{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e6e4c566b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e6e4c566c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e6e4c566cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e6e4c566d40>", "_build": "<function ActorCriticPolicy._build at 0x7e6e4c566dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7e6e4c566e60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e6e4c566ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e6e4c566f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7e6e4c567010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e6e4c5670a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e6e4c567130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e6e4c5671c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e6e4c568500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712835261716878089, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABraRb3VorU/1vMRvzvBRb0jMtc6ky8HvgAAAAAAAAAAU3J3PgOnXD+h24G9BROavkWhJz6VbS29AAAAAAAAAADzw3a+IgZDPz2a0ryB4vG+7KGsvlHEAz4AAAAAAAAAAJqRFD0txrM/KxRXPp19dr5br8w9pq9YPQAAAAAAAAAAJtuiPQ81UT3Fe1u8j9B+vpXmzT0tuFg6AAAAAAAAAAANEgE+z3JhP975qj35PJu++s+vPZKSmbsAAAAAAAAAAM23zb2u9L0/WqS+vpusQr5BF/O9SPhEvgAAAAAAAAAAZoOLPCloRbp2jtI0Wi7Gr3HOVrsLHAu0AACAPwAAgD/NPKQ63Mo2vHQfCz0/fDe9zZ8xvebikL4AAIA/AACAPzO8Gb5RWbM/n5wQv4XKrL6RNVi+z52MvgAAAAAAAAAAAPPivWRkxD5d2qc9EcyovuPLfbz1A1I9AAAAAAAAAACA+Wu9rw9zPXqMFT6duYW+wG90PeIY2zwAAAAAAAAAADMJHzyznLM/Pqz4PhZ6PL5kxhq8GzqbvQAAAAAAAAAAABIpvPMotD+OwQO/ms+1vZ3xGzyrbo49AAAAAAAAAAAzAM68qT42PYGeLz26MW++GuLsPA1C1TwAAAAAAAAAAJoZmrolPwQ/0L6sPcUToL7dKyO8JgJHPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGhGMUAT7EaMAWyUTegDjAF0lEdAleQm6shgV3V9lChoBkdAcAWsYEW69WgHTRgBaAhHQJXkrbDdgv11fZQoaAZHQHFTnc+JP69oB00IAWgIR0CV5QidJ8OTdX2UKGgGR0BxL0WBSUC8aAdNDQFoCEdAleUeGCZnc3V9lChoBkdAcO5mKIi1RmgHTRIBaAhHQJXmH0h/y5J1fZQoaAZHQHL1se4kNWloB00TAWgIR0CV5jgP3BYWdX2UKGgGR0BxNi4hEBsAaAdNPQFoCEdAlea1N5+pfnV9lChoBkdAcca6Eal1sGgHTRABaAhHQJXnDzI3irF1fZQoaAZHQHEPLXcxj8VoB0vsaAhHQJXnMNOM2m51fZQoaAZHQHJgLJCBwuNoB00HAWgIR0CV6PrsSkCWdX2UKGgGR0BwhoRaouPFaAdNCwFoCEdAlemZdnkDIXV9lChoBkdAYanKxLTQV2gHTegDaAhHQJXpsWxhUip1fZQoaAZHQHEE03S8an9oB00bAWgIR0CV6lV3EAHWdX2UKGgGR0BxqzKGL1mKaAdNCQFoCEdAles51RtP6HV9lChoBkdAclJ9CNS62GgHTREBaAhHQJXrZcnmaH91fZQoaAZHQHDnlRLsa89oB01tAWgIR0CV7KPjn3cpdX2UKGgGR0Bsc19Wp6yCaAdNFQFoCEdAlezjByjpLXV9lChoBkdAcItmthd+omgHS+5oCEdAle0vw/gR9XV9lChoBkdAcmGjHGS6lWgHTTcBaAhHQJXtYb0e2eB1fZQoaAZHQHIkNAs052hoB00fAWgIR0CV7XumrKeTdX2UKGgGR0BuvHXI2fkFaAdNLAFoCEdAle3agmJFb3V9lChoBkdAcrXEzO5avGgHTSEBaAhHQJXugDdP+GZ1fZQoaAZHQHCKhfnfVI9oB00GAWgIR0CV7o3qiXY2dX2UKGgGR0BwvA/+sHSnaAdNGgFoCEdAle6/hqCYkXV9lChoBkdAcM2ObRWtEGgHTREBaAhHQJXu60v4/NZ1fZQoaAZHQHNPxDCxeLNoB00HAWgIR0CV8NDTz/ZNdX2UKGgGR0BvbhJCjUNKaAdNFAFoCEdAlfFGPxQSBnV9lChoBkdAbbpe0G/vfGgHTTMBaAhHQJXxe+UQkHF1fZQoaAZHQHDRK9CeEqVoB00wAWgIR0CV8qLTQVsUdX2UKGgGR0BRrgnhKlHjaAdLy2gIR0CV8y1E3KjjdX2UKGgGR0ByuPlLeyiVaAdNMAFoCEdAlfOBQ3xWk3V9lChoBkdAcJ/mICU5dWgHTTQBaAhHQJXzxd3Sro51fZQoaAZHQHJ/z0cwQDpoB00bAWgIR0CV9HY3eenRdX2UKGgGR0BxL/Yg7o0RaAdNEAFoCEdAlfRzeGfwqnV9lChoBkdAcZ8yR0U472gHTSYBaAhHQJX0iRDCxeN1fZQoaAZHQHECVrdnCfpoB00fAWgIR0CV9WTq0MPSdX2UKGgGR0Bw0/Fm4AjqaAdL9WgIR0CV9YGACnxbdX2UKGgGR0Bx8Oqm0mdBaAdNJwFoCEdAlfWMB2fTTnV9lChoBkdAcu1afzz3AWgHS/poCEdAlfYsYQ8OkXV9lChoBkdAcOICiyprDmgHTTwBaAhHQJX3xJz1bq11fZQoaAZHQHLnBODaoMtoB00eAWgIR0CWDAK7ZnL8dX2UKGgGR0BxnCEeyRjjaAdL7WgIR0CWDKvexfOVdX2UKGgGR0BuC28dxQzlaAdNGwFoCEdAlgy+wC8vmHV9lChoBkdAclu7kGRmsmgHTUIBaAhHQJYNtQ53kgh1fZQoaAZHQHHRg4OtnwpoB00HAWgIR0CWDg1lGwzMdX2UKGgGR0ByBfpHI6sAaAdL/2gIR0CWDibKifxudX2UKGgGR0BwjS3fAKv3aAdL/mgIR0CWDw56t1ZDdX2UKGgGR0BxML4etCAuaAdNBgFoCEdAlg9gp4KQaXV9lChoBkdAcGiy8zyjHmgHTTABaAhHQJYP25Zr57B1fZQoaAZHQHFO9Kh+OOtoB03xAWgIR0CWEA/RE4NrdX2UKGgGR0BypJBomG/OaAdNCgFoCEdAlhDeN5t3wHV9lChoBkdAbuvHFxXGO2gHTUMBaAhHQJYREwEhaDB1fZQoaAZHQHFU0LUkOZtoB00xAWgIR0CWEV/xUedTdX2UKGgGR0ByB0uL74zraAdNNgFoCEdAlhFmyC4Bm3V9lChoBkdAcYXUXpGFz2gHTTUBaAhHQJYRcSamXPZ1fZQoaAZHQHFlCuEEkjZoB00QAWgIR0CWEiTMJQchdX2UKGgGR0Bx/9HJ9y93aAdL92gIR0CWE32cawUydX2UKGgGR0BzOuUdJaq0aAdNGQFoCEdAlhPpK8L8aXV9lChoBkdAcJPH8CPp6mgHTR4BaAhHQJYUpOFg2Ih1fZQoaAZHQHKTtc0Ltu1oB00HAWgIR0CWFVWhh6SldX2UKGgGR0By1yAjIJZ4aAdL0mgIR0CWFaykKu0UdX2UKGgGR0BxpUAMlTm5aAdNPQFoCEdAlhbWZy+6AnV9lChoBkdAchokkKNQ02gHTVIBaAhHQJYXJOCXhOx1fZQoaAZHQG0Kk/SpiqhoB00uAWgIR0CWF7ZvDP4VdX2UKGgGR0BwFUqoZQ54aAdL7WgIR0CWF9xj8UEgdX2UKGgGR0By3XQF9roGaAdNQgFoCEdAlhf3pfQa73V9lChoBkdAcf64Hoouw2gHS/toCEdAlhhIXKr7wnV9lChoBkdAb+8AFxGUfWgHTRcBaAhHQJYYsikfs/p1fZQoaAZHQHCDX6ZYxL1oB00NAWgIR0CWGNLAHmihdX2UKGgGR0BuhaExqO94aAdNKgFoCEdAlhkE/B3zMHV9lChoBkdAcqLAJb+tKmgHTWgBaAhHQJYZsF1SwW51fZQoaAZHQHHXmX5WRzRoB01BAWgIR0CWGvmhdt2tdX2UKGgGR0BttSLhrFfiaAdNGQFoCEdAlhvMuvllsnV9lChoBkdAcKXgFHJ9zGgHTQ4BaAhHQJYdYMUh3aB1fZQoaAZHQHDP8kD6nBNoB00kAWgIR0CWHbV58jRldX2UKGgGR0BtcM8aGYa6aAdNUwFoCEdAlh6N8ma6SXV9lChoBkdAcQjPe54GEGgHTQgBaAhHQJYe1nQID5l1fZQoaAZHQG1LZXuE25xoB0v0aAhHQJYe+QiiZfF1fZQoaAZHQHPm2d/axotoB0v/aAhHQJYfJwxWT5h1fZQoaAZHQHLsjEBKcutoB00EAWgIR0CWH5FGXokidX2UKGgGR0BymGiudPLxaAdNMwFoCEdAlh/bmhdt23V9lChoBkdAcsENZ/0/W2gHS/VoCEdAlh/uwxFiKHV9lChoBkdAcCTtMfzSTmgHTRgBaAhHQJYggSZjQRh1fZQoaAZHQHEDfTXrdFhoB0v5aAhHQJYhNM23rlh1fZQoaAZHQHBLPF3pwCNoB00cAWgIR0CWITW6shgWdX2UKGgGR0BHYWSMcZLqaAdL0GgIR0CWIiu8brC4dX2UKGgGR0ByRgsFt8/maAdL+2gIR0CWIorleWv9dX2UKGgGR0Bx69Iz3yqdaAdNXQFoCEdAliMcdHUc43V9lChoBkdAcqypXIU8FWgHTSwCaAhHQJYjkrd30PJ1fZQoaAZHQHJWweRxLkFoB00BAWgIR0CWJOmZE2HddX2UKGgGR0BtUTTrmhduaAdNAAFoCEdAliVTnaFmF3V9lChoBkdAcYe029+PR2gHS/hoCEdAliZVk6Lfk3V9lChoBkdAcVS0iyIHkmgHTQ4BaAhHQJYm7R+jM3Z1fZQoaAZHQHLMOG0u14RoB00LAWgIR0CWJ07LMcIadX2UKGgGR0BxvhIatLcsaAdNKAFoCEdAlii9RR/EwXV9lChoBkdAcB2zXBguy2gHTRoBaAhHQJYovxSYPXl1fZQoaAZHQHGsxbwBo25oB00CAWgIR0CWKQMfigkDdX2UKGgGR0Byt1ZLZi/gaAdNIAFoCEdAlilpBomG/XV9lChoBkdAcLxF2V3Ux2gHS/poCEdAlimaUaAFxHV9lChoBkdAbvL/GVAzHmgHS/poCEdAlimbhvR7Z3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 308, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |