|
import pytest |
|
import torch |
|
from torch.autograd import gradcheck |
|
|
|
import kornia |
|
import kornia.testing as utils |
|
from kornia.testing import assert_close |
|
|
|
|
|
@pytest.mark.parametrize("window_size", [5]) |
|
def test_get_laplacian_kernel(window_size): |
|
kernel = kornia.filters.get_laplacian_kernel1d(window_size) |
|
assert kernel.shape == (window_size,) |
|
assert kernel.sum().item() == pytest.approx(0.0) |
|
|
|
|
|
@pytest.mark.parametrize("window_size", [7]) |
|
def test_get_laplacian_kernel2d(window_size): |
|
kernel = kornia.filters.get_laplacian_kernel2d(window_size) |
|
assert kernel.shape == (window_size, window_size) |
|
assert kernel.sum().item() == pytest.approx(0.0) |
|
expected = torch.tensor( |
|
[ |
|
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], |
|
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], |
|
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], |
|
[1.0, 1.0, 1.0, -48.0, 1.0, 1.0, 1.0], |
|
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], |
|
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], |
|
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], |
|
] |
|
) |
|
assert_close(expected, kernel) |
|
|
|
|
|
class TestLaplacian: |
|
@pytest.mark.parametrize("batch_shape", [(1, 4, 8, 15), (2, 3, 11, 7)]) |
|
def test_cardinality(self, batch_shape, device, dtype): |
|
kernel_size = 5 |
|
|
|
input = torch.rand(batch_shape, device=device, dtype=dtype) |
|
actual = kornia.filters.laplacian(input, kernel_size) |
|
assert actual.shape == batch_shape |
|
|
|
def test_noncontiguous(self, device, dtype): |
|
batch_size = 3 |
|
input = torch.rand(3, 5, 5, device=device, dtype=dtype).expand(batch_size, -1, -1, -1) |
|
|
|
kernel_size = 3 |
|
actual = kornia.filters.laplacian(input, kernel_size) |
|
assert_close(actual, actual) |
|
|
|
def test_gradcheck(self, device, dtype): |
|
|
|
batch_shape = (1, 2, 5, 7) |
|
kernel_size = 3 |
|
|
|
|
|
input = torch.rand(batch_shape, device=device, dtype=dtype) |
|
input = utils.tensor_to_gradcheck_var(input) |
|
assert gradcheck(kornia.filters.laplacian, (input, kernel_size), raise_exception=True) |
|
|
|
def test_jit(self, device, dtype): |
|
op = kornia.filters.laplacian |
|
op_script = torch.jit.script(op) |
|
params = [3] |
|
|
|
img = torch.ones(1, 3, 5, 5, device=device, dtype=dtype) |
|
assert_close(op(img, *params), op_script(img, *params)) |
|
|
|
def test_module(self, device, dtype): |
|
params = [3] |
|
op = kornia.filters.laplacian |
|
op_module = kornia.filters.Laplacian(*params) |
|
|
|
img = torch.ones(1, 3, 5, 5, device=device, dtype=dtype) |
|
assert_close(op(img, *params), op_module(img)) |
|
|