compvis / kornia /geometry /homography.py
Dexter's picture
Upload folder using huggingface_hub
36c95ba verified
import warnings
from typing import Optional, Tuple
import torch
from kornia.utils import _extract_device_dtype, safe_inverse_with_mask
from .conversions import convert_points_from_homogeneous
from .epipolar import normalize_points
from .linalg import transform_points
TupleTensor = Tuple[torch.Tensor, torch.Tensor]
def oneway_transfer_error(
pts1: torch.Tensor, pts2: torch.Tensor, H: torch.Tensor, squared: bool = True, eps: float = 1e-8
) -> torch.Tensor:
r"""Return transfer error in image 2 for correspondences given the homography matrix.
Args:
pts1: correspondences from the left images with shape
(B, N, 2 or 3). If they are homogeneous, converted automatically.
pts2: correspondences from the right images with shape
(B, N, 2 or 3). If they are homogeneous, converted automatically.
H: Homographies with shape :math:`(B, 3, 3)`.
squared: if True (default), the squared distance is returned.
eps: Small constant for safe sqrt.
Returns:
the computed distance with shape :math:`(B, N)`.
"""
if not isinstance(H, torch.Tensor):
raise TypeError(f"H type is not a torch.Tensor. Got {type(H)}")
if (len(H.shape) != 3) or not H.shape[-2:] == (3, 3):
raise ValueError(f"H must be a (*, 3, 3) tensor. Got {H.shape}")
if pts1.size(-1) == 3:
pts1 = convert_points_from_homogeneous(pts1)
if pts2.size(-1) == 3:
pts2 = convert_points_from_homogeneous(pts2)
# From Hartley and Zisserman, Error in one image (4.6)
# dist = \sum_{i} ( d(x', Hx)**2)
pts1_in_2: torch.Tensor = transform_points(H, pts1)
error_squared: torch.Tensor = (pts1_in_2 - pts2).pow(2).sum(dim=-1)
if squared:
return error_squared
return (error_squared + eps).sqrt()
def symmetric_transfer_error(
pts1: torch.Tensor, pts2: torch.Tensor, H: torch.Tensor, squared: bool = True, eps: float = 1e-8
) -> torch.Tensor:
r"""Return Symmetric transfer error for correspondences given the homography matrix.
Args:
pts1: correspondences from the left images with shape
(B, N, 2 or 3). If they are homogeneous, converted automatically.
pts2: correspondences from the right images with shape
(B, N, 2 or 3). If they are homogeneous, converted automatically.
H: Homographies with shape :math:`(B, 3, 3)`.
squared: if True (default), the squared distance is returned.
eps: Small constant for safe sqrt.
Returns:
the computed distance with shape :math:`(B, N)`.
"""
if not isinstance(H, torch.Tensor):
raise TypeError(f"H type is not a torch.Tensor. Got {type(H)}")
if (len(H.shape) != 3) or not H.shape[-2:] == (3, 3):
raise ValueError(f"H must be a (*, 3, 3) tensor. Got {H.shape}")
if pts1.size(-1) == 3:
pts1 = convert_points_from_homogeneous(pts1)
if pts2.size(-1) == 3:
pts2 = convert_points_from_homogeneous(pts2)
max_num = torch.finfo(pts1.dtype).max
# From Hartley and Zisserman, Symmetric transfer error (4.7)
# dist = \sum_{i} (d(x, H^-1 x')**2 + d(x', Hx)**2)
H_inv, good_H = safe_inverse_with_mask(H)
there: torch.Tensor = oneway_transfer_error(pts1, pts2, H, True, eps)
back: torch.Tensor = oneway_transfer_error(pts2, pts1, H_inv, True, eps)
good_H_reshape: torch.Tensor = good_H.view(-1, 1).expand_as(there)
out = (there + back) * good_H_reshape.to(there.dtype) + max_num * (~good_H_reshape).to(there.dtype)
if squared:
return out
return (out + eps).sqrt()
def find_homography_dlt(
points1: torch.Tensor, points2: torch.Tensor, weights: Optional[torch.Tensor] = None
) -> torch.Tensor:
r"""Compute the homography matrix using the DLT formulation.
