Dharkelf commited on
Commit
e9f3c03
1 Parent(s): 6cba6a7

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.19 +/- 0.64
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff3768a13632040425e7f432d8d84a0221f1f9be1ca2fb1fd97a60e3ab93cc9a
3
+ size 107987
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5b54f2ec10>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f5b54f2f360>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674035631035205064,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvmmEPvJQ8jyIdwE/vmmEPvJQ8jyIdwE/vmmEPvJQ8jyIdwE/vmmEPvJQ8jyIdwE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWoqrPmBaKL+vQMC/lIMcP69UvT6MXTI/DwAgP4cSBT95YSI/l2uDP4MbQ7/ta9c/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC+aYQ+8lDyPIh3AT8n4Jo8N+3jOvWCozu+aYQ+8lDyPIh3AT8n4Jo8N+3jOvWCozu+aYQ+8lDyPIh3AT8n4Jo8N+3jOvWCozu+aYQ+8lDyPIh3AT8n4Jo8N+3jOvWCozuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.25861925 0.02957961 0.50573015]\n [0.25861925 0.02957961 0.50573015]\n [0.25861925 0.02957961 0.50573015]\n [0.25861925 0.02957961 0.50573015]]",
60
+ "desired_goal": "[[ 0.3350399 -0.657629 -1.501974 ]\n [ 0.6113827 0.3697867 0.6967399 ]\n [ 0.6250009 0.51981395 0.6342998 ]\n [ 1.0267209 -0.76213855 1.6829811 ]]",
61
+ "observation": "[[0.25861925 0.02957961 0.50573015 0.01890571 0.00173894 0.00498998]\n [0.25861925 0.02957961 0.50573015 0.01890571 0.00173894 0.00498998]\n [0.25861925 0.02957961 0.50573015 0.01890571 0.00173894 0.00498998]\n [0.25861925 0.02957961 0.50573015 0.01890571 0.00173894 0.00498998]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApKqKva1KMT2AOQQ+2gAOvfXyqz08h4E+/C/yvf9zhL3qz5I+ei0Xvixclr01bKc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.06770828 0.04328411 0.1291256 ]\n [-0.03466878 0.0839595 0.25298488]\n [-0.11825559 -0.06467437 0.2867425 ]\n [-0.14763442 -0.07341799 