|
import pytest |
|
import torch |
|
from torch.autograd import gradcheck |
|
|
|
from kornia.morphology import dilation |
|
from kornia.testing import assert_close |
|
|
|
|
|
class TestDilate: |
|
def test_smoke(self, device, dtype): |
|
kernel = torch.rand(3, 3, device=device, dtype=dtype) |
|
assert kernel is not None |
|
|
|
@pytest.mark.parametrize("shape", [(1, 3, 4, 4), (2, 3, 2, 4), (3, 3, 4, 1), (3, 2, 5, 5)]) |
|
@pytest.mark.parametrize("kernel", [(3, 3), (5, 5), (3, 5), (5, 3)]) |
|
def test_cardinality(self, device, dtype, shape, kernel): |
|
img = torch.ones(shape, device=device, dtype=dtype) |
|
krnl = torch.ones(kernel, device=device, dtype=dtype) |
|
assert dilation(img, krnl).shape == shape |
|
|
|
def test_kernel(self, device, dtype): |
|
tensor = torch.tensor([[0.5, 1.0, 0.3], [0.7, 0.3, 0.8], [0.4, 0.9, 0.2]], device=device, dtype=dtype)[ |
|
None, None, :, : |
|
] |
|
kernel = torch.tensor([[0.0, 1.0, 0.0], [1.0, 1.0, 1.0], [0.0, 1.0, 0.0]], device=device, dtype=dtype) |
|
expected = torch.tensor([[1.0, 1.0, 1.0], [0.7, 1.0, 0.8], [0.9, 0.9, 0.9]], device=device, dtype=dtype)[ |
|
None, None, :, : |
|
] |
|
assert_close(dilation(tensor, kernel, engine='unfold'), expected, atol=1e-4, rtol=1e-4) |
|
assert_close(dilation(tensor, kernel, engine='convolution'), expected, atol=1e-3, rtol=1e-3) |
|
|
|
def test_structural_element(self, device, dtype): |
|
tensor = torch.tensor([[0.5, 1.0, 0.3], [0.7, 0.3, 0.8], [0.4, 0.9, 0.2]], device=device, dtype=dtype)[ |
|
None, None, :, : |
|
] |
|
structural_element = torch.tensor( |
|
[[-1.0, 0.0, -1.0], [0.0, 0.0, 0.0], [-1.0, 0.0, -1.0]], device=device, dtype=dtype |
|
) |
|
expected = torch.tensor([[1.0, 1.0, 1.0], [0.7, 1.0, 0.8], [0.9, 0.9, 0.9]], device=device, dtype=dtype)[ |
|
None, None, :, : |
|
] |
|
assert_close( |
|
dilation( |
|
tensor, torch.ones_like(structural_element), structuring_element=structural_element, engine='unfold' |
|
), |
|
expected, |
|
atol=1e-3, |
|
rtol=1e-3, |
|
) |
|
assert_close( |
|
dilation( |
|
tensor, |
|
torch.ones_like(structural_element), |
|
structuring_element=structural_element, |
|
engine='convolution', |
|
), |
|
expected, |
|
atol=1e-3, |
|
rtol=1e-3, |
|
) |
|
|
|
def test_flip(self, device, dtype): |
|
tensor = torch.tensor([[0.5, 1.0, 0.3], [0.7, 0.3, 0.8], [0.4, 0.9, 0.2]], device=device, dtype=dtype)[ |
|
None, None, :, : |
|
] |
|
kernel = torch.tensor([[0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0]], device=device, dtype=dtype) |
|
expected = torch.tensor([[0.7, 1.0, 1.0], [0.7, 1.0, 1.0], [0.7, 0.9, 0.9]], device=device, dtype=dtype)[ |
|
None, None, :, : |
|
] |
|
assert_close(dilation(tensor, kernel), expected, atol=1e-3, rtol=1e-3) |
|
|
|
def test_exception(self, device, dtype): |
|
tensor = torch.ones(1, 1, 3, 4, device=device, dtype=dtype) |
|
kernel = torch.ones(3, 3, device=device, dtype=dtype) |
|
|
|
with pytest.raises(TypeError): |
|
assert dilation([0.0], kernel) |
|
|
|
with pytest.raises(TypeError): |
|
assert dilation(tensor, [0.0]) |
|
|
|
with pytest.raises(ValueError): |
|
test = torch.ones(2, 3, 4, device=device, dtype=dtype) |
|
assert dilation(test, kernel) |
|
|
|
with pytest.raises(ValueError): |
|
test = torch.ones(2, 3, 4, device=device, dtype=dtype) |
|
assert dilation(tensor, test) |
|
|
|
@pytest.mark.grad |
|
def test_gradcheck(self, device, dtype): |
|
tensor = torch.rand(2, 3, 4, 4, requires_grad=True, device=device, dtype=torch.float64) |
|
kernel = torch.rand(3, 3, requires_grad=True, device=device, dtype=torch.float64) |
|
assert gradcheck(dilation, (tensor, kernel), raise_exception=True) |
|
|
|
@pytest.mark.jit |
|
def test_jit(self, device, dtype): |
|
op = dilation |
|
op_script = torch.jit.script(op) |
|
|
|
tensor = torch.rand(1, 2, 7, 7, device=device, dtype=dtype) |
|
kernel = torch.ones(3, 3, device=device, dtype=dtype) |
|
|
|
actual = op_script(tensor, kernel) |
|
expected = op(tensor, kernel) |
|
|
|
assert_close(actual, expected) |
|
|