|
from typing import List |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
import kornia |
|
from kornia.testing import assert_close |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"input_dtype, expected_dtype", [(np.uint8, torch.uint8), (np.float32, torch.float32), (np.float64, torch.float64)] |
|
) |
|
def test_image_to_tensor_keep_dtype(input_dtype, expected_dtype): |
|
image = np.ones((1, 3, 4, 5), dtype=input_dtype) |
|
tensor = kornia.image_to_tensor(image) |
|
assert tensor.dtype == expected_dtype |
|
|
|
|
|
@pytest.mark.parametrize("num_of_images, image_shape", [(2, (4, 3, 1)), (0, (1, 2, 3)), (5, (2, 3, 2, 5))]) |
|
def test_list_of_images_to_tensor(num_of_images, image_shape): |
|
images: List[np.array] = [] |
|
if num_of_images == 0: |
|
with pytest.raises(ValueError): |
|
kornia.utils.image_list_to_tensor([]) |
|
return |
|
for _ in range(num_of_images): |
|
images.append(np.ones(shape=image_shape)) |
|
if len(image_shape) != 3: |
|
with pytest.raises(ValueError): |
|
kornia.utils.image_list_to_tensor(images) |
|
return |
|
tensor = kornia.utils.image_list_to_tensor(images) |
|
assert tensor.shape == (num_of_images, image_shape[-1], image_shape[-3], image_shape[-2]) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"input_shape, expected", |
|
[ |
|
((4, 4), (4, 4)), |
|
((1, 4, 4), (4, 4)), |
|
((1, 1, 4, 4), (4, 4)), |
|
((3, 4, 4), (4, 4, 3)), |
|
((2, 3, 4, 4), (2, 4, 4, 3)), |
|
((1, 3, 4, 4), (4, 4, 3)), |
|
], |
|
) |
|
def test_tensor_to_image(device, input_shape, expected): |
|
tensor = torch.ones(input_shape).to(device) |
|
image = kornia.utils.tensor_to_image(tensor) |
|
assert image.shape == expected |
|
assert isinstance(image, np.ndarray) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"input_shape, expected", |
|
[ |
|
((4, 4), (4, 4)), |
|
((1, 4, 4), (4, 4)), |
|
((1, 1, 4, 4), (1, 4, 4)), |
|
((3, 4, 4), (4, 4, 3)), |
|
((2, 3, 4, 4), (2, 4, 4, 3)), |
|
((1, 3, 4, 4), (1, 4, 4, 3)), |
|
], |
|
) |
|
def test_tensor_to_image_keepdim(device, input_shape, expected): |
|
tensor = torch.ones(input_shape).to(device) |
|
image = kornia.utils.tensor_to_image(tensor, keepdim=True) |
|
assert image.shape == expected |
|
assert isinstance(image, np.ndarray) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"input_shape, expected", |
|
[ |
|
((4, 4), (1, 1, 4, 4)), |
|
((1, 4, 4), (1, 4, 1, 4)), |
|
((2, 3, 4), (1, 4, 2, 3)), |
|
((4, 4, 3), (1, 3, 4, 4)), |
|
((2, 4, 4, 3), (2, 3, 4, 4)), |
|
((1, 4, 4, 3), (1, 3, 4, 4)), |
|
], |
|
) |
|
def test_image_to_tensor(input_shape, expected): |
|
image = np.ones(input_shape) |
|
tensor = kornia.utils.image_to_tensor(image, keepdim=False) |
|
assert tensor.shape == expected |
|
assert isinstance(tensor, torch.Tensor) |
|
|
|
to_tensor = kornia.utils.ImageToTensor(keepdim=False) |
|
assert_close(tensor, to_tensor(image)) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"input_shape, expected", |
|
[ |
|
((4, 4), (1, 4, 4)), |
|
((1, 4, 4), (4, 1, 4)), |
|
((2, 3, 4), (4, 2, 3)), |
|
((4, 4, 3), (3, 4, 4)), |
|
((2, 4, 4, 3), (2, 3, 4, 4)), |
|
((1, 4, 4, 3), (1, 3, 4, 4)), |
|
], |
|
) |
|
def test_image_to_tensor_keepdim(input_shape, expected): |
|
image = np.ones(input_shape) |
|
tensor = kornia.utils.image_to_tensor(image, keepdim=True) |
|
assert tensor.shape == expected |
|
assert isinstance(tensor, torch.Tensor) |
|
|