compvis / test /feature /test_responces_local_features.py
Dexter's picture
Upload folder using huggingface_hub
36c95ba verified
import pytest
import torch
from torch.autograd import gradcheck
import kornia
import kornia.testing as utils # test utils
from kornia.testing import assert_close
class TestCornerHarris:
def test_shape(self, device):
inp = torch.ones(1, 3, 4, 4, device=device)
harris = kornia.feature.CornerHarris(k=0.04).to(device)
assert harris(inp).shape == (1, 3, 4, 4)
def test_shape_batch(self, device):
inp = torch.zeros(2, 6, 4, 4, device=device)
harris = kornia.feature.CornerHarris(k=0.04).to(device)
assert harris(inp).shape == (2, 6, 4, 4)
def test_corners(self, device):
inp = torch.tensor(
[
[
[
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
]
]
],
device=device,
).float()
expected = torch.tensor(
[
[
[
[0.0042, 0.0054, 0.0035, 0.0006, 0.0035, 0.0054, 0.0042],
[0.0054, 0.0068, 0.0046, 0.0014, 0.0046, 0.0068, 0.0054],
[0.0035, 0.0046, 0.0034, 0.0014, 0.0034, 0.0046, 0.0035],
[0.0006, 0.0014, 0.0014, 0.0006, 0.0014, 0.0014, 0.0006],
[0.0035, 0.0046, 0.0034, 0.0014, 0.0034, 0.0046, 0.0035],
[0.0054, 0.0068, 0.0046, 0.0014, 0.0046, 0.0068, 0.0054],
[0.0042, 0.0054, 0.0035, 0.0006, 0.0035, 0.0054, 0.0042],
]
]
],
device=device,
).float()
harris = kornia.feature.CornerHarris(k=0.04).to(device)
scores = harris(inp)
assert_close(scores, expected, atol=1e-4, rtol=1e-3)
def test_corners_batch(self, device):
inp = torch.tensor(
[
[
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
],
[
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
],
],
device=device,
).repeat(2, 1, 1, 1)
expected = (
torch.tensor(
[
[
[0.0415, 0.0541, 0.0346, 0.0058, 0.0346, 0.0541, 0.0415],
[0.0541, 0.0678, 0.0457, 0.0145, 0.0457, 0.0678, 0.0541],
[0.0346, 0.0457, 0.0335, 0.0139, 0.0335, 0.0457, 0.0346],
[0.0058, 0.0145, 0.0139, 0.0064, 0.0139, 0.0145, 0.0058],
[0.0346, 0.0457, 0.0335, 0.0139, 0.0335, 0.0457, 0.0346],
[0.0541, 0.0678, 0.0457, 0.0145, 0.0457, 0.0678, 0.0541],
[0.0415, 0.0541, 0.0346, 0.0058, 0.0346, 0.0541, 0.0415],
],
[
[0.0415, 0.0547, 0.0447, 0.0440, 0.0490, 0.0182, 0.0053],
[0.0547, 0.0688, 0.0557, 0.0549, 0.0610, 0.0229, 0.0066],
[0.0447, 0.0557, 0.0444, 0.0437, 0.0489, 0.0168, 0.0035],
[0.0440, 0.0549, 0.0437, 0.0431, 0.0481, 0.0166, 0.0034],
[0.0490, 0.0610, 0.0489, 0.0481, 0.0541, 0.0205, 0.0060],
[0.0182, 0.0229, 0.0168, 0.0166, 0.0205, 0.0081, 0.0025],
[0.0053, 0.0066, 0.0035, 0.0034, 0.0060, 0.0025, 0.0008],
],
],
device=device,
).repeat(2, 1, 1, 1)
/ 10.0
)
scores = kornia.feature.harris_response(inp, k=0.04)
assert_close(scores, expected, atol=1e-4, rtol=1e-4)
def test_gradcheck(self, device):
k = 0.04
batch_size, channels, height, width = 1, 2, 5, 4
img = torch.rand(batch_size, channels, height, width, device=device)
img = utils.tensor_to_gradcheck_var(img) # to var
