|
import enum |
|
import warnings |
|
from typing import Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from kornia.constants import pi |
|
|
|
__all__ = [ |
|
"rad2deg", |
|
"deg2rad", |
|
"pol2cart", |
|
"cart2pol", |
|
"convert_points_from_homogeneous", |
|
"convert_points_to_homogeneous", |
|
"convert_affinematrix_to_homography", |
|
"convert_affinematrix_to_homography3d", |
|
"angle_axis_to_rotation_matrix", |
|
"angle_axis_to_quaternion", |
|
"rotation_matrix_to_angle_axis", |
|
"rotation_matrix_to_quaternion", |
|
"quaternion_to_angle_axis", |
|
"quaternion_to_rotation_matrix", |
|
"quaternion_log_to_exp", |
|
"quaternion_exp_to_log", |
|
"denormalize_pixel_coordinates", |
|
"normalize_pixel_coordinates", |
|
"normalize_quaternion", |
|
"denormalize_pixel_coordinates3d", |
|
"normalize_pixel_coordinates3d", |
|
"angle_to_rotation_matrix", |
|
] |
|
|
|
|
|
class QuaternionCoeffOrder(enum.Enum): |
|
XYZW = 'xyzw' |
|
WXYZ = 'wxyz' |
|
|
|
|
|
def rad2deg(tensor: torch.Tensor) -> torch.Tensor: |
|
r"""Function that converts angles from radians to degrees. |
|
|
|
Args: |
|
tensor: Tensor of arbitrary shape. |
|
|
|
Returns: |
|
Tensor with same shape as input. |
|
|
|
Example: |
|
>>> input = torch.tensor(3.1415926535) |
|
>>> rad2deg(input) |
|
tensor(180.) |
|
""" |
|
if not isinstance(tensor, torch.Tensor): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(tensor)}") |
|
|
|
return 180.0 * tensor / pi.to(tensor.device).type(tensor.dtype) |
|
|
|
|
|
def deg2rad(tensor: torch.Tensor) -> torch.Tensor: |
|
r"""Function that converts angles from degrees to radians. |
|
|
|
Args: |
|
tensor: Tensor of arbitrary shape. |
|
|
|
Returns: |
|
tensor with same shape as input. |
|
|
|
Examples: |
|
>>> input = torch.tensor(180.) |
|
>>> deg2rad(input) |
|
tensor(3.1416) |
|
""" |
|
if not isinstance(tensor, torch.Tensor): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(tensor)}") |
|
|
|
return tensor * pi.to(tensor.device).type(tensor.dtype) / 180.0 |
|
|
|
|
|
def pol2cart(rho: torch.Tensor, phi: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
r"""Function that converts polar coordinates to cartesian coordinates. |
|
|
|
Args: |
|
rho: Tensor of arbitrary shape. |
|
phi: Tensor of same arbitrary shape. |
|
|
|
Returns: |
|
Tensor with same shape as input. |
|
|
|
Example: |
|
>>> rho = torch.rand(1, 3, 3) |
|
>>> phi = torch.rand(1, 3, 3) |
|
>>> x, y = pol2cart(rho, phi) |
|
""" |
|
if not (isinstance(rho, torch.Tensor) & isinstance(phi, torch.Tensor)): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(rho)}, {type(phi)}") |
|
|
|
x = rho * torch.cos(phi) |
|
y = rho * torch.sin(phi) |
|
return x, y |
|
|
|
|
|
def cart2pol(x: torch.Tensor, y: torch.Tensor, eps: float = 1.0e-8) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Function that converts cartesian coordinates to polar coordinates. |
|
|
|
Args: |
|
rho: Tensor of arbitrary shape. |
|
phi: Tensor of same arbitrary shape. |
|
eps: To avoid division by zero. |
|
|
|
Returns: |
|
Tensor with same shape as input. |
|
|
|
Example: |
|
>>> x = torch.rand(1, 3, 3) |
|
>>> y = torch.rand(1, 3, 3) |
|
>>> rho, phi = cart2pol(x, y) |
|
""" |
|
if not (isinstance(x, torch.Tensor) & isinstance(y, torch.Tensor)): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(x)}, {type(y)}") |
|
|
|
rho = torch.sqrt(x ** 2 + y ** 2 + eps) |
|
phi = torch.atan2(y, x) |
|
return rho, phi |
|
|
|
|
|
def convert_points_from_homogeneous(points: torch.Tensor, eps: float = 1e-8) -> torch.Tensor: |
