h1fZQoaAZHQIjjRkiD/VBoB03oA2gIR0Coj5sEaESNdX2UKGgGR0CEoiRq46OpaAdN6ANoCEdAqJG6B3A2ynV9lChoBkdAimcuLBKtgmgHTegDaAhHQKiXhSKFZgZ1fZQoaAZHQJO0IsCkoF5oB03oA2gIR0CootBZpztDdX2UKGgGR0CC+hFd9lVcaAdN6ANoCEdAqKME4JeE7HV9lChoBkdAlFLjsIE8rGgHTegDaAhHQKilI7Njbzt1fZQoaAZHQJAiLjp9qlBoB03oA2gIR0CoqC0/4ZdfdX2UKGgGR0CMfAmKqGUOaAdN6ANoCEdAqK7+4b0e2nV9lChoBkdAf2agRbr1NGgHTegDaAhHQKivMgNgBtF1fZQoaAZHQJXaI3xWkrRoB03oA2gIR0CosUC/GlyjdX2UKGgGR0CWYFFX7tRfaAdN6ANoCEdAqLQqG5+Yt3V9lChoBkdAe6rtgrpaBGgHTegDaAhHQKi69Y/Vy3l1fZQoaAZHQJVRcMvysjpoB03oA2gIR0CouyjXvphXdX2UKGgGR0CV9pGpMpPRaAdN6ANoCEdAqL09khA4XHV9lChoBkdAkfUP6be/H2gHTegDaAhHQKjASDlo11p1fZQoaAZHQIIDvi704BFoB03oA2gIR0Cox1RnezlcdX2UKGgGR0CVPY4z7/GVaAdN6ANoCEdAqMeIJJGvwHV9lChoBkdAim88BMi8nWgHTegDaAhHQKjJnV3EAHV1fZQoaAZHQJYMMCdSVGFoB03oA2gIR0CozJNMwlBydX2UKGgGR0CGQTT4L1EmaAdN6ANoCEdAqNNze67NCHVlLg=="
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
96
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
  },
98
- "_n_updates": 62500,
99
  "n_steps": 8,
100
  "gamma": 0.99,
101
  "gae_lambda": 0.9,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6bbbcf6280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6bbbcf6310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6bbbcf63a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6bbbcf6430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6bbbcf64c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6bbbcf6550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6bbbcf65e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6bbbcf6670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6bbbcf6700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6bbbcf6790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6bbbcf6820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6bbbcf68b0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f6bbbd64ab0>"
21
  },
22
+ "verbose": 1,
23
  "policy_kwargs": {
24
  ":type:": "<class 'dict'>",
25
  ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
 
59
  "_np_random": null
60
  },
61
  "n_envs": 4,
62
+ "num_timesteps": 1000000,
63
+ "_total_timesteps": 1000000,
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
+ "start_time": 1674339068989636490,
68
  "learning_rate": 0.00096,
69
  "tensorboard_log": null,
70
  "lr_schedule": {
 
73
  },
74
  "_last_obs": {
75
  ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD50s7/3DCO90koSP06EAL/qwie+pyJEPg6kMr7SCAE/STYMvriryz2xU0S/kLFZvEzIgL/Y/UU+ANckPxrGCr3pP+e+eIdnPqn+Cz8ETKO8rSxzv3rGH72lCjS/jmN7Oyp5YT/uEAU/PvS7PnjQQz8HC6m/JzcQv1D7GT/wOza+7xlRPr9IbD1JR1K+q1HbPs/8+bzMDps+549Ev3/srrtFHIC/OkJrPQr2Jj/gYyu9SOscvwgmRD5FKAs/7XemPH0PPr+nQ7G+GD4ev54xrL1xVJG/7hAFPz70uz540EM/N9arv16DLT9rx0U+1krYvvjbdr5UKTU/DuNJvnuC7D43o4A6SmQmPyj5Rb8N0hI944Rcv65HDj9cECU/Fh8RvURLkr6ZW0g/qqgKPzCD6jvG3Cm/Ruh2PltoJb/r6Q4+KnlhP+4QBT8+9Ls+eNBDP5I4sr/xVPa94LAWPwoORb9JIs++5VgUvVDaLb6A8AE/mlYiPwAhGT7taUK/3LOPvKDVZb8GJXm917QkP/9NgTwDnwK9nvrtPIa9Cj8UwXK7EFJTv8JajD5ZZza/FglpPSp5YT/uEAU/PvS7PnjQQz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
 
