compvis / test /geometry /transform /test_crop2d.py
Dexter's picture
Upload folder using huggingface_hub
36c95ba verified
import torch
from torch.autograd import gradcheck
import kornia
import kornia.testing as utils # test utils
from kornia.testing import assert_close
class TestCropAndResize:
def test_align_corners_true(self, device, dtype):
inp = torch.tensor(
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]],
device=device,
dtype=dtype,
)
height, width = 2, 3
expected = torch.tensor([[[[6.0000, 6.5000, 7.0000], [10.0000, 10.5000, 11.0000]]]], device=device, dtype=dtype)
boxes = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) # 1x4x2
# default should use align_coners True
patches = kornia.geometry.transform.crop_and_resize(inp, boxes, (height, width))
assert_close(patches, expected, rtol=1e-4, atol=1e-4)
def test_align_corners_false(self, device, dtype):
inp = torch.tensor(
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]],
device=device,
dtype=dtype,
)
height, width = 2, 3
expected = torch.tensor([[[[6.7222, 7.1667, 7.6111], [9.3889, 9.8333, 10.2778]]]], device=device, dtype=dtype)
boxes = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) # 1x4x2
patches = kornia.geometry.transform.crop_and_resize(inp, boxes, (height, width), align_corners=False)
assert_close(patches, expected, rtol=1e-4, atol=1e-4)
def test_crop_batch(self, device, dtype):
inp = torch.tensor(
[
[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]],
[[[1.0, 5.0, 9.0, 13.0], [2.0, 6.0, 10.0, 14.0], [3.0, 7.0, 11.0, 15.0], [4.0, 8.0, 12.0, 16.0]]],
],
device=device,
dtype=dtype,
)
expected = torch.tensor(
[[[[6.0, 7.0], [10.0, 11.0]]], [[[7.0, 15.0], [8.0, 16.0]]]], device=device, dtype=dtype
)
boxes = torch.tensor(
[[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]], [[1.0, 2.0], [3.0, 2.0], [3.0, 3.0], [1.0, 3.0]]],
device=device,
dtype=dtype,
) # 2x4x2
patches = kornia.geometry.transform.crop_and_resize(inp, boxes, (2, 2))
assert_close(patches, expected, rtol=1e-4, atol=1e-4)
def test_crop_batch_broadcast(self, device, dtype):
inp = torch.tensor(
[
[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]],
[[[1.0, 5.0, 9.0, 13.0], [2.0, 6.0, 10.0, 14.0], [3.0, 7.0, 11.0, 15.0], [4.0, 8.0, 12.0, 16.0]]],
],
device=device,
dtype=dtype,
)
expected = torch.tensor(
[[[[6.0, 7.0], [10.0, 11.0]]], [[[6.0, 10.0], [7.0, 11.0]]]], device=device, dtype=dtype
)
boxes = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) # 1x4x2
patches = kornia.geometry.transform.crop_and_resize(inp, boxes, (2, 2))
assert_close(patches, expected, rtol=1e-4, atol=1e-4)
def test_gradcheck(self, device, dtype):
img = torch.rand(1, 2, 5, 4, device=device, dtype=dtype)
img = utils.tensor_to_gradcheck_var(img) # to var
boxes = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) # 1x4x2
boxes = utils.tensor_to_gradcheck_var(boxes, requires_grad=False) # to var
assert gradcheck(kornia.geometry.transform.crop_and_resize, (img, boxes, (4, 2)), raise_exception=True)
def test_jit(self, device, dtype):
# Define script
op = kornia.geometry.transform.crop_and_resize
op_script = torch.jit.script(op)
# Define input
img = torch.tensor(
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]],
device=device,
dtype=dtype,
)
boxes = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) # 1x4x2
crop_height, crop_width = 4, 2
actual = op_script(img, boxes, (crop_height, crop_width))
expected = op(img, boxes, (crop_height, crop_width))
assert_close(actual, expected, rtol=1e-4, atol=1e-4)
class TestCenterCrop:
def test_center_crop_h2_w4(self, device, dtype):
inp = torch.tensor(
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]],
device=device,
dtype=dtype,
)
expected = torch.tensor([[[[5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0]]]], device=device, dtype=dtype)
out_crop = kornia.geometry.transform.center_crop(inp, (2, 4))
assert_close(out_crop, expected, rtol=1e-4, atol=1e-4)
def test_center_crop_h4_w2(self, device, dtype):
inp = torch.tensor(
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]],
device=device,
dtype=dtype,
)
height, width = 4, 2
expected = torch.tensor([[[[2.0, 3.0], [6.0, 7.0], [10.0, 11.0], [14.0, 15.0]]]], device=device, dtype=dtype)
out_crop = kornia.geometry.transform.center_crop(inp, (height, width))
assert_close(out_crop, expected, rtol=1e-4, atol=1e-4)
def test_center_crop_h4_w2_batch(self, device, dtype):
inp = torch.tensor(
[
[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]],