|
r"""Function that converts points from homogeneous to Euclidean space. |
|
|
|
Args: |
|
points: the points to be transformed of shape :math:`(B, N, D)`. |
|
eps: to avoid division by zero. |
|
|
|
Returns: |
|
the points in Euclidean space :math:`(B, N, D-1)`. |
|
|
|
Examples: |
|
>>> input = torch.tensor([[0., 0., 1.]]) |
|
>>> convert_points_from_homogeneous(input) |
|
tensor([[0., 0.]]) |
|
""" |
|
if not isinstance(points, torch.Tensor): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(points)}") |
|
|
|
if len(points.shape) < 2: |
|
raise ValueError(f"Input must be at least a 2D tensor. Got {points.shape}") |
|
|
|
|
|
z_vec: torch.Tensor = points[..., -1:] |
|
|
|
|
|
|
|
|
|
mask: torch.Tensor = torch.abs(z_vec) > eps |
|
scale = torch.where(mask, 1.0 / (z_vec + eps), torch.ones_like(z_vec)) |
|
|
|
return scale * points[..., :-1] |
|
|
|
|
|
def convert_points_to_homogeneous(points: torch.Tensor) -> torch.Tensor: |
|
r"""Function that converts points from Euclidean to homogeneous space. |
|
|
|
Args: |
|
points: the points to be transformed with shape :math:`(B, N, D)`. |
|
|
|
Returns: |
|
the points in homogeneous coordinates :math:`(B, N, D+1)`. |
|
|
|
Examples: |
|
>>> input = torch.tensor([[0., 0.]]) |
|
>>> convert_points_to_homogeneous(input) |
|
tensor([[0., 0., 1.]]) |
|
""" |
|
if not isinstance(points, torch.Tensor): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(points)}") |
|
if len(points.shape) < 2: |
|
raise ValueError(f"Input must be at least a 2D tensor. Got {points.shape}") |
|
|
|
return torch.nn.functional.pad(points, [0, 1], "constant", 1.0) |
|
|
|
|
|
def _convert_affinematrix_to_homography_impl(A: torch.Tensor) -> torch.Tensor: |
|
H: torch.Tensor = torch.nn.functional.pad(A, [0, 0, 0, 1], "constant", value=0.0) |
|
H[..., -1, -1] += 1.0 |
|
return H |
|
|
|
|
|
def convert_affinematrix_to_homography(A: torch.Tensor) -> torch.Tensor: |
|
r"""Function that converts batch of affine matrices. |
|
|
|
Args: |
|
A: the affine matrix with shape :math:`(B,2,3)`. |
|
|
|
Returns: |
|
the homography matrix with shape of :math:`(B,3,3)`. |
|
|
|
Examples: |
|
>>> A = torch.tensor([[[1., 0., 0.], |
|
... [0., 1., 0.]]]) |
|
>>> convert_affinematrix_to_homography(A) |
|
tensor([[[1., 0., 0.], |
|
[0., 1., 0.], |
|
[0., 0., 1.]]]) |
|
""" |
|
if not isinstance(A, torch.Tensor): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(A)}") |
|
|
|
if not (len(A.shape) == 3 and A.shape[-2:] == (2, 3)): |
|
raise ValueError(f"Input matrix must be a Bx2x3 tensor. Got {A.shape}") |
|
|
|
return _convert_affinematrix_to_homography_impl(A) |
|
|
|
|
|
def convert_affinematrix_to_homography3d(A: torch.Tensor) -> torch.Tensor: |
|
r"""Function that converts batch of 3d affine matrices. |
|
|
|
Args: |
|
A: the affine matrix with shape :math:`(B,3,4)`. |
|
|
|
Returns: |
|
the homography matrix with shape of :math:`(B,4,4)`. |
|
|
|
Examples: |
|
>>> A = torch.tensor([[[1., 0., 0., 0.], |
|
... [0., 1., 0., 0.], |
|
... [0., 0., 1., 0.]]]) |
|
>>> convert_affinematrix_to_homography3d(A) |
|
tensor([[[1., 0., 0., 0.], |
|
[0., 1., 0., 0.], |
|
[0., 0., 1., 0.], |
|
[0., 0., 0., 1.]]]) |
|
""" |
|
if not isinstance(A, torch.Tensor): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(A)}") |
|
|
|
if not (len(A.shape) == 3 and A.shape[-2:] == (3, 4)): |
|
raise ValueError(f"Input matrix must be a Bx3x4 tensor. Got {A.shape}") |
|
|
|
return _convert_affinematrix_to_homography_impl(A) |
