compvis / test /feature /test_loftr.py
Dexter's picture
Upload folder using huggingface_hub
36c95ba verified
import sys
import pytest
import torch
from torch.autograd import gradcheck
import kornia.testing as utils # test utils
from kornia.feature import LoFTR
from kornia.geometry import resize
from kornia.testing import assert_close
from kornia.utils._compat import torch_version_geq
class TestLoFTR:
def test_pretrained_outdoor_smoke(self, device, dtype):
loftr = LoFTR('outdoor').to(device, dtype)
assert loftr is not None
def test_pretrained_indoor_smoke(self, device, dtype):
loftr = LoFTR('indoor').to(device, dtype)
assert loftr is not None
@pytest.mark.skipif(torch_version_geq(1, 10), reason="RuntimeError: CUDA out of memory with pytorch>=1.10")
@pytest.mark.skipif(sys.platform == "win32",
reason="this test takes so much memory in the CI with Windows")
@pytest.mark.parametrize("data", ["loftr_fund"], indirect=True)
def test_pretrained_indoor(self, device, dtype, data):
loftr = LoFTR('indoor').to(device, dtype)
data_dev = utils.dict_to(data, device, dtype)
with torch.no_grad():
out = loftr(data_dev)
assert_close(out['keypoints0'], data_dev["loftr_indoor_tentatives0"])
assert_close(out['keypoints1'], data_dev["loftr_indoor_tentatives1"])
@pytest.mark.skipif(torch_version_geq(1, 10), reason="RuntimeError: CUDA out of memory with pytorch>=1.10")
@pytest.mark.skipif(sys.platform == "win32",
reason="this test takes so much memory in the CI with Windows")
@pytest.mark.parametrize("data", ["loftr_homo"], indirect=True)
def test_pretrained_outdoor(self, device, dtype, data):
loftr = LoFTR('outdoor').to(device, dtype)
data_dev = utils.dict_to(data, device, dtype)
with torch.no_grad():
out = loftr(data_dev)
assert_close(out['keypoints0'], data_dev["loftr_outdoor_tentatives0"])
assert_close(out['keypoints1'], data_dev["loftr_outdoor_tentatives1"])
@pytest.mark.skip("Takes too long time (but works)")
def test_gradcheck(self, device):
patches = torch.rand(1, 1, 32, 32, device=device)
patches05 = resize(patches, (48, 48))
patches = utils.tensor_to_gradcheck_var(patches) # to var
patches05 = utils.tensor_to_gradcheck_var(patches05) # to var
loftr = LoFTR().to(patches.device, patches.dtype)
def proxy_forward(x, y):
return loftr.forward({"image0": x, "image1": y})["keypoints0"]
assert gradcheck(proxy_forward, (patches, patches05), eps=1e-4, atol=1e-4, raise_exception=True)
@pytest.mark.skip("does not like transformer.py:L99, zip iteration")
def test_jit(self, device, dtype):
B, C, H, W = 1, 1, 32, 32
patches = torch.rand(B, C, H, W, device=device, dtype=dtype)
patches2x = resize(patches, (48, 48))
input = {"image0": patches, "image1": patches2x}
model = LoFTR().to(patches.device, patches.dtype).eval()
model_jit = torch.jit.script(model)
out = model(input)
out_jit = model_jit(input)
for k, v in out.items():
assert_close(v, out_jit[k])