assert gradcheck(kornia.feature.harris_response, (img, k), raise_exception=True, nondet_tol=1e-4)
@pytest.mark.skip(reason="turn off all jit for a while")
def test_jit(self, device):
@torch.jit.script
def op_script(input, k):
return kornia.feature.harris_response(input, k)
k = torch.tensor(0.04)
img = torch.rand(2, 3, 4, 5, device=device)
actual = op_script(img, k)
expected = kornia.feature.harris_response(img, k)
assert_close(actual, expected)
class TestCornerGFTT:
def test_shape(self, device):
inp = torch.ones(1, 3, 4, 4, device=device)
shi_tomasi = kornia.feature.CornerGFTT().to(device)
assert shi_tomasi(inp).shape == (1, 3, 4, 4)
def test_shape_batch(self, device):
inp = torch.zeros(2, 6, 4, 4, device=device)
shi_tomasi = kornia.feature.CornerGFTT().to(device)
assert shi_tomasi(inp).shape == (2, 6, 4, 4)
def test_corners(self, device):
inp = torch.tensor(
[
[
[
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
]
]
],
device=device,
).float()
expected = torch.tensor(
[
[
[
[0.0379, 0.0456, 0.0283, 0.0121, 0.0283, 0.0456, 0.0379],
[0.0456, 0.0598, 0.0402, 0.0168, 0.0402, 0.0598, 0.0456],
[0.0283, 0.0402, 0.0545, 0.0245, 0.0545, 0.0402, 0.0283],
[0.0121, 0.0168, 0.0245, 0.0276, 0.0245, 0.0168, 0.0121],
[0.0283, 0.0402, 0.0545, 0.0245, 0.0545, 0.0402, 0.0283],
[0.0456, 0.0598, 0.0402, 0.0168, 0.0402, 0.0598, 0.0456],
[0.0379, 0.0456, 0.0283, 0.0121, 0.0283, 0.0456, 0.0379],
]
]
],
device=device,
).float()
shi_tomasi = kornia.feature.CornerGFTT().to(device)
scores = shi_tomasi(inp)
assert_close(scores, expected, atol=1e-4, rtol=1e-3)
def test_corners_batch(self, device):
inp = torch.tensor(
[
[
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
],
[
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
],
],
device=device,
).repeat(2, 1, 1, 1)
expected = torch.tensor(
[
[
[0.0379, 0.0456, 0.0283, 0.0121, 0.0283, 0.0456, 0.0379],
[0.0456, 0.0598, 0.0402, 0.0168, 0.0402, 0.0598, 0.0456],
[0.0283, 0.0402, 0.0545, 0.0245, 0.0545, 0.0402, 0.0283],
[0.0121, 0.0168, 0.0245, 0.0276, 0.0245, 0.0168, 0.0121],
[0.0283, 0.0402, 0.0545, 0.0245, 0.0545, 0.0402, 0.0283],
[0.0456, 0.0598, 0.0402, 0.0168, 0.0402, 0.0598, 0.0456],
[0.0379, 0.0456, 0.0283, 0.0121, 0.0283, 0.0456, 0.0379],
],
[
[0.0379, 0.0462, 0.0349, 0.0345, 0.0443, 0.0248, 0.0112],
[0.0462, 0.0608, 0.0488, 0.0483, 0.0581, 0.0274, 0.0119],
[0.0349, 0.0488, 0.0669, 0.0664, 0.0460, 0.0191, 0.0084],
[0.0345, 0.0483, 0.0664, 0.0660, 0.0455, 0.0189, 0.0083],
[0.0443, 0.0581, 0.0460, 0.0455, 0.0555, 0.0262, 0.0114],
[0.0248, 0.0274, 0.0191, 0.0189, 0.0262, 0.0172, 0.0084],
[0.0112, 0.0119, 0.0084, 0.0083, 0.0114, 0.0084, 0.0046],
],
],
device=device,
).repeat(2, 1, 1, 1)
shi_tomasi = kornia.feature.CornerGFTT().to(device)
scores = shi_tomasi(inp)
assert_close(scores, expected, atol=1e-4, rtol=1e-4)
def test_gradcheck(self, device):
batch_size, channels, height, width = 1, 2, 5, 4
img = torch.rand(batch_size, channels, height, width, device=device)
img = utils.tensor_to_gradcheck_var(img) # to var
assert gradcheck(kornia.feature.gftt_response, (img), raise_exception=True, nondet_tol=1e-4)
@pytest.mark.skip(reason="turn off all jit for a while")
def test_jit(self, device):
@torch.jit.script
def op_script(input):
return kornia.feature.gftt_response(input)
img = torch.rand(2, 3, 4, 5, device=device)
actual = op_script(img)
expected = kornia.feature.gftt_response(img)
assert_close(actual, expected)
class TestBlobHessian:
def test_shape(self, device):
inp = torch.ones(1, 3, 4, 4, device=device)
shi_tomasi = kornia.feature.BlobHessian().to(device)
assert shi_tomasi(inp).shape == (1, 3, 4, 4)
def test_shape_batch(self, device):
inp = torch.zeros(2, 6, 4, 4, device=device)
shi_tomasi = kornia.feature.BlobHessian().to(device)
assert shi_tomasi(inp).shape == (2, 6, 4, 4)
def test_blobs_batch(self, device):
inp = torch.tensor(
[
[
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
],
[
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
],
],
device=device,
).repeat(2, 1, 1, 1)
expected = torch.tensor(
[
[
[-0.0564, -0.0759, -0.0342, -0.0759, -0.0564, -0.0057, 0.0000],
[-0.0759, -0.0330, 0.0752, -0.0330, -0.0759, -0.0096, 0.0000],
[-0.0342, 0.0752, 0.1914, 0.0752, -0.0342, -0.0068, 0.0000],
[-0.0759, -0.0330, 0.0752, -0.0330, -0.0759, -0.0096, 0.0000],
[-0.0564, -0.0759, -0.0342, -0.0759, -0.0564, -0.0057, 0.0000],
[-0.0057, -0.0096, -0.0068, -0.0096, -0.0057, -0.0005, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
],
[
[-0.0564, -0.0522, -0.0522, -0.0564, -0.0057, 0.0000, 0.0000],
[-0.0522, 0.0688, 0.0688, -0.0123, 0.0033, -0.0057, -0.0005],
[-0.0522, 0.0688, -0.0755, -0.1111, -0.0123, -0.0564, -0.0057],
[-0.0564, -0.0123, -0.1111, -0.0755, 0.0688, -0.0522, -0.0080],
[-0.0057, 0.0033, -0.0123, 0.0688, 0.0688, -0.0522, -0.0080],
[0.0000, -0.0057, -0.0564, -0.0522, -0.0522, -0.0564, -0.0057],
[0.0000, -0.0005, -0.0057, -0.0080, -0.0080, -0.0057, -0.0005],
],
],
device=device,
).repeat(2, 1, 1, 1)
shi_tomasi = kornia.feature.BlobHessian().to(device)
scores = shi_tomasi(inp)
assert_close(scores, expected, atol=1e-4, rtol=1e-4)
def test_gradcheck(self, device):
batch_size, channels, height, width = 1, 2, 5, 4
img = torch.rand(batch_size, channels, height, width, device=device)
img = utils.tensor_to_gradcheck_var(img) # to var
assert gradcheck(kornia.feature.hessian_response, (img), raise_exception=True, nondet_tol=1e-4)
@pytest.mark.jit
def test_jit(self, device):
@torch.jit.script
def op_script(input):
return kornia.feature.hessian_response(input)
img = torch.rand(2, 3, 4, 5, device=device)
actual = op_script(img)
expected = kornia.feature.hessian_response(img)
assert_close(actual, expected)