|
|
|
|
|
def angle_axis_to_rotation_matrix(angle_axis: torch.Tensor) -> torch.Tensor: |
|
r"""Convert 3d vector of axis-angle rotation to 3x3 rotation matrix. |
|
|
|
Args: |
|
angle_axis: tensor of 3d vector of axis-angle rotations in radians with shape :math:`(N, 3)`. |
|
|
|
Returns: |
|
tensor of rotation matrices of shape :math:`(N, 3, 3)`. |
|
|
|
Example: |
|
>>> input = torch.tensor([[0., 0., 0.]]) |
|
>>> angle_axis_to_rotation_matrix(input) |
|
tensor([[[1., 0., 0.], |
|
[0., 1., 0.], |
|
[0., 0., 1.]]]) |
|
|
|
>>> input = torch.tensor([[1.5708, 0., 0.]]) |
|
>>> angle_axis_to_rotation_matrix(input) |
|
tensor([[[ 1.0000e+00, 0.0000e+00, 0.0000e+00], |
|
[ 0.0000e+00, -3.6200e-06, -1.0000e+00], |
|
[ 0.0000e+00, 1.0000e+00, -3.6200e-06]]]) |
|
""" |
|
if not isinstance(angle_axis, torch.Tensor): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(angle_axis)}") |
|
|
|
if not angle_axis.shape[-1] == 3: |
|
raise ValueError(f"Input size must be a (*, 3) tensor. Got {angle_axis.shape}") |
|
|
|
def _compute_rotation_matrix(angle_axis, theta2, eps=1e-6): |
|
|
|
|
|
|
|
k_one = 1.0 |
|
theta = torch.sqrt(theta2) |
|
wxyz = angle_axis / (theta + eps) |
|
wx, wy, wz = torch.chunk(wxyz, 3, dim=1) |
|
cos_theta = torch.cos(theta) |
|
sin_theta = torch.sin(theta) |
|
|
|
r00 = cos_theta + wx * wx * (k_one - cos_theta) |
|
r10 = wz * sin_theta + wx * wy * (k_one - cos_theta) |
|
r20 = -wy * sin_theta + wx * wz * (k_one - cos_theta) |
|
r01 = wx * wy * (k_one - cos_theta) - wz * sin_theta |
|
r11 = cos_theta + wy * wy * (k_one - cos_theta) |
|
r21 = wx * sin_theta + wy * wz * (k_one - cos_theta) |
|
r02 = wy * sin_theta + wx * wz * (k_one - cos_theta) |
|
r12 = -wx * sin_theta + wy * wz * (k_one - cos_theta) |
|
r22 = cos_theta + wz * wz * (k_one - cos_theta) |
|
rotation_matrix = torch.cat([r00, r01, r02, r10, r11, r12, r20, r21, r22], dim=1) |
|
return rotation_matrix.view(-1, 3, 3) |
|
|
|
def _compute_rotation_matrix_taylor(angle_axis): |
|
rx, ry, rz = torch.chunk(angle_axis, 3, dim=1) |
|
k_one = torch.ones_like(rx) |
|
rotation_matrix = torch.cat([k_one, -rz, ry, rz, k_one, -rx, -ry, rx, k_one], dim=1) |
|
return rotation_matrix.view(-1, 3, 3) |
|
|
|
|
|
|
|
_angle_axis = torch.unsqueeze(angle_axis, dim=1) |
|
theta2 = torch.matmul(_angle_axis, _angle_axis.transpose(1, 2)) |
|
theta2 = torch.squeeze(theta2, dim=1) |
|
|
|
|
|
rotation_matrix_normal = _compute_rotation_matrix(angle_axis, theta2) |
|
rotation_matrix_taylor = _compute_rotation_matrix_taylor(angle_axis) |
|
|
|
|
|
eps = 1e-6 |
|
mask = (theta2 > eps).view(-1, 1, 1).to(theta2.device) |
|
mask_pos = (mask).type_as(theta2) |
|
mask_neg = (~mask).type_as(theta2) |
|
|
|
|
|
batch_size = angle_axis.shape[0] |
|
rotation_matrix = torch.eye(3).to(angle_axis.device).type_as(angle_axis) |
|
rotation_matrix = rotation_matrix.view(1, 3, 3).repeat(batch_size, 1, 1) |
|
|
|
rotation_matrix[..., :3, :3] = mask_pos * rotation_matrix_normal + mask_neg * rotation_matrix_taylor |
|
return rotation_matrix |
|
|
|
|
|
def rotation_matrix_to_angle_axis(rotation_matrix: torch.Tensor) -> torch.Tensor: |
|
r"""Convert 3x3 rotation matrix to Rodrigues vector in radians. |
|
|
|
Args: |
|
rotation_matrix: rotation matrix of shape :math:`(N, 3, 3)`. |
|
|
|
Returns: |
|
Rodrigues vector transformation of shape :math:`(N, 3)`. |
|
|
|
Example: |
|
>>> input = torch.tensor([[1., 0., 0.], |
|
... [0., 1., 0.], |
|
... [0., 0., 1.]]) |
|
>>> rotation_matrix_to_angle_axis(input) |
|
