|
import pytest |
|
import torch |
|
from torch.autograd import gradcheck |
|
|
|
import kornia.testing as utils |
|
from kornia.feature import DeFMO |
|
from kornia.testing import assert_close |
|
|
|
|
|
class TestDeFMO: |
|
def test_shape(self, device, dtype): |
|
inp = torch.ones(1, 6, 128, 160, device=device, dtype=dtype) |
|
defmo = DeFMO().to(device, dtype) |
|
defmo.eval() |
|
out = defmo(inp) |
|
assert out.shape == (1, 24, 4, 128, 160) |
|
|
|
def test_shape_batch(self, device, dtype): |
|
inp = torch.ones(2, 6, 128, 160, device=device, dtype=dtype) |
|
defmo = DeFMO().to(device, dtype) |
|
out = defmo(inp) |
|
with torch.no_grad(): |
|
assert out.shape == (2, 24, 4, 128, 160) |
|
|
|
@pytest.mark.skip("jacobian not well computed") |
|
def test_gradcheck(self, device, dtype): |
|
patches = torch.rand(2, 6, 128, 128, device=device, dtype=dtype) |
|
patches = utils.tensor_to_gradcheck_var(patches) |
|
defmo = DeFMO().to(patches.device, patches.dtype) |
|
assert gradcheck(defmo, (patches,), eps=1e-4, atol=1e-4, raise_exception=True) |
|
|
|
@pytest.mark.jit |
|
def test_jit(self, device, dtype): |
|
B, C, H, W = 1, 6, 128, 160 |
|
patches = torch.rand(B, C, H, W, device=device, dtype=dtype) |
|
model = DeFMO(True).to(patches.device, patches.dtype).eval() |
|
model_jit = torch.jit.script(DeFMO(True).to(patches.device, patches.dtype).eval()) |
|
with torch.no_grad(): |
|
assert_close(model(patches), model_jit(patches)) |
|
|