The linear system is solved by using the Weighted Least Squares Solution for the 4 Points algorithm.
Args:
points1: A set of points in the first image with a tensor shape :math:`(B, N, 2)`.
points2: A set of points in the second image with a tensor shape :math:`(B, N, 2)`.
weights: Tensor containing the weights per point correspondence with a shape of :math:`(B, N)`.
Returns:
the computed homography matrix with shape :math:`(B, 3, 3)`.
"""
if points1.shape != points2.shape:
raise AssertionError(points1.shape)
if not (len(points1.shape) >= 1 and points1.shape[-1] == 2):
raise AssertionError(points1.shape)
if points1.shape[1] < 4:
raise AssertionError(points1.shape)
device, dtype = _extract_device_dtype([points1, points2])
eps: float = 1e-8
points1_norm, transform1 = normalize_points(points1)
points2_norm, transform2 = normalize_points(points2)
x1, y1 = torch.chunk(points1_norm, dim=-1, chunks=2) # BxNx1
x2, y2 = torch.chunk(points2_norm, dim=-1, chunks=2) # BxNx1
ones, zeros = torch.ones_like(x1), torch.zeros_like(x1)
# DIAPO 11: https://www.uio.no/studier/emner/matnat/its/nedlagte-emner/UNIK4690/v16/forelesninger/lecture_4_3-estimating-homographies-from-feature-correspondences.pdf # noqa: E501
ax = torch.cat([zeros, zeros, zeros, -x1, -y1, -ones, y2 * x1, y2 * y1, y2], dim=-1)
ay = torch.cat([x1, y1, ones, zeros, zeros, zeros, -x2 * x1, -x2 * y1, -x2], dim=-1)
A = torch.cat((ax, ay), dim=-1).reshape(ax.shape[0], -1, ax.shape[-1])
if weights is None:
# All points are equally important
A = A.transpose(-2, -1) @ A
else:
# We should use provided weights
if not (len(weights.shape) == 2 and weights.shape == points1.shape[:2]):
raise AssertionError(weights.shape)
w_diag = torch.diag_embed(weights.unsqueeze(dim=-1).repeat(1, 1, 2).reshape(weights.shape[0], -1))
A = A.transpose(-2, -1) @ w_diag @ A
try:
_, _, V = torch.svd(A)
except ValueError:
warnings.warn('SVD did not converge', RuntimeWarning)
return torch.empty((points1_norm.size(0), 3, 3), device=device, dtype=dtype)
H = V[..., -1].view(-1, 3, 3)
H = transform2.inverse() @ (H @ transform1)
H_norm = H / (H[..., -1:, -1:] + eps)
return H_norm
def find_homography_dlt_iterated(
points1: torch.Tensor, points2: torch.Tensor, weights: torch.Tensor, soft_inl_th: float = 3.0, n_iter: int = 5
) -> torch.Tensor:
r"""Compute the homography matrix using the iteratively-reweighted least squares (IRWLS).
The linear system is solved by using the Reweighted Least Squares Solution for the 4 Points algorithm.
Args:
points1: A set of points in the first image with a tensor shape :math:`(B, N, 2)`.
points2: A set of points in the second image with a tensor shape :math:`(B, N, 2)`.
weights: Tensor containing the weights per point correspondence with a shape of :math:`(B, N)`.
Used for the first iteration of the IRWLS.
soft_inl_th: Soft inlier threshold used for weight calculation.
n_iter: number of iterations.
Returns:
the computed homography matrix with shape :math:`(B, 3, 3)`.
"""
'''Function, which finds homography via iteratively-reweighted
least squares ToDo: add citation'''
H: torch.Tensor = find_homography_dlt(points1, points2, weights)
for _ in range(n_iter - 1):
errors: torch.Tensor = symmetric_transfer_error(points1, points2, H, False)
weights_new: torch.Tensor = torch.exp(-errors / (2.0 * (soft_inl_th ** 2)))
H = find_homography_dlt(points1, points2, weights_new)
return H