tensor([0., 0., 0.]) |
|
|
|
>>> input = torch.tensor([[1., 0., 0.], |
|
... [0., 0., -1.], |
|
... [0., 1., 0.]]) |
|
>>> rotation_matrix_to_angle_axis(input) |
|
tensor([1.5708, 0.0000, 0.0000]) |
|
""" |
|
if not isinstance(rotation_matrix, torch.Tensor): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(rotation_matrix)}") |
|
|
|
if not rotation_matrix.shape[-2:] == (3, 3): |
|
raise ValueError(f"Input size must be a (*, 3, 3) tensor. Got {rotation_matrix.shape}") |
|
quaternion: torch.Tensor = rotation_matrix_to_quaternion(rotation_matrix, order=QuaternionCoeffOrder.WXYZ) |
|
return quaternion_to_angle_axis(quaternion, order=QuaternionCoeffOrder.WXYZ) |
|
|
|
|
|
def rotation_matrix_to_quaternion( |
|
rotation_matrix: torch.Tensor, eps: float = 1.0e-8, order: QuaternionCoeffOrder = QuaternionCoeffOrder.XYZW |
|
) -> torch.Tensor: |
|
r"""Convert 3x3 rotation matrix to 4d quaternion vector. |
|
|
|
The quaternion vector has components in (w, x, y, z) or (x, y, z, w) format. |
|
|
|
.. note:: |
|
The (x, y, z, w) order is going to be deprecated in favor of efficiency. |
|
|
|
Args: |
|
rotation_matrix: the rotation matrix to convert with shape :math:`(*, 3, 3)`. |
|
eps: small value to avoid zero division. |
|
order: quaternion coefficient order. Note: 'xyzw' will be deprecated in favor of 'wxyz'. |
|
|
|
Return: |
|
the rotation in quaternion with shape :math:`(*, 4)`. |
|
|
|
Example: |
|
>>> input = torch.tensor([[1., 0., 0.], |
|
... [0., 1., 0.], |
|
... [0., 0., 1.]]) |
|
>>> rotation_matrix_to_quaternion(input, eps=torch.finfo(input.dtype).eps, |
|
... order=QuaternionCoeffOrder.WXYZ) |
|
tensor([1., 0., 0., 0.]) |
|
""" |
|
if not isinstance(rotation_matrix, torch.Tensor): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(rotation_matrix)}") |
|
|
|
if not rotation_matrix.shape[-2:] == (3, 3): |
|
raise ValueError(f"Input size must be a (*, 3, 3) tensor. Got {rotation_matrix.shape}") |
|
|
|
if not torch.jit.is_scripting(): |
|
if order.name not in QuaternionCoeffOrder.__members__.keys(): |
|
raise ValueError(f"order must be one of {QuaternionCoeffOrder.__members__.keys()}") |
|
|
|
if order == QuaternionCoeffOrder.XYZW: |
|
warnings.warn( |
|
"`XYZW` quaternion coefficient order is deprecated and" |
|
" will be removed after > 0.6. " |
|
"Please use `QuaternionCoeffOrder.WXYZ` instead." |
|
) |
|
|
|
def safe_zero_division(numerator: torch.Tensor, denominator: torch.Tensor) -> torch.Tensor: |
|
eps: float = torch.finfo(numerator.dtype).tiny |
|
return numerator / torch.clamp(denominator, min=eps) |
|
|
|
rotation_matrix_vec: torch.Tensor = rotation_matrix.view(*rotation_matrix.shape[:-2], 9) |
|
|
|
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.chunk(rotation_matrix_vec, chunks=9, dim=-1) |
|
|
|
trace: torch.Tensor = m00 + m11 + m22 |
|
|
|
def trace_positive_cond(): |
|
sq = torch.sqrt(trace + 1.0) * 2.0 |
|
qw = 0.25 * sq |
|
qx = safe_zero_division(m21 - m12, sq) |
|
qy = safe_zero_division(m02 - m20, sq) |
|
qz = safe_zero_division(m10 - m01, sq) |
|
if order == QuaternionCoeffOrder.XYZW: |
|
return torch.cat((qx, qy, qz, qw), dim=-1) |
|
return torch.cat((qw, qx, qy, qz), dim=-1) |
|
|
|
def cond_1(): |
|
sq = torch.sqrt(1.0 + m00 - m11 - m22 + eps) * 2.0 |
|
qw = safe_zero_division(m21 - m12, sq) |
|
qx = 0.25 * sq |
|
qy = safe_zero_division(m01 + m10, sq) |
|
qz = safe_zero_division(m02 + m20, sq) |
|
if order == QuaternionCoeffOrder.XYZW: |
|
return torch.cat((qx, qy, qz, qw), dim=-1) |
|
return torch.cat((qw, qx, qy, qz), dim=-1) |
|
|
|
def cond_2(): |
|
sq = torch.sqrt(1.0 + m11 - m00 - m22 + eps) * 2.0 |
|
qw = safe_zero_division(m02 - m20, sq) |
|
qx = safe_zero_division(m01 + m10, sq) |
|
qy = 0.25 * sq |
|
qz = safe_zero_division(m12 + m21, sq) |
|
if order == QuaternionCoeffOrder.XYZW: |
|
return torch.cat((qx, qy, qz, qw), dim=-1) |
|
return torch.cat((qw, qx, qy, qz), dim=-1) |
|
|
|
def cond_3(): |
|
sq = torch.sqrt(1.0 + m22 - m00 - m11 + eps) * 2.0 |
|
qw = safe_zero_division(m10 - m01, sq) |
|
qx = safe_zero_division(m02 + m20, sq) |
|
qy = safe_zero_division(m12 + m21, sq) |
|
qz = 0.25 * sq |
|
if order == QuaternionCoeffOrder.XYZW: |
|
return torch.cat((qx, qy, qz, qw), dim=-1) |
|
return torch.cat((qw, qx, qy, qz), dim=-1) |
|
|
|
where_2 = torch.where(m11 > m22, cond_2(), cond_3()) |
|
where_1 = torch.where((m00 > m11) & (m00 > m22), cond_1(), where_2) |
|
|
|
quaternion: torch.Tensor = torch.where(trace > 0.0, trace_positive_cond(), where_1) |
|
return quaternion |
|
|
|
|
|
def normalize_quaternion(quaternion: torch.Tensor, eps: float = 1.0e-12) -> torch.Tensor: |
|
r"""Normalize a quaternion. |
|
|
|
The quaternion should be in (x, y, z, w) or (w, x, y, z) format. |
|
|
|
Args: |
|
quaternion: a tensor containing a quaternion to be normalized. |
|
The tensor can be of shape :math:`(*, 4)`. |
|
eps: small value to avoid division by zero. |
|
|
|
Return: |
|
the normalized quaternion of shape :math:`(*, 4)`. |
|
|
|
Example: |
|
>>> quaternion = torch.tensor((1., 0., 1., 0.)) |
|
>>> normalize_quaternion(quaternion) |
|
tensor([0.7071, 0.0000, 0.7071, 0.0000]) |
|
""" |
|
if not isinstance(quaternion, torch.Tensor): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(quaternion)}") |
|
|
|
if not quaternion.shape[-1] == 4: |
|
raise ValueError(f"Input must be a tensor of shape (*, 4). Got {quaternion.shape}") |
|
return F.normalize(quaternion, p=2.0, dim=-1, eps=eps) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def quaternion_to_rotation_matrix( |
|
quaternion: torch.Tensor, order: QuaternionCoeffOrder = QuaternionCoeffOrder.XYZW |
|
) -> torch.Tensor: |
|
r"""Convert a quaternion to a rotation matrix. |
|
|
|
The quaternion should be in (x, y, z, w) or (w, x, y, z) format. |
|
|
|
Args: |
|
quaternion: a tensor containing a quaternion to be converted. |
|
The tensor can be of shape :math:`(*, 4)`. |
|
order: quaternion coefficient order. Note: 'xyzw' will be deprecated in favor of 'wxyz'. |
|
|
|
Return: |
|
the rotation matrix of shape :math:`(*, 3, 3)`. |
|
|
|
Example: |
|
>>> quaternion = torch.tensor((0., 0., 0., 1.)) |
|
>>> quaternion_to_rotation_matrix(quaternion, order=QuaternionCoeffOrder.WXYZ) |
|
tensor([[-1., 0., 0.], |
|
[ 0., -1., 0.], |
|
[ 0., 0., 1.]]) |
|
""" |
|
if not isinstance(quaternion, torch.Tensor): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(quaternion)}") |
|
|
|
if not quaternion.shape[-1] == 4: |
|
raise ValueError(f"Input must be a tensor of shape (*, 4). Got {quaternion.shape}") |
|
|
|
if not torch.jit.is_scripting(): |
|
if order.name not in QuaternionCoeffOrder.__members__.keys(): |
|
raise ValueError(f"order must be one of {QuaternionCoeffOrder.__members__.keys()}") |
|
|
|
if order == QuaternionCoeffOrder.XYZW: |
|
warnings.warn( |
|
"`XYZW` quaternion coefficient order is deprecated and" |
|
" will be removed after > 0.6. " |
|
"Please use `QuaternionCoeffOrder.WXYZ` instead." |
|
) |
|
|
|
|
|
quaternion_norm: torch.Tensor = normalize_quaternion(quaternion) |