[[[1.0, 5.0, 9.0, 13.0], [2.0, 6.0, 10.0, 14.0], [3.0, 7.0, 11.0, 15.0], [4.0, 8.0, 12.0, 16.0]]],
],
device=device,
dtype=dtype,
)
expected = torch.tensor(
[
[[[2.0, 3.0], [6.0, 7.0], [10.0, 11.0], [14.0, 15.0]]],
[[[5.0, 9.0], [6.0, 10.0], [7.0, 11.0], [8.0, 12.0]]],
],
device=device,
dtype=dtype,
)
out_crop = kornia.geometry.transform.center_crop(inp, (4, 2))
assert_close(out_crop, expected, rtol=1e-4, atol=1e-4)
def test_gradcheck(self, device, dtype):
img = torch.rand(1, 2, 5, 4, device=device, dtype=dtype)
img = utils.tensor_to_gradcheck_var(img) # to var
assert gradcheck(kornia.geometry.transform.center_crop, (img, (4, 2)), raise_exception=True)
def test_jit(self, device, dtype):
# Define script
op = kornia.geometry.transform.center_crop
op_script = torch.jit.script(op)
# Define input
img = torch.ones(1, 2, 5, 4, device=device, dtype=dtype)
actual = op_script(img, (4, 2))
expected = op(img, (4, 2))
assert_close(actual, expected, rtol=1e-4, atol=1e-4)
def test_jit_trace(self, device, dtype):
# Define script
op = kornia.geometry.transform.center_crop
op_script = torch.jit.script(op)
# Define input
img = torch.ones(2, 1, 6, 3, device=device, dtype=dtype)
op_trace = torch.jit.trace(op_script, (img, (torch.tensor(2), torch.tensor(3))))
img = torch.ones(2, 1, 6, 3, device=device, dtype=dtype)
# Run
actual = op_trace(img, (torch.tensor(2), torch.tensor(3)))
expected = op(img, (2, 3))
assert_close(actual, expected, rtol=1e-4, atol=1e-4)
class TestCropByBoxes:
def test_crop_by_boxes_no_resizing(self, device, dtype):
inp = torch.tensor(
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]],
device=device,
dtype=dtype,
)
src = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) # 1x4x2
dst = torch.tensor([[[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0]]], device=device, dtype=dtype) # 1x4x2
expected = torch.tensor([[[[6.0, 7.0], [10.0, 11.0]]]], device=device, dtype=dtype)
patches = kornia.geometry.transform.crop_by_boxes(inp, src, dst)
assert_close(patches, expected)
def test_crop_by_boxes_resizing(self, device, dtype):
inp = torch.tensor(
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]],
device=device,
dtype=dtype,
)
src = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) # 1x4x2
dst = torch.tensor([[[0.0, 0.0], [2.0, 0.0], [2.0, 1.0], [0.0, 1.0]]], device=device, dtype=dtype) # 1x4x2
expected = torch.tensor([[[[6.0, 6.5, 7.0], [10.0, 10.5, 11.0]]]], device=device, dtype=dtype)
patches = kornia.geometry.transform.crop_by_boxes(inp, src, dst)
assert_close(patches, expected, rtol=1e-4, atol=1e-4)
def test_gradcheck(self, device, dtype):
inp = torch.randn((1, 1, 3, 3), device=device, dtype=dtype)
src = torch.tensor([[[1.0, 0.0], [2.0, 0.0], [2.0, 1.0], [1.0, 1.0]]], device=device, dtype=dtype)
dst = torch.tensor([[[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0]]], device=device, dtype=dtype)
inp = utils.tensor_to_gradcheck_var(inp, requires_grad=True) # to var
assert gradcheck(kornia.geometry.transform.crop_by_boxes, (inp, src, dst), raise_exception=True)
class TestCropByTransform:
def test_crop_by_transform_no_resizing(self, device, dtype):
inp = torch.tensor(
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]],
device=device,
dtype=dtype,
)
transform = torch.tensor(
[[[1.0, 0.0, -1.0], [0.0, 1.0, -1.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype
) # 1x3x3
expected = torch.tensor([[[[6.0, 7.0], [10.0, 11.0]]]], device=device, dtype=dtype)
patches = kornia.geometry.transform.crop_by_transform_mat(inp, transform, (2, 2))
assert_close(patches, expected)
def test_crop_by_boxes_resizing(self, device, dtype):
inp = torch.tensor(
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]],
device=device,
dtype=dtype,
)
transform = torch.tensor(
[[[2.0, 0.0, -2.0], [0.0, 1.0, -1.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype
) # 1x3x3
expected = torch.tensor([[[[6.0, 6.5, 7.0], [10.0, 10.5, 11.0]]]], device=device, dtype=dtype)
patches = kornia.geometry.transform.crop_by_transform_mat(inp, transform, (2, 3))
assert_close(patches, expected, rtol=1e-4, atol=1e-4)
def test_gradcheck(self, device, dtype):
inp = torch.randn((1, 1, 3, 3), device=device, dtype=dtype)
transform = torch.tensor(
[[[2.0, 0.0, -2.0], [0.0, 1.0, -1.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype
) # 1x3x3
inp = utils.tensor_to_gradcheck_var(inp, requires_grad=True) # to var
assert gradcheck(
kornia.geometry.transform.crop_by_transform_mat, (inp, transform, (2, 2)), raise_exception=True
)