|
|
import torch |
|
|
from torch.autograd import gradcheck |
|
|
|
|
|
import kornia |
|
|
import kornia.testing as utils |
|
|
from kornia.testing import assert_close |
|
|
|
|
|
|
|
|
class TestCropAndResize: |
|
|
def test_align_corners_true(self, device, dtype): |
|
|
inp = torch.tensor( |
|
|
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
height, width = 2, 3 |
|
|
|
|
|
expected = torch.tensor([[[[6.0000, 6.5000, 7.0000], [10.0000, 10.5000, 11.0000]]]], device=device, dtype=dtype) |
|
|
|
|
|
boxes = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) |
|
|
|
|
|
|
|
|
patches = kornia.geometry.transform.crop_and_resize(inp, boxes, (height, width)) |
|
|
assert_close(patches, expected, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_align_corners_false(self, device, dtype): |
|
|
inp = torch.tensor( |
|
|
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
height, width = 2, 3 |
|
|
expected = torch.tensor([[[[6.7222, 7.1667, 7.6111], [9.3889, 9.8333, 10.2778]]]], device=device, dtype=dtype) |
|
|
|
|
|
boxes = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) |
|
|
|
|
|
patches = kornia.geometry.transform.crop_and_resize(inp, boxes, (height, width), align_corners=False) |
|
|
assert_close(patches, expected, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_crop_batch(self, device, dtype): |
|
|
inp = torch.tensor( |
|
|
[ |
|
|
[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]], |
|
|
[[[1.0, 5.0, 9.0, 13.0], [2.0, 6.0, 10.0, 14.0], [3.0, 7.0, 11.0, 15.0], [4.0, 8.0, 12.0, 16.0]]], |
|
|
], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
expected = torch.tensor( |
|
|
[[[[6.0, 7.0], [10.0, 11.0]]], [[[7.0, 15.0], [8.0, 16.0]]]], device=device, dtype=dtype |
|
|
) |
|
|
|
|
|
boxes = torch.tensor( |
|
|
[[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]], [[1.0, 2.0], [3.0, 2.0], [3.0, 3.0], [1.0, 3.0]]], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
patches = kornia.geometry.transform.crop_and_resize(inp, boxes, (2, 2)) |
|
|
assert_close(patches, expected, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_crop_batch_broadcast(self, device, dtype): |
|
|
inp = torch.tensor( |
|
|
[ |
|
|
[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]], |
|
|
[[[1.0, 5.0, 9.0, 13.0], [2.0, 6.0, 10.0, 14.0], [3.0, 7.0, 11.0, 15.0], [4.0, 8.0, 12.0, 16.0]]], |
|
|
], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
expected = torch.tensor( |
|
|
[[[[6.0, 7.0], [10.0, 11.0]]], [[[6.0, 10.0], [7.0, 11.0]]]], device=device, dtype=dtype |
|
|
) |
|
|
|
|
|
boxes = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) |
|
|
|
|
|
patches = kornia.geometry.transform.crop_and_resize(inp, boxes, (2, 2)) |
|
|
assert_close(patches, expected, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_gradcheck(self, device, dtype): |
|
|
img = torch.rand(1, 2, 5, 4, device=device, dtype=dtype) |
|
|
img = utils.tensor_to_gradcheck_var(img) |
|
|
|
|
|
boxes = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) |
|
|
boxes = utils.tensor_to_gradcheck_var(boxes, requires_grad=False) |
|
|
|
|
|
assert gradcheck(kornia.geometry.transform.crop_and_resize, (img, boxes, (4, 2)), raise_exception=True) |
|
|
|
|
|
def test_jit(self, device, dtype): |
|
|
|
|
|
op = kornia.geometry.transform.crop_and_resize |
|
|
op_script = torch.jit.script(op) |
|
|
|
|
|
img = torch.tensor( |
|
|
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
boxes = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) |
|
|
|
|
|
crop_height, crop_width = 4, 2 |
|
|
actual = op_script(img, boxes, (crop_height, crop_width)) |
|
|
expected = op(img, boxes, (crop_height, crop_width)) |
|
|
assert_close(actual, expected, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
|
|
|
class TestCenterCrop: |
|
|
def test_center_crop_h2_w4(self, device, dtype): |
|
|
inp = torch.tensor( |
|
|
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
expected = torch.tensor([[[[5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0]]]], device=device, dtype=dtype) |
|
|
|
|
|
out_crop = kornia.geometry.transform.center_crop(inp, (2, 4)) |
|
|
assert_close(out_crop, expected, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_center_crop_h4_w2(self, device, dtype): |
|
|
inp = torch.tensor( |
|
|
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
height, width = 4, 2 |
|
|
expected = torch.tensor([[[[2.0, 3.0], [6.0, 7.0], [10.0, 11.0], [14.0, 15.0]]]], device=device, dtype=dtype) |
|
|
|
|
|
out_crop = kornia.geometry.transform.center_crop(inp, (height, width)) |
|
|
assert_close(out_crop, expected, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_center_crop_h4_w2_batch(self, device, dtype): |
|
|
inp = torch.tensor( |
|
|
[ |
|
|
[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]], |
|
|
[[[1.0, 5.0, 9.0, 13.0], [2.0, 6.0, 10.0, 14.0], [3.0, 7.0, 11.0, 15.0], [4.0, 8.0, 12.0, 16.0]]], |
|
|
], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
expected = torch.tensor( |
|
|
[ |
|
|
[[[2.0, 3.0], [6.0, 7.0], [10.0, 11.0], [14.0, 15.0]]], |
|
|
[[[5.0, 9.0], [6.0, 10.0], [7.0, 11.0], [8.0, 12.0]]], |
|
|
], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
out_crop = kornia.geometry.transform.center_crop(inp, (4, 2)) |
|
|
assert_close(out_crop, expected, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_gradcheck(self, device, dtype): |
|
|
img = torch.rand(1, 2, 5, 4, device=device, dtype=dtype) |
|
|
img = utils.tensor_to_gradcheck_var(img) |
|
|
|
|
|
assert gradcheck(kornia.geometry.transform.center_crop, (img, (4, 2)), raise_exception=True) |
|
|
|
|
|
def test_jit(self, device, dtype): |
|
|
|
|
|
op = kornia.geometry.transform.center_crop |
|
|
op_script = torch.jit.script(op) |
|
|
|
|
|
img = torch.ones(1, 2, 5, 4, device=device, dtype=dtype) |
|
|
|
|
|
actual = op_script(img, (4, 2)) |
|
|
expected = op(img, (4, 2)) |
|
|
assert_close(actual, expected, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_jit_trace(self, device, dtype): |
|
|
|
|
|
op = kornia.geometry.transform.center_crop |
|
|
op_script = torch.jit.script(op) |
|
|
|
|
|
img = torch.ones(2, 1, 6, 3, device=device, dtype=dtype) |
|
|
op_trace = torch.jit.trace(op_script, (img, (torch.tensor(2), torch.tensor(3)))) |
|
|
img = torch.ones(2, 1, 6, 3, device=device, dtype=dtype) |
|
|
|
|
|
actual = op_trace(img, (torch.tensor(2), torch.tensor(3))) |
|
|
expected = op(img, (2, 3)) |
|
|
assert_close(actual, expected, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
|
|
|
class TestCropByBoxes: |
|
|
def test_crop_by_boxes_no_resizing(self, device, dtype): |
|
|
inp = torch.tensor( |
|
|
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
src = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) |
|
|
|
|
|
dst = torch.tensor([[[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0]]], device=device, dtype=dtype) |
|
|
|
|
|
expected = torch.tensor([[[[6.0, 7.0], [10.0, 11.0]]]], device=device, dtype=dtype) |
|
|
|
|
|
patches = kornia.geometry.transform.crop_by_boxes(inp, src, dst) |
|
|
assert_close(patches, expected) |
|
|
|
|
|
def test_crop_by_boxes_resizing(self, device, dtype): |
|
|
inp = torch.tensor( |
|
|
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
src = torch.tensor([[[1.0, 1.0], [2.0, 1.0], [2.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) |
|
|
|
|
|
dst = torch.tensor([[[0.0, 0.0], [2.0, 0.0], [2.0, 1.0], [0.0, 1.0]]], device=device, dtype=dtype) |
|
|
|
|
|
expected = torch.tensor([[[[6.0, 6.5, 7.0], [10.0, 10.5, 11.0]]]], device=device, dtype=dtype) |
|
|
|
|
|
patches = kornia.geometry.transform.crop_by_boxes(inp, src, dst) |
|
|
assert_close(patches, expected, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_gradcheck(self, device, dtype): |
|
|
inp = torch.randn((1, 1, 3, 3), device=device, dtype=dtype) |
|
|
src = torch.tensor([[[1.0, 0.0], [2.0, 0.0], [2.0, 1.0], [1.0, 1.0]]], device=device, dtype=dtype) |
|
|
dst = torch.tensor([[[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0]]], device=device, dtype=dtype) |
|
|
|
|
|
inp = utils.tensor_to_gradcheck_var(inp, requires_grad=True) |
|
|
|
|
|
assert gradcheck(kornia.geometry.transform.crop_by_boxes, (inp, src, dst), raise_exception=True) |
|
|
|
|
|
|
|
|
class TestCropByTransform: |
|
|
def test_crop_by_transform_no_resizing(self, device, dtype): |
|
|
inp = torch.tensor( |
|
|
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
transform = torch.tensor( |
|
|
[[[1.0, 0.0, -1.0], [0.0, 1.0, -1.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype |
|
|
) |
|
|
|
|
|
expected = torch.tensor([[[[6.0, 7.0], [10.0, 11.0]]]], device=device, dtype=dtype) |
|
|
|
|
|
patches = kornia.geometry.transform.crop_by_transform_mat(inp, transform, (2, 2)) |
|
|
assert_close(patches, expected) |
|
|
|
|
|
def test_crop_by_boxes_resizing(self, device, dtype): |
|
|
inp = torch.tensor( |
|
|
[[[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0]]]], |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
transform = torch.tensor( |
|
|
[[[2.0, 0.0, -2.0], [0.0, 1.0, -1.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype |
|
|
) |
|
|
|
|
|
expected = torch.tensor([[[[6.0, 6.5, 7.0], [10.0, 10.5, 11.0]]]], device=device, dtype=dtype) |
|
|
|
|
|
patches = kornia.geometry.transform.crop_by_transform_mat(inp, transform, (2, 3)) |
|
|
assert_close(patches, expected, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
def test_gradcheck(self, device, dtype): |
|
|
inp = torch.randn((1, 1, 3, 3), device=device, dtype=dtype) |
|
|
transform = torch.tensor( |
|
|
[[[2.0, 0.0, -2.0], [0.0, 1.0, -1.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype |
|
|
) |
|
|
|
|
|
inp = utils.tensor_to_gradcheck_var(inp, requires_grad=True) |
|
|
|
|
|
assert gradcheck( |
|
|
kornia.geometry.transform.crop_by_transform_mat, (inp, transform, (2, 2)), raise_exception=True |
|
|
) |
|
|
|