|
|
|
|
|
if order == QuaternionCoeffOrder.XYZW: |
|
x, y, z, w = torch.chunk(quaternion_norm, chunks=4, dim=-1) |
|
else: |
|
w, x, y, z = torch.chunk(quaternion_norm, chunks=4, dim=-1) |
|
|
|
|
|
tx: torch.Tensor = 2.0 * x |
|
ty: torch.Tensor = 2.0 * y |
|
tz: torch.Tensor = 2.0 * z |
|
twx: torch.Tensor = tx * w |
|
twy: torch.Tensor = ty * w |
|
twz: torch.Tensor = tz * w |
|
txx: torch.Tensor = tx * x |
|
txy: torch.Tensor = ty * x |
|
txz: torch.Tensor = tz * x |
|
tyy: torch.Tensor = ty * y |
|
tyz: torch.Tensor = tz * y |
|
tzz: torch.Tensor = tz * z |
|
one: torch.Tensor = torch.tensor(1.0) |
|
|
|
matrix: torch.Tensor = torch.stack( |
|
( |
|
one - (tyy + tzz), |
|
txy - twz, |
|
txz + twy, |
|
txy + twz, |
|
one - (txx + tzz), |
|
tyz - twx, |
|
txz - twy, |
|
tyz + twx, |
|
one - (txx + tyy), |
|
), |
|
dim=-1, |
|
).view(-1, 3, 3) |
|
|
|
if len(quaternion.shape) == 1: |
|
matrix = torch.squeeze(matrix, dim=0) |
|
return matrix |
|
|
|
|
|
def quaternion_to_angle_axis( |
|
quaternion: torch.Tensor, order: QuaternionCoeffOrder = QuaternionCoeffOrder.XYZW |
|
) -> torch.Tensor: |
|
"""Convert quaternion vector to angle axis of rotation in radians. |
|
|
|
The quaternion should be in (x, y, z, w) or (w, x, y, z) format. |
|
|
|
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h |
|
|
|
Args: |
|
quaternion: tensor with quaternions. |
|
order: quaternion coefficient order. Note: 'xyzw' will be deprecated in favor of 'wxyz'. |
|
|
|
Return: |
|
tensor with angle axis of rotation. |
|
|
|
Shape: |
|
- Input: :math:`(*, 4)` where `*` means, any number of dimensions |
|
- Output: :math:`(*, 3)` |
|
|
|
Example: |
|
>>> quaternion = torch.tensor((1., 0., 0., 0.)) |
|
>>> quaternion_to_angle_axis(quaternion) |
|
tensor([3.1416, 0.0000, 0.0000]) |
|
""" |
|
if not torch.is_tensor(quaternion): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(quaternion)}") |
|
|
|
if not quaternion.shape[-1] == 4: |
|
raise ValueError(f"Input must be a tensor of shape Nx4 or 4. Got {quaternion.shape}") |
|
|
|
if not torch.jit.is_scripting(): |
|
if order.name not in QuaternionCoeffOrder.__members__.keys(): |
|
raise ValueError(f"order must be one of {QuaternionCoeffOrder.__members__.keys()}") |
|
|
|
if order == QuaternionCoeffOrder.XYZW: |
|
warnings.warn( |
|
"`XYZW` quaternion coefficient order is deprecated and" |
|
" will be removed after > 0.6. " |
|
"Please use `QuaternionCoeffOrder.WXYZ` instead." |
|
) |
|
|
|
q1: torch.Tensor = torch.tensor([]) |
|
q2: torch.Tensor = torch.tensor([]) |
|
q3: torch.Tensor = torch.tensor([]) |
|
cos_theta: torch.Tensor = torch.tensor([]) |
|
|
|
if order == QuaternionCoeffOrder.XYZW: |
|
q1 = quaternion[..., 0] |
|
q2 = quaternion[..., 1] |
|
q3 = quaternion[..., 2] |
|
cos_theta = quaternion[..., 3] |
|
else: |
|
cos_theta = quaternion[..., 0] |
|
q1 = quaternion[..., 1] |
|
q2 = quaternion[..., 2] |
|
q3 = quaternion[..., 3] |
|
|
|
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 |
|
|
|
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) |
|
two_theta: torch.Tensor = 2.0 * torch.where( |
|
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), torch.atan2(sin_theta, cos_theta) |
|
) |
|
|
|
k_pos: torch.Tensor = two_theta / sin_theta |
|
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) |
|
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) |
|
|
|
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] |
|
angle_axis[..., 0] += q1 * k |
|