0.08174936]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ7eWyXBcAsCUhpRSlIwBbJRLMowBdJRHQKTKl/+85CF1fZQoaAZoCWgPQwjKqZ1haov6v5SGlFKUaBVLMmgWR0CkylqGlANYdX2UKGgGaAloD0MICB9KtOSxC8CUhpRSlGgVSzJoFkdApMod1jiGWXV9lChoBmgJaA9DCIrJG2Dm+/W/lIaUUpRoFUsyaBZHQKTJ3jlxOtZ1fZQoaAZoCWgPQwj/zYsTXy36v5SGlFKUaBVLMmgWR0Cky4iN83MqdX2UKGgGaAloD0MIdJXurrMhA8CUhpRSlGgVSzJoFkdApMtLfR/mT3V9lChoBmgJaA9DCM6qz9VW7Pu/lIaUUpRoFUsyaBZHQKTLDspobn51fZQoaAZoCWgPQwiS6ju/KKEFwJSGlFKUaBVLMmgWR0Ckys9bor4GdX2UKGgGaAloD0MI3pBGBU728b+UhpRSlGgVSzJoFkdApMyEIRh+fHV9lChoBmgJaA9DCJfIBWfwN/u/lIaUUpRoFUsyaBZHQKTMRv1DjR51fZQoaAZoCWgPQwiRRZp4BzgLwJSGlFKUaBVLMmgWR0CkzAqRuCPIdX2UKGgGaAloD0MIP8QGCyep8b+UhpRSlGgVSzJoFkdApMvLDqGDc3V9lChoBmgJaA9DCGGNs+kIoPq/lIaUUpRoFUsyaBZHQKTNeeIVM251fZQoaAZoCWgPQwiD/GzkuikCwJSGlFKUaBVLMmgWR0CkzTzPjXFtdX2UKGgGaAloD0MITSzwFd16BcCUhpRSlGgVSzJoFkdApM0AiaAnUnV9lChoBmgJaA9DCLWIKCZvgAHAlIaUUpRoFUsyaBZHQKTMwLUCq6x1fZQoaAZoCWgPQwgpXfqXpHIEwJSGlFKUaBVLMmgWR0CkzmSP+4smdX2UKGgGaAloD0MILSeh9IXQ97+UhpRSlGgVSzJoFkdApM4m+IuXeHV9lChoBmgJaA9DCKWg20saI+2/lIaUUpRoFUsyaBZHQKTN6hBZ6ld1fZQoaAZoCWgPQwhOgGH58w0DwJSGlFKUaBVLMmgWR0CkzapAMUh3dX2UKGgGaAloD0MIvcRYpl8iAcCUhpRSlGgVSzJoFkdApM9QdhiLEXV9lChoBmgJaA9DCCveyDzypwjAlIaUUpRoFUsyaBZHQKTPExKxs2x1fZQoaAZoCWgPQwiYUSy3tDoKwJSGlFKUaBVLMmgWR0CkztZPVNHpdX2UKGgGaAloD0MI/KvHfatVAcCUhpRSlGgVSzJoFkdApM6WqzZ6EHV9lChoBmgJaA9DCEq2upwSUAPAlIaUUpRoFUsyaBZHQKTQQ3DvVmV1fZQoaAZoCWgPQwhCP1OvW2QDwJSGlFKUaBVLMmgWR0Ck0AX4CZF5dX2UKGgGaAloD0MI06BoHsAi+r+UhpRSlGgVSzJoFkdApM/JVIZqEnV9lChoBmgJaA9DCF+3CIz1DQLAlIaUUpRoFUsyaBZHQKTPiXWOIZZ1fZQoaAZoCWgPQwjcgqW6gJcCwJSGlFKUaBVLMmgWR0Ck0TQ71ZkkdX2UKGgGaAloD0MItwn3yryV9b+UhpRSlGgVSzJoFkdApND29SMtLHV9lChoBmgJaA9DCBtmaDwRZAfAlIaUUpRoFUsyaBZHQKTQuj2SMcZ1fZQoaAZoCWgPQwgkRs8tdIUOwJSGlFKUaBVLMmgWR0Ck0HqLsKLLdX2UKGgGaAloD0MIK1H2lnLeAsCUhpRSlGgVSzJoFkdApNIzXQMQVnV9lChoBmgJaA9DCLJIE+8ADwDAlIaUUpRoFUsyaBZHQKTR9fNRm9R1fZQoaAZoCWgPQwhpkIKnkCv1v5SGlFKUaBVLMmgWR0Ck0bk+X7cgdX2UKGgGaAloD0MIJGHfTiLC9L+UhpRSlGgVSzJoFkdApNF5cs189nV9lChoBmgJaA9DCJyJ6UKsXgTAlIaUUpRoFUsyaBZHQKTTGjMV1wJ1fZQoaAZoCWgPQwgPmfIhqDoHwJSGlFKUaBVLMmgWR0Ck0tzWf9P2dX2UKGgGaAloD0MI/KcbKPAuA8CUhpRSlGgVSzJoFkdApNKgDA8B/HV9lChoBmgJaA9DCK4SLA5nngDAlIaUUpRoFUsyaBZHQKTSYEM9bHJ1fZQoaAZoCWgPQwhy+nq+Zvn6v5SGlFKUaBVLMmgWR0Ck1AYIa99MdX2UKGgGaAloD0MISn1Z2qn587+UhpRSlGgVSzJoFkdApNPIjKPn0XV9lChoBmgJaA9DCHHkgcgiTfu/lIaUUpRoFUsyaBZHQKTTi53kgfV1fZQoaAZoCWgPQwi+iLZj6g4QwJSGlFKUaBVLMmgWR0Ck00v1DjR2dX2UKGgGaAloD0MIbXNjesJS+r+UhpRSlGgVSzJoFkdApNT3l6qsEXV9lChoBmgJaA9DCFMj9DP1OgHAlIaUUpRoFUsyaBZHQKTUug2606Z1fZQoaAZoCWgPQwjDuBtEa0X/v5SGlFKUaBVLMmgWR0Ck1H1n27FsdX2UKGgGaAloD0MI5sqg2uCE/L+UhpRSlGgVSzJoFkdApNQ9mSQo1HV9lChoBmgJaA9DCLTJ4ZNOJPi/lIaUUpRoFUsyaBZHQKTV4znA6+51fZQoaAZoCWgPQwgnF2NgHcf2v5SGlFKUaBVLMmgWR0Ck1aWrn1WbdX2UKGgGaAloD0MIFjJXBtUG+b+UhpRSlGgVSzJoFkdApNVoxcmjTXV9lChoBmgJaA9DCNAKDFndKva/lIaUUpRoFUsyaBZHQKTVKRLbpNd1fZQoaAZoCWgPQwjc2OxI9Z30v5SGlFKUaBVLMmgWR0Ck1tb7TDwZdX2UKGgGaAloD0MI4IRCBBwC9r+UhpRSlGgVSzJoFkdApNaZvDP4VXV9lChoBmgJaA9DCOiFOxdG+vS/lIaUUpRoFUsyaBZHQKTWXRZU1ht1fZQoaAZoCWgPQwgMAcCxZ0/6v5SGlFKUaBVLMmgWR0Ck1h2X1J18dX2UKGgGaAloD0MIbHwm++fp77+UhpRSlGgVSzJoFkdApNfYK2KEWnV9lChoBmgJaA9DCDoF+dnIFQHAlIaUUpRoFUsyaBZHQKTXm38XN1R1fZQoaAZoCWgPQwhmFTYDXFD4v5SGlFKUaBVLMmgWR0Ck12AX/HYIdX2UKGgGaAloD0MI2+BE9Gtr/b+UhpRSlGgVSzJoFkdApNcgxDb8FnV9lChoBmgJaA9DCEm6ZvLNdvq/lIaUUpRoFUsyaBZHQKTY1MHKOkt1fZQoaAZoCWgPQwgOLEfIQF71v5SGlFKUaBVLMmgWR0Ck2JdH2AXmdX2UKGgGaAloD0MIYAMixJVz87+UhpRSlGgVSzJoFkdApNhaef7Jn3V9lChoBmgJaA9DCE2espqup/e/lIaUUpRoFUsyaBZHQKTYGsXizcB1fZQoaAZoCWgPQwhwz/OnjYoBwJSGlFKUaBVLMmgWR0Ck2b19v0iAdX2UKGgGaAloD0MIl8YvvJKk+b+UhpRSlGgVSzJoFkdApNmABV+7UXV9lChoBmgJaA9DCHsQAvIllPi/lIaUUpRoFUsyaBZHQKTZQ3H7xd91fZQoaAZoCWgPQwgOnglNEusAwJSGlFKUaBVLMmgWR0Ck2QPttyggdX2UKGgGaAloD0MIcyoZAKo4+7+UhpRSlGgVSzJoFkdApNqw1gpjMHV9lChoBmgJaA9DCGjnNAu0u/6/lIaUUpRoFUsyaBZHQKTac1tO2y91fZQoaAZoCWgPQwj/zCA+sOMIwJSGlFKUaBVLMmgWR0Ck2jZ75VOsdX2UKGgGaAloD0MIJhqk4Cmk/L+UhpRSlGgVSzJoFkdApNn2wxFiKHV9lChoBmgJaA9DCGFSfHxC9vm/lIaUUpRoFUsyaBZHQKTbmEt/WlN1fZQoaAZoCWgPQwgHI/YJoHgGwJSGlFKUaBVLMmgWR0Ck21ronrprdX2UKGgGaAloD0MIz2vsEtVbAMCUhpRSlGgVSzJoFkdApNseG/N7jXV9lChoBmgJaA9DCKhXyjLEcf+/lIaUUpRoFUsyaBZHQKTa3m03OwB1fZQoaAZoCWgPQwi3KR4X1eLxv5SGlFKUaBVLMmgWR0Ck3IqdQO4HdX2UKGgGaAloD0MI9gzhmGVP87+UhpRSlGgVSzJoFkdApNxNMdtEX3V9lChoBmgJaA9DCMJPHEC/b/i/lIaUUpRoFUsyaBZHQKTcEHLRrrR1fZQoaAZoCWgPQwizzvi+uFQBwJSGlFKUaBVLMmgWR0Ck29Emx+rmdX2UKGgGaAloD0MIMNXMWgoIAMCUhpRSlGgVSzJoFkdApN16Ymb9ZXV9lChoBmgJaA9DCOdUMgBU8fa/lIaUUpRoFUsyaBZHQKTdPUhFEzB1fZQoaAZoCWgPQwjqeqLrwg//v5SGlFKUaBVLMmgWR0Ck3QDVYp2EdX2UKGgGaAloD0