81
  },
82
  "_last_original_obs": {
83
  ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAJoom2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAO8wpPAAAAAAEo/O/AAAAAG4GBL4AAAAAHjbvPwAAAAA8V+e9AAAAAEyV7z8AAAAAfWuKvQAAAACQNue/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq/LGNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG2NSz0AAAAATiHzvwAAAABVtwG9AAAAAKcc4z8AAAAAYS4WPQAAAACONP8/AAAAACZ38b0AAAAAUa3cvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkihDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAp5W69AAAAAPZW8L8AAAAAemzdPQAAAAA2KgFAAAAAAMVRXD0AAAAAXNLyPwAAAABZvEM9AAAAACaF5r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ntS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAT7/AvAAAAAALV9+/AAAAANbH9L0AAAAAd83lPwAAAAB8A8O9AAAAAF1b4D8AAAAABV28PQAAAABBRgHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
  },
86
  "_episode_num": 0,
87
  "use_sde": true,
 
89
  "_current_progress_remaining": 0.0,
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIIFiylenhuMAWyUTcADjAF0lEdAtKEWwKSgXnV9lChoBkdAhzrAJkXk52gHTegDaAhHQLShVbrkbP11fZQoaAZHQIdXn5HmRvFoB03oA2gIR0C0o+dYOlO5dX2UKGgGR0CG3Rjhky1vaAdN6ANoCEdAtKVIIAwPAnV9lChoBkdAiMM9c0Ltu2gHTegDaAhHQLSnMG6PKdR1fZQoaAZHQHAnZZW7vohoB03oA2gIR0C0p3EgOjIrdX2UKGgGR0CEZsJ+lTFVaAdN6ANoCEdAtKn5G2Cul3V9lChoBkdAhFgohIOH32gHTegDaAhHQLSrSr+o99t1fZQoaAZHQIa51E/jbSJoB03oA2gIR0C0rUcxfv4NdX2UKGgGR0CIEHUgjhUBaAdN6ANoCEdAtK2GuJUHZHV9lChoBkdAiEPM6ij+JmgHTegDaAhHQLSv/9t/Fzd1fZQoaAZHQIia9/+bVjJoB03oA2gIR0C0sVdilSCOdX2UKGgGR0CBMFdC3PRiaAdN6ANoCEdAtLM6RDCxeXV9lChoBkdAhiOoeHSF5GgHTegDaAhHQLSzeYoy9El1fZQoaAZHQHsUeR9w3o9oB03oA2gIR0C0tg/JzT4MdX2UKGgGR0CJn8Mx46fbaAdN6ANoCEdAtLdrm2b5M3V9lChoBkdAdsrJjUd7wGgHTegDaAhHQLS5ZzBAOax1fZQoaAZHQHEwa9Gqgh9oB03oA2gIR0C0uabns9jgdX2UKGgGR0CFo7Dtw71aaAdN6ANoCEdAtLw0tvn8sXV9lChoBkdAheFb212JSGgHTegDaAhHQLS9i7iyY5V1fZQoaAZHQIigMS5AhStoB03oA2gIR0C0v23nU2DQdX2UKGgGR0CIPmgYgq3FaAdN6ANoCEdAtL+qnm7rcHV9lChoBkdAh3d++dsi0WgHTegDaAhHQLTCQ4ecQRR1fZQoaAZHQIlw+M2m52BoB03oA2gIR0C0w5+mm+CcdX2UKGgGR0CIRlYUWVNYaAdN6ANoCEdAtMWQYht+C3V9lChoBkdAhjWxGlQ/HGgHTegDaAhHQLTFz73fygB1fZQoaAZHQIhaSXSjQAxoB03oA2gIR0C0yGZ2dNFjdX2UKGgGR0B3LDAbhm5EaAdN6ANoCEdAtMnQTakAP3V9lChoBkfALfMd1dPcjGgHS4BoCEdAtMqW+wkgOnV9lChoBkdAiSQt7jT8YWgHTegDaAhHQLTLt0vGp/B1fZQoaAZHQInr4NoakyloB03oA2gIR0C0y/ZimVJMdX2UKGgGR0CK3Vmdy1eCaAdN6ANoCEdAtM6JwvQF93V9lChoBkdAicXhUzbeuWgHTegDaAhHQLTQqzErGzd1fZQoaAZHQIl1i6J66atoB03oA2gIR0C00cyRjjJddX2UKGgGR0CJAgjlgc94aAdN6ANoCEdAtNIN66asqHV9lChoBkdAikrv0Zm7KGgHTegDaAhHQLTUnXtBv751fZQoaAZHQIt9OaWom5VoB03oA2gIR0C01sJiNKh+dX2UKGgGR0CJFdJI1+AmaAdN6ANoCEdAtNfvEcbR4XV9lChoBkdAigsBmGucMGgHTegDaAhHQLTYLYigTRJ1fZQoaAZHQIj7PmeUY9BoB03oA2gIR0C02r7Q5WBCdX2UKGgGR0CJmM/M4cWCaAdN6ANoCEdAtNzb+tKZlXV9lChoBkdAhlEbUoa1kWgHTegDaAhHQLTd+xH5Jsh1fZQoaAZHQIm6dXzUZvVoB03oA2gIR0C03jhN/OMVdX2UKGgGR0CI5Khouf29aAdN6ANoCEdAtODB/oaDPHV9lChoBkdAiRZJTuOS4mgHTegDaAhHQLTi7ntfG+91fZQoaAZHQIhB1fNRm9RoB03oA2gIR0C05ApQ+EAYdX2UKGgGR0CIcXmcvugIaAdN6ANoCEdAtORJYB/7SHV9lChoBkdAh5OwW3z+WGgHTegDaAhHQLTm3+2VmjF1fZQoaAZHQId6dx82Ji1oB03oA2gIR0C06RbZezD5dX2UKGgGR0CIbxCHARChaAdN6ANoCEdAtOpKN70Fr3V9lChoBkdAeZ3Fkxyn1mgHTegDaAhHQLTqjQuEmIF1fZQoaAZHQIm6eR7qptJoB03oA2gIR0C07RhCtzS1dX2UKGgGR0B67GafBeolaAdN6ANoCEdAtO87U9ZA6nV9lChoBkdAihrXQ2MsH2gHTegDaAhHQLTwYhEjPfN1fZQoaAZHQIq02Fi8WbhoB03oA2gIR0C08KAGbCrMdX2UKGgGR0CAKPenhsInaAdN6ANoCEdAtPMwQAdXDHV9lChoBkdAiEoxJEpiJGgHTegDaAhHQLT1UlFMIu51fZQoaAZHQHaPvsAvL5hoB03oA2gIR0C09nwW3z+WdX2UKGgGR0CKAOt4A0bcaAdN6ANoCEdAtPa7aURnOHV9lChoBkdAilFw+2VmjGgHTegDaAhHQLT5Q1pTMq11fZQoaAZHQItrNeMQ2/BoB03oA2gIR0C0+2oqkM1CdX2UKGgGR0CIMYWVNYbLaAdN6ANoCEdAtPyOK508vHV9lChoBkdAhZrhf8dgfGgHTegDaAhHQLT80ZAIIGB1fZQoaAZHQIrVCcCo0hxoB03oA2gIR0C0/2R6Skj5dX2UKGgGR0CKYUJ7b+LnaAdN6ANoCEdAtQF+y1NQCXV9lChoBkdAilQcL8aXKWgHTegDaAhHQLUCoLhaTwF1fZQoaAZHQIkFwAMlTm5oB03oA2gIR0C1AuHcpLEldX2UKGgGR0CJHoTOgQHzaAdN6ANoCEdAtQV90tAcDXV9lChoBkdAiI/ZZSvTw2gHTegDaAhHQLUHsnkDIR11fZQoaAZHQIfZqE384xVoB03oA2gIR0C1CN3ymQ8wdX2UKGgGR0CHw2+lCTllaAdN6ANoCEdAtQkebI91U3V9lChoBkdAhyp1rqMWGmgHTegDaAhHQLULrRRMvh91fZQoaAZHQIh0SlenhsJoB03oA2gIR0C1DcekP+XJdX2UKGgGR0CIDTgssg+yaAdN6ANoCEdAtQ7p0YCQtHV9lChoBkdAh9ScyeqaPWgHTegDaAhHQLUPKB2OhkB1fZQoaAZHQIc6hAhStNloB03oA2gIR0C1EbaZH/cWdX2UKGgGR0CIh0TM7lq8aAdN6ANoCEdAtRPhBIFvAHV9lChoBkdAhgyNkWhysGgHTegDaAhHQLUVDVzIV/N1fZQoaAZHQISl05n13+xoB03oA2gIR0C1FUrLpzLfdX2UKGgGR0CHmHLkCFK1aAdN6ANoCEdAtRfbylN1yXV9lChoBkdAhrb9/axoqWgHTegDaAhHQLUaAY1He8B1fZQoaAZHQIhEmwLVnVZoB03oA2gIR0C1GyBi9ZiedX2UKGgGR0CHqFPO6d1/aAdN6ANoCEdAtRtc+Sr5qXV9lChoBkdAiaQNapxWDGgHTegDaAhHQLUd9b3XZoR1fZQoaAZHQIcDZC8e0XxoB03oA2gIR0C1ICxbfP5YdX2UKGgGR0CDt7qZc9nsaAdN6ANoCEdAtSFUMDwH7nV9lChoBkdAepGXpW3jMmgHTegDaAhHQLUhk0Re1KJ1fZQoaAZHQH/5K5PM0P9oB03oA2gIR0C1JC1Xq7iAdX2UKGgGR0B7EUfEGZ/kaAdN6ANoCEdAtSZtyZKFqXV9lChoBkdAfSnJ+UhV2mgHTegDaAhHQLUnlZJCjUN1fZQoaAZHQHpMNQCSzPdoB03oA2gIR0C1J9NCzC1rdX2UKGgGR0CEw+KArhBJaAdN6ANoCEdAtSps9A5aNnV9lChoBkdAhkfM4cWCVmgHTegDaAhHQLUsmGATZg51fZQoaAZHQH2FxKxs2vVoB03oA2gIR0C1Lb6kZaV2dX2UKGgGR0B2n2J66asqaAdN6ANoCEdAtS39okAxSHV9lChoBkdAfcNDQqqfe2gHTegDaAhHQLUwooW56MR1fZQoaAZHQHbXMDnvDxdoB03oA2gIR0C1MtaKLsKLdX2UKGgGR0B8HpYA80UHaAdN6ANoCEdAtTP5p8F6iXV9lChoBkdAgKliYkVvdmgHTegDaAhHQLU0OJ9iMHd1fZQoaAZHQHo1ObAk9lpoB03oA2gIR0C1Ntwuh9LIdWUu"
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
96
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
  },
98
+ "_n_updates": 93750,
99
  "n_steps": 8,
100
  "gamma": 0.99,
101
  "gae_lambda": 0.9,
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:72eeb3e69dfb273591748e720ea2fb2cd5f1480b8aebb590e6947f3eaa44d92f