angle_axis[..., 1] += q2 * k |
|
angle_axis[..., 2] += q3 * k |
|
return angle_axis |
|
|
|
|
|
def quaternion_log_to_exp( |
|
quaternion: torch.Tensor, eps: float = 1.0e-8, order: QuaternionCoeffOrder = QuaternionCoeffOrder.XYZW |
|
) -> torch.Tensor: |
|
r"""Apply exponential map to log quaternion. |
|
|
|
The quaternion should be in (x, y, z, w) or (w, x, y, z) format. |
|
|
|
Args: |
|
quaternion: a tensor containing a quaternion to be converted. |
|
The tensor can be of shape :math:`(*, 3)`. |
|
eps: a small number for clamping. |
|
order: quaternion coefficient order. Note: 'xyzw' will be deprecated in favor of 'wxyz'. |
|
|
|
Return: |
|
the quaternion exponential map of shape :math:`(*, 4)`. |
|
|
|
Example: |
|
>>> quaternion = torch.tensor((0., 0., 0.)) |
|
>>> quaternion_log_to_exp(quaternion, eps=torch.finfo(quaternion.dtype).eps, |
|
... order=QuaternionCoeffOrder.WXYZ) |
|
tensor([1., 0., 0., 0.]) |
|
""" |
|
if not isinstance(quaternion, torch.Tensor): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(quaternion)}") |
|
|
|
if not quaternion.shape[-1] == 3: |
|
raise ValueError(f"Input must be a tensor of shape (*, 3). Got {quaternion.shape}") |
|
|
|
if not torch.jit.is_scripting(): |
|
if order.name not in QuaternionCoeffOrder.__members__.keys(): |
|
raise ValueError(f"order must be one of {QuaternionCoeffOrder.__members__.keys()}") |
|
|
|
if order == QuaternionCoeffOrder.XYZW: |
|
warnings.warn( |
|
"`XYZW` quaternion coefficient order is deprecated and" |
|
" will be removed after > 0.6. " |
|
"Please use `QuaternionCoeffOrder.WXYZ` instead." |
|
) |
|
|
|
|
|
norm_q: torch.Tensor = torch.norm(quaternion, p=2, dim=-1, keepdim=True).clamp(min=eps) |
|
|
|
|
|
quaternion_vector: torch.Tensor = quaternion * torch.sin(norm_q) / norm_q |
|
quaternion_scalar: torch.Tensor = torch.cos(norm_q) |
|
|
|
|
|
quaternion_exp: torch.Tensor = torch.tensor([]) |
|
if order == QuaternionCoeffOrder.XYZW: |
|
quaternion_exp = torch.cat((quaternion_vector, quaternion_scalar), dim=-1) |
|
else: |
|
quaternion_exp = torch.cat((quaternion_scalar, quaternion_vector), dim=-1) |
|
|
|
return quaternion_exp |
|
|
|
|
|
def quaternion_exp_to_log( |
|
quaternion: torch.Tensor, eps: float = 1.0e-8, order: QuaternionCoeffOrder = QuaternionCoeffOrder.XYZW |
|
) -> torch.Tensor: |
|
r"""Apply the log map to a quaternion. |
|
|
|
The quaternion should be in (x, y, z, w) format. |
|
|
|
Args: |
|
quaternion: a tensor containing a quaternion to be converted. |
|
The tensor can be of shape :math:`(*, 4)`. |
|
eps: a small number for clamping. |
|
order: quaternion coefficient order. Note: 'xyzw' will be deprecated in favor of 'wxyz'. |
|
|
|
Return: |
|
the quaternion log map of shape :math:`(*, 3)`. |
|
|
|
Example: |
|
>>> quaternion = torch.tensor((1., 0., 0., 0.)) |
|
>>> quaternion_exp_to_log(quaternion, eps=torch.finfo(quaternion.dtype).eps, |
|
... order=QuaternionCoeffOrder.WXYZ) |
|
tensor([0., 0., 0.]) |
|
""" |
|
if not isinstance(quaternion, torch.Tensor): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(quaternion)}") |
|
|
|
if not quaternion.shape[-1] == 4: |
|
raise ValueError(f"Input must be a tensor of shape (*, 4). Got {quaternion.shape}") |
|
|
|
if not torch.jit.is_scripting(): |
|
if order.name not in QuaternionCoeffOrder.__members__.keys(): |
|
raise ValueError(f"order must be one of {QuaternionCoeffOrder.__members__.keys()}") |
|
|
|
if order == QuaternionCoeffOrder.XYZW: |
|
warnings.warn( |
|
"`XYZW` quaternion coefficient order is deprecated and" |