MIcF8HzhlxCcCUhpRSlGgVSzJoFkdApNzBd2PkrHV9lChoBmgJaA9DCNcWnpeKjfi/lIaUUpRoFUsyaBZHQKTeeeOGTLZ1fZQoaAZoCWgPQwjFHW/yW9QHwJSGlFKUaBVLMmgWR0Ck3j0BnzxxdX2UKGgGaAloD0MIyLJg4o8i/r+UhpRSlGgVSzJoFkdApN4AR5C4SnV9lChoBmgJaA9DCMwpATEJVwXAlIaUUpRoFUsyaBZHQKTdwJiRW911fZQoaAZoCWgPQwjL1Y9N8qPzv5SGlFKUaBVLMmgWR0Ck315K3/gjdX2UKGgGaAloD0MIDECjdOlf+r+UhpRSlGgVSzJoFkdApN8g3gk1M3V9lChoBmgJaA9DCBd/2xMkdva/lIaUUpRoFUsyaBZHQKTe5Fqi48V1fZQoaAZoCWgPQwi932jHDZ8BwJSGlFKUaBVLMmgWR0Ck3qSrxRVIdX2UKGgGaAloD0MIW8064/sCAsCUhpRSlGgVSzJoFkdApOBHxSYPXnV9lChoBmgJaA9DCNL9nIL8rPm/lIaUUpRoFUsyaBZHQKTgCki2Ujd1fZQoaAZoCWgPQwiX4xWInlT+v5SGlFKUaBVLMmgWR0Ck382f9P1tdX2UKGgGaAloD0MIfF9cqtLWAMCUhpRSlGgVSzJoFkdApN+NytFKCnV9lChoBmgJaA9DCP334LVLm/W/lIaUUpRoFUsyaBZHQKThLlYlpoN1fZQoaAZoCWgPQwh6i4f3HNj1v5SGlFKUaBVLMmgWR0Ck4PDl5nlGdX2UKGgGaAloD0MIJGO1+X/V/7+UhpRSlGgVSzJoFkdApOC0QEpy63V9lChoBmgJaA9DCPUwtDo5owDAlIaUUpRoFUsyaBZHQKTgdJg9eQd1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:408359b1a8b2a599cd78436d27aa7d9a2b8d98c7ec648961f9e238e032df8e9e
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e118884603a7bf2ec5d8381adfea147529652683338d3c249a288078a41c4e60
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5b54f2ec10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5b54f2f360>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674035631035205064, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvmmEPvJQ8jyIdwE/vmmEPvJQ8jyIdwE/vmmEPvJQ8jyIdwE/vmmEPvJQ8jyIdwE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWoqrPmBaKL+vQMC/lIMcP69UvT6MXTI/DwAgP4cSBT95YSI/l2uDP4MbQ7/ta9c/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC+aYQ+8lDyPIh3AT8n4Jo8N+3jOvWCozu+aYQ+8lDyPIh3AT8n4Jo8N+3jOvWCozu+aYQ+8lDyPIh3AT8n4Jo8N+3jOvWCozu+aYQ+8lDyPIh3AT8n4Jo8N+3jOvWCozuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.25861925 0.02957961 0.50573015]\n [0.25861925 0.02957961 0.50573015]\n [0.25861925 0.02957961 0.50573015]\n [0.25861925 0.02957961 0.50573015]]", "desired_goal": "[[ 0.3350399 -0.657629 -1.501974 ]\n [ 0.6113827 0.3697867 0.6967399 ]\n [ 0.6250009 0.51981395 0.6342998 ]\n [ 1.0267209 -0.76213855 1.6829811 ]]", "observation": "[[0.25861925 0.02957961 0.50573015 0.01890571 0.00173894 0.00498998]\n [0.25861925 0.02957961 0.50573015 0.01890571 0.00173894 0.00498998]\n [0.25861925 0.02957961 0.50573015 0.01890571 0.00173894 0.00498998]\n [0.25861925 0.02957961 0.50573015 0.01890571 0.00173894 0.00498998]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApKqKva1KMT2AOQQ+2gAOvfXyqz08h4E+/C/yvf9zhL3qz5I+ei0Xvixclr01bKc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06770828 0.04328411 0.1291256 ]\n [-0.03466878 0.0839595 0.25298488]\n [-0.11825559 -0.06467437 0.2867425 ]\n [-0.14763442 -0.07341799 0.08174936]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ7eWyXBcAsCUhpRSlIwBbJRLMowBdJRHQKTKl/+85CF1fZQoaAZoCWgPQwjKqZ1haov6v5SGlFKUaBVLMmgWR0CkylqGlANYdX2UKGgGaAloD0MICB9KtOSxC8CUhpRSlGgVSzJoFkdApMod1jiGWXV9lChoBmgJaA9DCIrJG2Dm+/W/lIaUUpRoFUsyaBZHQKTJ3jlxOtZ1fZQoaAZoCWgPQwj/zYsTXy36v5SGlFKUaBVLMmgWR0Cky4iN83MqdX2UKGgGaAloD0MIdJXurrMhA8CUhpRSlGgVSzJoFkdApMtLfR/mT3V9lChoBmgJaA9DCM6qz9VW7Pu/lIaUUpRoFUsyaBZHQKTLDspobn51fZQoaAZoCWgPQwiS6ju/KKEFwJSGlFKUaBVLMmgWR0Ckys9bor4GdX2UKGgGaAloD0MI3pBGBU728b+UhpRSlGgVSzJoFkdApMyEIRh+fHV9lChoBmgJaA9DCJfIBWfwN/u/lIaUUpRoFUsyaBZHQKTMRv1DjR51fZQoaAZoCWgPQwiRRZp4BzgLwJSGlFKUaBVLMmgWR0CkzAqRuCPIdX2UKGgGaAloD0MIP8QGCyep8b+UhpRSlGgVSzJoFkdApMvLDqGDc3V9lChoBmgJaA9DCGGNs+kIoPq/lIaUUpRoFUsyaBZHQKTNeeIVM251fZQoaAZoCWgPQwiD/GzkuikCwJSGlFKUaBVLMmgWR0CkzTzPjXFtdX2UKGgGaAloD0MITSzwFd16BcCUhpRSlGgVSzJoFkdApM0AiaAnUnV9lChoBmgJaA9DCLWIKCZvgAHAlIaUUpRoFUsyaBZHQKTMwLUCq6x1fZQoaAZoCWgPQwgpXfqXpHIEwJSGlFKUaBVLMmgWR0CkzmSP+4smdX2UKGgGaAloD0MILSeh9IXQ97+UhpRSlGgVSzJoFkdApM4m+IuXeHV9lChoBmgJaA9DCKWg20saI+2/lIaUUpRoFUsyaBZHQKTN6hBZ6ld1fZQoaAZoCWgPQwhOgGH58w0DwJSGlFKUaBVLMmgWR0CkzapAMUh3dX2UKGgGaAloD0MIvcRYpl8iAcCUhpRSlGgVSzJoFkdApM9QdhiLEXV9lChoBmgJaA9DCCveyDzypwjAlIaUUpRoFUsyaBZHQKTPExKxs2x1fZQoaAZoCWgPQwiYUSy3tDoKwJSGlFKUaBVLMmgWR0CkztZPVNHpdX2UKGgGaAloD0MI/KvHfatVAcCUhpRSlGgVSzJoFkdApM6WqzZ6EHV9lChoBmgJaA9DCEq2upwSUAPAlIaUUpRoFUsyaBZHQKTQQ3DvVmV1fZQoaAZoCWgPQwhCP1OvW2QDwJSGlFKUaBVLMmgWR0Ck0AX4CZF5dX2UKGgGaAloD0MI06BoHsAi+r+UhpRSlGgVSzJoFkdApM/JVIZqEnV9lChoBmgJaA9DCF+3CIz1DQLAlIaUUpRoFUsyaBZHQKTPiXWOIZZ1fZQoaAZoCWgPQwjcgqW6gJcCwJSGlFKUaBVLMmgWR0Ck0TQ71ZkkdX2UKGgGaAloD0MItwn3yryV9b+UhpRSlGgVSzJoFkdApND29SMtLHV9lChoBmgJaA9DCBtmaDwRZAfAlIaUUpRoFUsyaBZHQKTQuj2SMcZ1fZQoaAZoCWgPQwgkRs8tdIUOwJSGlFKUaBVLMmgWR0Ck0HqLsKLLdX2UKGgGaAloD0MIK1H2lnLeAsCUhpRSlGgVSzJoFkdApNIzXQMQVnV9lChoBmgJaA9DCLJIE+8ADwDAlIaUUpRoFUsyaBZHQKTR9fNRm9R1fZQoaAZoCWgPQwhpkIKnkCv1v5SGlFKUaBVLMmgWR0Ck0bk+X7cgdX2UKGgGaAloD0MIJGHfTiLC9L+UhpRSlGgVSzJoFkdApNF5cs189nV9lChoBmgJaA9DCJyJ6UKsXgTAlIaUUpRoFUsyaBZHQKTTGjMV1wJ1fZQoaAZoCWgPQwgPmfIhqDoHwJSGlFKUaBVLMmgWR0Ck0tzWf9P2dX2UKGgGaAloD0MI/KcbKPAuA8CUhpRSlGgVSzJoFkdApNKgDA8B/HV9lChoBmgJaA9DCK4SLA5nngDAlIaUUpRoFUsyaBZHQKTSYEM9bHJ1fZQoaAZoCWgPQwhy+nq+Zvn6v5SGlFKUaBVLMmgWR0Ck1AYIa99MdX2UKGgGaAloD0MISn1Z2qn587+UhpRSlGgVSzJoFkdApNPIjKPn0XV9lChoBmgJaA9DCHHkgcgiTfu/lIaUUpRoFUsyaBZHQKTTi53kgfV1fZQoaAZoCWgPQwi+iLZj6g4QwJSGlFKUaBVLMmgWR0Ck00v1DjR2dX2UKGgGaAloD0MIbXNjesJS+r+UhpRSlGgVSzJoFkdApNT3l6qsEXV9lChoBmgJaA9DCFMj9DP1OgHAlIaUUpRoFUsyaBZHQKTUug2606Z1fZQoaAZoCWgPQwjDuBtEa0X/v5SGlFKUaBVLMmgWR0Ck1H1n27FsdX2UKGgGaAloD0MI5sqg2uCE/L+UhpRSlGgVSzJoFkdApNQ9mSQo1HV9lChoBmgJaA9DCLTJ4ZNOJPi/lIaUUpRoFUsyaBZHQKTV4znA6+51fZQoaAZoCWgPQwgnF2NgHcf2v5SGlFKUaBVLMmgWR0Ck1aWrn1WbdX2UKGgGaAloD0MIFjJXBtUG+b+UhpRSlGgVSzJoFkdApNVoxcmjTXV9lChoBmgJaA9DCNAKDFndKva/lIaUUpRoFUsyaBZHQKTVKRLbpNd1fZQoaAZoCWgPQwjc2OxI9Z30v5SGlFKUaBVLMmgWR0Ck1tb7TDwZdX2UKGgGaAloD0MI4IRCBBwC9r+UhpRSlGgVSzJoFkdApNaZvDP4VXV9lChoBmgJaA9DCOiFOxdG+vS/lIaUUpRoFUsyaBZHQKTWXRZU1ht1fZQoaAZoCWgPQwgMAcCxZ0/6v5SGlFKUaBVLMmgWR0Ck1h2X1J18dX2UKGgGaAloD0MIbHwm++fp77+UhpRSlGgVSzJoFkdApNfYK2KEWnV9lChoBmgJaA9DCDoF+dnIFQHAlIaUUpRoFUsyaBZHQKTXm38XN1R1fZQoaAZoCWgPQwhmFTYDXFD4v5SGlFKUaBVLMmgWR0Ck12AX/HYIdX2UKGgGaAloD0MI2+BE9Gtr/b+UhpRSlGgVSzJoFkdApNcgxDb8FnV9lChoBmgJaA9DCEm6ZvLNdvq/lIaUUpRoFUsyaBZHQKTY1MHKOkt1fZQoaAZoCWgPQwgOLEfIQF71v5SGlFKUaBVLMmgWR0Ck2JdH2AXmdX2UKGgGaAloD0MIYAMixJVz87+UhpRSlGgVSzJoFkdApNhaef7Jn3V9lChoBmgJaA9DCE2espqup/e/lIaUUpRoFUsyaBZHQKTYGsXizcB1fZQoaAZoCWgPQwhwz/OnjYoBwJSGlFKUaBVLMmgWR0Ck2b19v0iAdX2UKGgGaAloD0MIl8YvvJKk+b+UhpRSlGgVSzJoFkdApNmABV+7UXV9lChoBmgJaA9DCHsQAvIllPi/lIaUUpRoFUsyaBZHQKTZQ3H7xd91fZQoaAZoCWgPQwgOnglNEusAwJSGlFKUaBVLMmgWR0Ck2QPttyggdX2UKGgGaAloD0MIcyoZAKo4+7+UhpRSlGgVSzJoFkdApNqw1gpjMHV9lChoBmgJaA9DCGjnNAu0u/6/lIaUUpRoFUsyaBZHQKTac1tO2y91fZQoaAZoCWgPQwj/zCA+sOMIwJSGlFKUaBVLMmgWR0Ck2jZ75VOsdX2UKGgGaAloD0MIJhqk4Cmk/L+UhpRSlGgVSzJoFkdApNn2wxFiKHV9lChoBmgJaA9DCGFSfHxC9vm/lIaUUpRoFUsyaBZHQKTbmEt/WlN1fZQoaAZoCWgPQwgHI/YJoHgGwJSGlFKUaBVLMmgWR0Ck21ronrprdX2UKGgGaAloD0MIz2vsEtVbAMCUhpRSlGgVSzJoFkdApNseG/N7jXV9lChoBmgJaA9DCKhXyjLEcf+/lIaUUpRoFUsyaBZHQKTa3m03OwB1fZQoaAZoCWgPQwi3KR4X1eLxv5SGlFKUaBVLMmgWR0Ck3IqdQO4HdX2UKGgGaAloD0MI9gzhmGVP87+UhpRSlGgVSzJoFkdApNxNMdtEX3V9lChoBmgJaA9DCMJPHEC/b/i/lIaUUpRoFUsyaBZHQKTcEHLRrrR1fZQoaAZoCWgPQwizzvi+uFQBwJSGlFKUaBVLMmgWR0Ck29Emx+rmdX2UKGgGaAloD0MIMNXMWgoIAMCUhpRSlGgVSzJoFkdApN16Ymb9ZXV9lChoBmgJaA9DCOdUMgBU8fa/lIaUUpRoFUsyaBZHQKTdPUhFEzB1fZQoaAZoCWgPQwjqeqLrwg//v5SGlFKUaBVLMmgWR0Ck3QDVYp2EdX2UKGgGaAloD0MIcF8HzhlxCcCUhpRSlGgVSzJoFkdApNzBd2PkrHV9lChoBmgJaA9DCNcWnpeKjfi/lIaUUpRoFUsyaBZHQKTeeeOGTLZ1fZQoaAZoCWgPQwjFHW/yW9QHwJSGlFKUaBVLMmgWR0Ck3j0BnzxxdX2UKGgGaAloD0MIyLJg4o8i/r+UhpRSlGgVSzJoFkdApN4AR5C4SnV9lChoBmgJaA9DCMwpATEJVwXAlIaUUpRoFUsyaBZHQKTdwJiRW911fZQoaAZoCWgPQwjL1Y9N8qPzv5SGlFKUaBVLMmgWR0Ck315K3/gjdX2UKGgGaAloD0MIDECjdOlf+r+UhpRSlGgVSzJoFkdApN8g3gk1M3V9lChoBmgJaA9DCBd/2xMkdva/lIaUUpRoFUsyaBZHQKTe5Fqi48V1fZQoaAZoCWgPQwi932jHDZ8BwJSGlFKUaBVLMmgWR0Ck3qSrxRVIdX2UKGgGaAloD0MIW8064/sCAsCUhpRSlGgVSzJoFkdApOBHxSYPXnV9lChoBmgJaA9DCNL9nIL8rPm/lIaUUpRoFUsyaBZHQKTgCki2Ujd1fZQoaAZoCWgPQwiX4xWInlT+v5SGlFKUaBVLMmgWR0Ck382f9P1tdX2UKGgGaAloD0MIfF9cqtLWAMCUhpRSlGgVSzJoFkdApN+NytFKCnV9lChoBmgJaA9DCP334LVLm/W/lIaUUpRoFUsyaBZHQKThLlYlpoN1fZQoaAZoCWgPQwh6i4f3HNj1v5SGlFKUaBVLMmgWR0Ck4PDl5nlGdX2UKGgGaAloD0MIJGO1+X/V/7+UhpRSlGgVSzJoFkdApOC0QEpy63V9lChoBmgJaA9DCPUwtDo5owDAlIaUUpRoFUsyaBZHQKTgdJg9eQd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (799 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.185800933651626, "std_reward": 0.6435201859910789, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T10:38:43.930449"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1809c71003fb4799dfcda3106a005b4cf3ba0e59f5b8afa21eebefc1366b00d
3
+ size 3212