3
  size 56190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2d53b2aa13b5605833cd8a8da94a34d4aa67c99f1ab476cf39141232beae459
3
  size 56190
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f845316702bda1b678a40b9baa44c21a04abf380551a1b6c0672704c79c73ed6
3
  size 56958
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2cfa7fb32111c5ff0feef2de76f9a0594e19e46f90018834c0d7c9d0903675b
3
  size 56958
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f36ac54ca60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36ac54caf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36ac54cb80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36ac54cc10>", "_build": "<function ActorCriticPolicy._build at 0x7f36ac54cca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f36ac54cd30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f36ac54cdc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36ac54ce50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f36ac54cee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36ac54cf70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36ac551040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36ac5510d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f36ac542fc0>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674171579478260419, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAONegL+AmX+/jmkmPYeelr+YSBm/cQawP9cgcL/9GSE+8ogIwNDzsj2k7gi/JEaOvrgq1z9H5wG/jaJbP8slIj2Gxiu+egR2vwLMo7z606+/Na03QH/8gbsSKzK/0sHBu5orWT9Cwd4+MUgTPwdRjL+pS5C/0AgFQODu37/vNJu/Xby4PiNflD07Ks8/m6gZPxA7PcC/mb08iZGBv780v7vbmKq/6YnSO1MigL91wrY7vufFv05aYzzbewI/rWwXPL8TOEBtTqI8Yzoyv5Eb5rzc4pa/QsHePjFIEz94h2k/32tcQHPSqLyBQyA/1KSFv5KYI74KsQC/HPFiva88FT/OjZG/Q39wv695EsBCScM/ecO+POYWyr8/RRZAYjSsv8KED7/Ac92/bizwPwxyEsAv8GU/os0awJ/DCMDENoO83OKWv3caE8AZfN6/B1GMv1OcXL+uwwg/AQsWP6AUUr+3XWM/mqG1P+CtED9MSkc+aKjov7xdo73pSYe/dQW2PuowfL8kETQ/d5wfvgsxhL9S33m/oCIgP6KPGT+2Ut8+5LanPU2B5j6UIPy+4f09vtzilr9Cwd4+MUgTP3iHaT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADegLg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJwaivQAAAADAivu/AAAAAExnuDwAAAAA5v3nPwAAAACSvMY9AAAAAFbA5z8AAAAAYDUjvQAAAAD7C/+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9AgNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKzRDz0AAAAA4mgAwAAAAAC2DAy9AAAAAFaB6T8AAAAAoDHhPQAAAAChF/g/AAAAAC/jib0AAAAAkfjdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAObcxLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICBEBE+AAAAAMQV7L8AAAAAD5I9PQAAAAC7xPA/AAAAAEfU6LwAAAAA6ID4PwAAAAD67wQ+AAAAAJhg7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtdd00AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWOe8vAAAAABh6+a/AAAAAM4cuj0AAAAACSPgPwAAAAB76r29AAAAAEgb6z8AAAAAaDKUOwAAAADfMe6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJXIQlKK50+MAWyUTegDjAF0lEdAp51oW+GoJnV9lChoBkdAk1rCqlxffGgHTegDaAhHQKegRfO2RaJ1fZQoaAZHQJQKRpudf9hoB03oA2gIR0CnoXSwfQrudX2UKGgGR0CPID2L5ylvaAdN6ANoCEdAp6cUoF3Y+XV9lChoBkdAitE2sq8UVWgHTegDaAhHQKepUZjQRf51fZQoaAZHQJdsFU3n6mBoB03oA2gIR0CnrDhSk0rLdX2UKGgGR0CDECzru6VdaAdN6ANoCEdAp61pEfDDTHV9lChoBkdAmmTc6FM7EGgHTegDaAhHQKey6mZ3LV51fZQoaAZHQJjtzUwztTloB03oA2gIR0CntSXIdU83dX2UKGgGR0CU2qZPEbYLaAdN6ANoCEdAp7goFmnO0XV9lChoBkdAljLRkqc3EWgHTegDaAhHQKe5YHryDqZ1fZQoaAZHQJc2IMG5c1RoB03oA2gIR0Cnvxgq/dqMdX2UKGgGR0CSFPNzr/sFaAdN6ANoCEdAp8F8E9t/F3V9lChoBkdAhv8x9w3o92gHTegDaAhHQKfEq/1QIld1fZQoaAZHQH8kXh4t6HFoB03oA2gIR0CnxfLGipNsdX2UKGgGR0CB46Lzf779aAdN6ANoCEdAp8uqXSjQA3V9lChoBkdAk//xW5paimgHTegDaAhHQKfN/5a/yoZ1fZQoaAZHQJd1HkHUtqZoB03oA2gIR0Cn0QchTwUhdX2UKGgGR0CXYxWY4Qz2aAdN6ANoCEdAp9I+uTzNEHV9lChoBkdAmE81iSaEz2gHTegDaAhHQKfXvF5OafB1fZQoaAZHQJl0LDKoybhoB03oA2gIR0Cn2fpFCswMdX2UKGgGR0CZAFHdGiHqaAdN6ANoCEdAp90FdHDrJXV9lChoBkdAi/Qmr8zhxmgHTegDaAhHQKfeO8brC3x1fZQoaAZHQIz9JZuAI6doB03oA2gIR0Cn48FVtGd7dX2UKGgGR0CWTRhVU+9raAdN6ANoCEdAp+YDCJoCdXV9lChoBkdAldj5wXIlt2gHTegDaAhHQKfpC4RVZLZ1fZQoaAZHQI1DyVt4zJpoB03oA2gIR0Cn6kIRAbADdX2UKGgGR0CMD7fTCtRvaAdN6ANoCEdAp+/2Ya5wwXV9lChoBkdAjGeZrgwXZWgHTegDaAhHQKfyNhLGrCF1fZQoaAZHQI5Txc7hegNoB03oA2gIR0Cn9UOrIYFadX2UKGgGR0CZORvwmVqvaAdN6ANoCEdAp/Z6t7rs0HV9lChoBkdAhgCNdqtYCGgHTegDaAhHQKf8C6mO2iN1fZQoaAZHQJHUb7EYO2BoB03oA2gIR0Cn/lw6ySmqdX2UKGgGR0CRVHTP0I1MaAdN6ANoCEdAqAF/tQbdanV9lChoBkdAlV9WE4//vWgHTegDaAhHQKgCz4FA3UB1fZQoaAZHQIzs4kE9t/FoB03oA2gIR0CoCIBz/6wddX2UKGgGR0CRr2I7Njb0aAdN6ANoCEdAqAr1UADJVHV9lChoBkdAhBbZaFEiMmgHTegDaAhHQKgOE4yXUpd1fZQoaAZHQIV97RrrPdFoB03oA2gIR0CoD1HlXA/LdX2UKGgGR0CHODwkPczqaAdN6ANoCEdAqBUZK+SKWXV9lChoBkdAhVUTmfXf7GgHTegDaAhHQKgXdzQNTcZ1fZQoaAZHQISV6rR0EHNoB03oA2gIR0CoGo3B55Z9dX2UKGgGR0CK4clWOp84aAdN6ANoCEdAqBvvkNnXd3V9lChoBkdAhMThttQ9BGgHTegDaAhHQKghzQeFL391fZQoaAZHQITt8olUp/hoB03oA2gIR0CoJCYHPeHjdX2UKGgGR0CE59mXgLqmaAdN6ANoCEdAqCdJ8neBQXV9lChoBkdAiVDpOnEVFmgHTegDaAhHQKgokLronrp1fZQoaAZHQI2kNsvZh8ZoB03oA2gIR0CoLmCmdiDvdX2UKGgGR0CD+0dwvQF+aAdN6ANoCEdAqDCylYU343V9lChoBkdAjCGNe2NNrWgHTegDaAhHQKgzwJeE7GN1fZQoaAZHQInIgxgy/K1oB03oA2gIR0CoNPw9aEBbdX2UKGgGR0CReBCMxXXAaAdN6ANoCEdAqDqr0aqCH3V9lChoBkdAjJFIfbKzRmgHTegDaAhHQKg89iFTNt91fZQoaAZHQJkb5RR/EwZoB03oA2gIR0CoP+/hl18tdX2UKGgGR0CZxggZ0jkdaAdN6ANoCEdAqEEn3vhIfHV9lChoBkdAmOS7blA/s2gHTegDaAhHQKhGz1oQFs51fZQoaAZHQJiPXT9bX6JoB03oA2gIR0CoSR38GcFydX2UKGgGR0CUlbHRkVesaAdN6ANoCEdAqEwgdCE6DHV9lChoBkdAiO/GGucME2gHTegDaAhHQKhNhA44p+d1fZQoaAZHQJgbmv6j325oB03oA2gIR0CoUxh3JPqLdX2UKGgGR0B9VyslsxfwaAdN4AFoCEdAqFNIxxkupXV9lChoBkdAknV86NlyzWgHTegDaAhHQKhVUI5YHPh1fZQoaAZHQJIwZ57gKnhoB03oA2gIR0CoWFDXvphXdX2UKGgGR0CUfFpljEvTaAdN6ANoCEdAqF71aEBbOnV9lChoBkdAmLWQDzRQamgHTegDaAhHQKhfJblijL11fZQoaAZHQJmUJbkfcN9oB03oA2gIR0CoYTB68g6mdX2UKGgGR0CcRFXD3ueCaAdN6ANoCEdAqGQYQSSNfnV9lChoBkdAlr5RZZB9kWgHTegDaAhHQKhq2ojv/ip1fZQoaAZHQJlu3K+zt1JoB03oA2gIR0CoawvmYBvKdX2UKGgGR0CbSVEkSmIkaAdN6ANoCEdAqG0X/Pw/gXV9lChoBkdAlYYyLEUCaWgHTegDaAhHQKhwHocrAgx1fZQoaAZHQJg1ftv4ubtoB03oA2gIR0CoduUQCjk/dX2UKGgGR0CW6GzpX6qLaAdN6ANoCEdAqHce+PBBRnV9lChoBkdAmD450KZ2IWgHTegDaAhHQKh5KgJ1JUZ1fZQoaAZHQJjIaQhfShJoB03oA2gIR0CofCf/FR51dX2UKGgGR0CY6bKfnOjZaAdN6ANoCEdAqIMMQbuMM3V9lChoBkdAk9XuYtxuK2gHTegDaAhHQKiDSYb83uN1fZQoaAZHQIa5LYI0IkZoB03oA2gIR0CohW5xiobXdX2UKGgGR0CWNcifxtpFaAdN6ANoCEdAqIhyi7Ciy3V9lChoBkdAkFR0RnOB2GgHTegDaAhHQKiPYQ0XP7h1fZQoaAZHQIjjRkiD/VBoB03oA2gIR0Coj5sEaESNdX2UKGgGR0CEoiRq46OpaAdN6ANoCEdAqJG6B3A2ynV9lChoBkdAimcuLBKtgmgHTegDaAhHQKiXhSKFZgZ1fZQoaAZHQJO0IsCkoF5oB03oA2gIR0CootBZpztDdX2UKGgGR0CC+hFd9lVcaAdN6ANoCEdAqKME4JeE7HV9lChoBkdAlFLjsIE8rGgHTegDaAhHQKilI7Njbzt1fZQoaAZHQJAiLjp9qlBoB03oA2gIR0CoqC0/4ZdfdX2UKGgGR0CMfAmKqGUOaAdN6ANoCEdAqK7+4b0e2nV9lChoBkdAf2agRbr1NGgHTegDaAhHQKivMgNgBtF1fZQoaAZHQJXaI3xWkrRoB03oA2gIR0CosUC/GlyjdX2UKGgGR0CWYFFX7tRfaAdN6ANoCEdAqLQqG5+Yt3V9lChoBkdAe6rtgrpaBGgHTegDaAhHQKi69Y/Vy3l1fZQoaAZHQJVRcMvysjpoB03oA2gIR0CouyjXvphXdX2UKGgGR0CV9pGpMpPRaAdN6ANoCEdAqL09khA4XHV9lChoBkdAkfUP6be/H2gHTegDaAhHQKjASDlo11p1fZQoaAZHQIIDvi704BFoB03oA2gIR0Cox1RnezlcdX2UKGgGR0CVPY4z7/GVaAdN6ANoCEdAqMeIJJGvwHV9lChoBkdAim88BMi8nWgHTegDaAhHQKjJnV3EAHV1fZQoaAZHQJYMMCdSVGFoB03oA2gIR0CozJNMwlBydX2UKGgGR0CGQTT4L1EmaAdN6ANoCEdAqNNze67NCHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6bbbcf6280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6bbbcf6310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6bbbcf63a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6bbbcf6430>", "_build": "<function ActorCriticPolicy._build at 0x7f6bbbcf64c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6bbbcf6550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6bbbcf65e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6bbbcf6670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6bbbcf6700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6bbbcf6790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6bbbcf6820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6bbbcf68b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6bbbd64ab0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674339068989636490, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD50s7/3DCO90koSP06EAL/qwie+pyJEPg6kMr7SCAE/STYMvriryz2xU0S/kLFZvEzIgL/Y/UU+ANckPxrGCr3pP+e+eIdnPqn+Cz8ETKO8rSxzv3rGH72lCjS/jmN7Oyp5YT/uEAU/PvS7PnjQQz8HC6m/JzcQv1D7GT/wOza+7xlRPr9IbD1JR1K+q1HbPs/8+bzMDps+549Ev3/srrtFHIC/OkJrPQr2Jj/gYyu9SOscvwgmRD5FKAs/7XemPH0PPr+nQ7G+GD4ev54xrL1xVJG/7hAFPz70uz540EM/N9arv16DLT9rx0U+1krYvvjbdr5UKTU/DuNJvnuC7D43o4A6SmQmPyj5Rb8N0hI944Rcv65HDj9cECU/Fh8RvURLkr6ZW0g/qqgKPzCD6jvG3Cm/Ruh2PltoJb/r6Q4+KnlhP+4QBT8+9Ls+eNBDP5I4sr/xVPa94LAWPwoORb9JIs++5VgUvVDaLb6A8AE/mlYiPwAhGT7taUK/3LOPvKDVZb8GJXm917QkP/9NgTwDnwK9nvrtPIa9Cj8UwXK7EFJTv8JajD5ZZza/FglpPSp5YT/uEAU/PvS7PnjQQz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAJoom2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAO8wpPAAAAAAEo/O/AAAAAG4GBL4AAAAAHjbvPwAAAAA8V+e9AAAAAEyV7z8AAAAAfWuKvQAAAACQNue/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq/LGNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG2NSz0AAAAATiHzvwAAAABVtwG9AAAAAKcc4z8AAAAAYS4WPQAAAACONP8/AAAAACZ38b0AAAAAUa3cvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkihDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAp5W69AAAAAPZW8L8AAAAAemzdPQAAAAA2KgFAAAAAAMVRXD0AAAAAXNLyPwAAAABZvEM9AAAAACaF5r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ntS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAT7/AvAAAAAALV9+/AAAAANbH9L0AAAAAd83lPwAAAAB8A8O9AAAAAF1b4D8AAAAABV28PQAAAABBRgHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIIFiylenhuMAWyUTcADjAF0lEdAtKEWwKSgXnV9lChoBkdAhzrAJkXk52gHTegDaAhHQLShVbrkbP11fZQoaAZHQIdXn5HmRvFoB03oA2gIR0C0o+dYOlO5dX2UKGgGR0CG3Rjhky1vaAdN6ANoCEdAtKVIIAwPAnV9lChoBkdAiMM9c0Ltu2gHTegDaAhHQLSnMG6PKdR1fZQoaAZHQHAnZZW7vohoB03oA2gIR0C0p3EgOjIrdX2UKGgGR0CEZsJ+lTFVaAdN6ANoCEdAtKn5G2Cul3V9lChoBkdAhFgohIOH32gHTegDaAhHQLSrSr+o99t1fZQoaAZHQIa51E/jbSJoB03oA2gIR0C0rUcxfv4NdX2UKGgGR0CIEHUgjhUBaAdN6ANoCEdAtK2GuJUHZHV9lChoBkdAiEPM6ij+JmgHTegDaAhHQLSv/9t/Fzd1fZQoaAZHQIia9/+bVjJoB03oA2gIR0C0sVdilSCOdX2UKGgGR0CBMFdC3PRiaAdN6ANoCEdAtLM6RDCxeXV9lChoBkdAhiOoeHSF5GgHTegDaAhHQLSzeYoy9El1fZQoaAZHQHsUeR9w3o9oB03oA2gIR0C0tg/JzT4MdX2UKGgGR0CJn8Mx46fbaAdN6ANoCEdAtLdrm2b5M3V9lChoBkdAdsrJjUd7wGgHTegDaAhHQLS5ZzBAOax1fZQoaAZHQHEwa9Gqgh9oB03oA2gIR0C0uabns9jgdX2UKGgGR0CFo7Dtw71aaAdN6ANoCEdAtLw0tvn8sXV9lChoBkdAheFb212JSGgHTegDaAhHQLS9i7iyY5V1fZQoaAZHQIigMS5AhStoB03oA2gIR0C0v23nU2DQdX2UKGgGR0CIPmgYgq3FaAdN6ANoCEdAtL+qnm7rcHV9lChoBkdAh3d++dsi0WgHTegDaAhHQLTCQ4ecQRR1fZQoaAZHQIlw+M2m52BoB03oA2gIR0C0w5+mm+CcdX2UKGgGR0CIRlYUWVNYaAdN6ANoCEdAtMWQYht+C3V9lChoBkdAhjWxGlQ/HGgHTegDaAhHQLTFz73fygB1fZQoaAZHQIhaSXSjQAxoB03oA2gIR0C0yGZ2dNFjdX2UKGgGR0B3LDAbhm5EaAdN6ANoCEdAtMnQTakAP3V9lChoBkfALfMd1dPcjGgHS4BoCEdAtMqW+wkgOnV9lChoBkdAiSQt7jT8YWgHTegDaAhHQLTLt0vGp/B1fZQoaAZHQInr4NoakyloB03oA2gIR0C0y/ZimVJMdX2UKGgGR0CK3Vmdy1eCaAdN6ANoCEdAtM6JwvQF93V9lChoBkdAicXhUzbeuWgHTegDaAhHQLTQqzErGzd1fZQoaAZHQIl1i6J66atoB03oA2gIR0C00cyRjjJddX2UKGgGR0CJAgjlgc94aAdN6ANoCEdAtNIN66asqHV9lChoBkdAikrv0Zm7KGgHTegDaAhHQLTUnXtBv751fZQoaAZHQIt9OaWom5VoB03oA2gIR0C01sJiNKh+dX2UKGgGR0CJFdJI1+AmaAdN6ANoCEdAtNfvEcbR4XV9lChoBkdAigsBmGucMGgHTegDaAhHQLTYLYigTRJ1fZQoaAZHQIj7PmeUY9BoB03oA2gIR0C02r7Q5WBCdX2UKGgGR0CJmM/M4cWCaAdN6ANoCEdAtNzb+tKZlXV9lChoBkdAhlEbUoa1kWgHTegDaAhHQLTd+xH5Jsh1fZQoaAZHQIm6dXzUZvVoB03oA2gIR0C03jhN/OMVdX2UKGgGR0CI5Khouf29aAdN6ANoCEdAtODB/oaDPHV9lChoBkdAiRZJTuOS4mgHTegDaAhHQLTi7ntfG+91fZQoaAZHQIhB1fNRm9RoB03oA2gIR0C05ApQ+EAYdX2UKGgGR0CIcXmcvugIaAdN6ANoCEdAtORJYB/7SHV9lChoBkdAh5OwW3z+WGgHTegDaAhHQLTm3+2VmjF1fZQoaAZHQId6dx82Ji1oB03oA2gIR0C06RbZezD5dX2UKGgGR0CIbxCHARChaAdN6ANoCEdAtOpKN70Fr3V9lChoBkdAeZ3Fkxyn1mgHTegDaAhHQLTqjQuEmIF1fZQoaAZHQIm6eR7qptJoB03oA2gIR0C07RhCtzS1dX2UKGgGR0B67GafBeolaAdN6ANoCEdAtO87U9ZA6nV9lChoBkdAihrXQ2MsH2gHTegDaAhHQLTwYhEjPfN1fZQoaAZHQIq02Fi8WbhoB03oA2gIR0C08KAGbCrMdX2UKGgGR0CAKPenhsInaAdN6ANoCEdAtPMwQAdXDHV9lChoBkdAiEoxJEpiJGgHTegDaAhHQLT1UlFMIu51fZQoaAZHQHaPvsAvL5hoB03oA2gIR0C09nwW3z+WdX2UKGgGR0CKAOt4A0bcaAdN6ANoCEdAtPa7aURnOHV9lChoBkdAilFw+2VmjGgHTegDaAhHQLT5Q1pTMq11fZQoaAZHQItrNeMQ2/BoB03oA2gIR0C0+2oqkM1CdX2UKGgGR0CIMYWVNYbLaAdN6ANoCEdAtPyOK508vHV9lChoBkdAhZrhf8dgfGgHTegDaAhHQLT80ZAIIGB1fZQoaAZHQIrVCcCo0hxoB03oA2gIR0C0/2R6Skj5dX2UKGgGR0CKYUJ7b+LnaAdN6ANoCEdAtQF+y1NQCXV9lChoBkdAilQcL8aXKWgHTegDaAhHQLUCoLhaTwF1fZQoaAZHQIkFwAMlTm5oB03oA2gIR0C1AuHcpLEldX2UKGgGR0CJHoTOgQHzaAdN6ANoCEdAtQV90tAcDXV9lChoBkdAiI/ZZSvTw2gHTegDaAhHQLUHsnkDIR11fZQoaAZHQIfZqE384xVoB03oA2gIR0C1CN3ymQ8wdX2UKGgGR0CHw2+lCTllaAdN6ANoCEdAtQkebI91U3V9lChoBkdAhyp1rqMWGmgHTegDaAhHQLULrRRMvh91fZQoaAZHQIh0SlenhsJoB03oA2gIR0C1DcekP+XJdX2UKGgGR0CIDTgssg+yaAdN6ANoCEdAtQ7p0YCQtHV9lChoBkdAh9ScyeqaPWgHTegDaAhHQLUPKB2OhkB1fZQoaAZHQIc6hAhStNloB03oA2gIR0C1EbaZH/cWdX2UKGgGR0CIh0TM7lq8aAdN6ANoCEdAtRPhBIFvAHV9lChoBkdAhgyNkWhysGgHTegDaAhHQLUVDVzIV/N1fZQoaAZHQISl05n13+xoB03oA2gIR0C1FUrLpzLfdX2UKGgGR0CHmHLkCFK1aAdN6ANoCEdAtRfbylN1yXV9lChoBkdAhrb9/axoqWgHTegDaAhHQLUaAY1He8B1fZQoaAZHQIhEmwLVnVZoB03oA2gIR0C1GyBi9ZiedX2UKGgGR0CHqFPO6d1/aAdN6ANoCEdAtRtc+Sr5qXV9lChoBkdAiaQNapxWDGgHTegDaAhHQLUd9b3XZoR1fZQoaAZHQIcDZC8e0XxoB03oA2gIR0C1ICxbfP5YdX2UKGgGR0CDt7qZc9nsaAdN6ANoCEdAtSFUMDwH7nV9lChoBkdAepGXpW3jMmgHTegDaAhHQLUhk0Re1KJ1fZQoaAZHQH/5K5PM0P9oB03oA2gIR0C1JC1Xq7iAdX2UKGgGR0B7EUfEGZ/kaAdN6ANoCEdAtSZtyZKFqXV9lChoBkdAfSnJ+UhV2mgHTegDaAhHQLUnlZJCjUN1fZQoaAZHQHpMNQCSzPdoB03oA2gIR0C1J9NCzC1rdX2UKGgGR0CEw+KArhBJaAdN6ANoCEdAtSps9A5aNnV9lChoBkdAhkfM4cWCVmgHTegDaAhHQLUsmGATZg51fZQoaAZHQH2FxKxs2vVoB03oA2gIR0C1Lb6kZaV2dX2UKGgGR0B2n2J66asqaAdN6ANoCEdAtS39okAxSHV9lChoBkdAfcNDQqqfe2gHTegDaAhHQLUwooW56MR1fZQoaAZHQHbXMDnvDxdoB03oA2gIR0C1MtaKLsKLdX2UKGgGR0B8HpYA80UHaAdN6ANoCEdAtTP5p8F6iXV9lChoBkdAgKliYkVvdmgHTegDaAhHQLU0OJ9iMHd1fZQoaAZHQHo1ObAk9lpoB03oA2gIR0C1Ntwuh9LIdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 93750, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 824.2853246120328, "std_reward": 295.00073832077004, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T01:08:25.970255"}
 
1
+ {"mean_reward": 673.8871664047241, "std_reward": 143.98283678814917, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T23:07:30.919650"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ca60e98b305558a3025d1d5a337c195d1d4565be8ad18d33207ecd7ad8fa3e27
3
- size 2514
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bebee1799c15e0b6c6328d6af066b6dd28fedc1f14ffbfc3fee7e8d346da3151
3
+ size 2129