|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.optim as optim |
|
|
|
import kornia |
|
|
|
|
|
class MyHomography(nn.Module): |
|
def __init__(self, init_homo: torch.Tensor) -> None: |
|
super().__init__() |
|
self.homo = nn.Parameter(init_homo.clone().detach()) |
|
|
|
def forward(self) -> torch.Tensor: |
|
return torch.unsqueeze(self.homo, dim=0) |
|
|
|
|
|
class TestWarping: |
|
|
|
lr = 1e-3 |
|
num_iterations = 100 |
|
|
|
def test_smoke(self, device): |
|
|
|
img_src_t: torch.Tensor = torch.rand(1, 3, 120, 120).to(device) |
|
img_dst_t: torch.Tensor = torch.rand(1, 3, 120, 120).to(device) |
|
|
|
init_homo: torch.Tensor = torch.from_numpy( |
|
np.array([[0.0415, 1.2731, -1.1731], [-0.9094, 0.5072, 0.4272], [0.0762, 1.3981, 1.0646]]) |
|
).float() |
|
|
|
height, width = img_dst_t.shape[-2:] |
|
warper = kornia.geometry.transform.HomographyWarper(height, width) |
|
dst_homo_src = MyHomography(init_homo=init_homo).to(device) |
|
|
|
learning_rate = self.lr |
|
optimizer = optim.Adam(dst_homo_src.parameters(), lr=learning_rate) |
|
|
|
for _ in range(self.num_iterations): |
|
|
|
img_src_to_dst = warper(img_src_t, dst_homo_src()) |
|
|
|
|
|
loss = F.l1_loss(img_src_to_dst, img_dst_t) |
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
assert not bool(torch.isnan(dst_homo_src.homo.grad).any()) |
|
|