|
" will be removed after > 0.6. " |
|
"Please use `QuaternionCoeffOrder.WXYZ` instead." |
|
) |
|
|
|
|
|
quaternion_vector: torch.Tensor = torch.tensor([]) |
|
quaternion_scalar: torch.Tensor = torch.tensor([]) |
|
|
|
if order == QuaternionCoeffOrder.XYZW: |
|
quaternion_vector = quaternion[..., 0:3] |
|
quaternion_scalar = quaternion[..., 3:4] |
|
else: |
|
quaternion_scalar = quaternion[..., 0:1] |
|
quaternion_vector = quaternion[..., 1:4] |
|
|
|
|
|
norm_q: torch.Tensor = torch.norm(quaternion_vector, p=2, dim=-1, keepdim=True).clamp(min=eps) |
|
|
|
|
|
quaternion_log: torch.Tensor = ( |
|
quaternion_vector * torch.acos(torch.clamp(quaternion_scalar, min=-1.0, max=1.0)) / norm_q |
|
) |
|
|
|
return quaternion_log |
|
|
|
|
|
|
|
|
|
|
|
|
|
def angle_axis_to_quaternion( |
|
angle_axis: torch.Tensor, order: QuaternionCoeffOrder = QuaternionCoeffOrder.XYZW |
|
) -> torch.Tensor: |
|
r"""Convert an angle axis to a quaternion. |
|
|
|
The quaternion vector has components in (x, y, z, w) or (w, x, y, z) format. |
|
|
|
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h |
|
|
|
Args: |
|
angle_axis: tensor with angle axis in radians. |
|
order: quaternion coefficient order. Note: 'xyzw' will be deprecated in favor of 'wxyz'. |
|
|
|
Return: |
|
tensor with quaternion. |
|
|
|
Shape: |
|
- Input: :math:`(*, 3)` where `*` means, any number of dimensions |
|
- Output: :math:`(*, 4)` |
|
|
|
Example: |
|
>>> angle_axis = torch.tensor((0., 1., 0.)) |
|
>>> angle_axis_to_quaternion(angle_axis, order=QuaternionCoeffOrder.WXYZ) |
|
tensor([0.8776, 0.0000, 0.4794, 0.0000]) |
|
""" |
|
if not torch.is_tensor(angle_axis): |
|
raise TypeError(f"Input type is not a torch.Tensor. Got {type(angle_axis)}") |
|
|
|
if not angle_axis.shape[-1] == 3: |
|
raise ValueError(f"Input must be a tensor of shape Nx3 or 3. Got {angle_axis.shape}") |
|
|
|
if not torch.jit.is_scripting(): |
|
if order.name not in QuaternionCoeffOrder.__members__.keys(): |
|
raise ValueError(f"order must be one of {QuaternionCoeffOrder.__members__.keys()}") |
|
|
|
if order == QuaternionCoeffOrder.XYZW: |
|
warnings.warn( |
|
"`XYZW` quaternion coefficient order is deprecated and" |
|
" will be removed after > 0.6. " |
|
"Please use `QuaternionCoeffOrder.WXYZ` instead." |
|
) |
|
|
|
|
|
a0: torch.Tensor = angle_axis[..., 0:1] |
|
a1: torch.Tensor = angle_axis[..., 1:2] |
|
a2: torch.Tensor = angle_axis[..., 2:3] |
|
theta_squared: torch.Tensor = a0 * a0 + a1 * a1 + a2 * a2 |
|
|
|
theta: torch.Tensor = torch.sqrt(theta_squared) |
|
half_theta: torch.Tensor = theta * 0.5 |
|
|
|
mask: torch.Tensor = theta_squared > 0.0 |
|
ones: torch.Tensor = torch.ones_like(half_theta) |
|
|
|
k_neg: torch.Tensor = 0.5 * ones |
|
k_pos: torch.Tensor = torch.sin(half_theta) / theta |
|
k: torch.Tensor = torch.where(mask, k_pos, k_neg) |
|
w: torch.Tensor = torch.where(mask, torch.cos(half_theta), ones) |
|
|
|
quaternion: torch.Tensor = torch.zeros( |
|
size=(*angle_axis.shape[:-1], 4), dtype=angle_axis.dtype, device=angle_axis.device |
|
) |
|
if order == QuaternionCoeffOrder.XYZW: |
|
quaternion[..., 0:1] = a0 * k |
|
quaternion[..., 1:2] = a1 * k |
|
quaternion[..., 2:3] = a2 * k |
|
quaternion[..., 3:4] = w |
|
else: |
|
quaternion[..., 1:2] = a0 * k |
|
quaternion[..., 2:3] = a1 * k |
|
quaternion[..., 3:4] = a2 * k |
|
quaternion[..., 0:1] = w |
|
return quaternion |
|
|
|
|
|
|
|
|
|
|
|
|
|
def normalize_pixel_coordinates( |
|
pixel_coordinates: torch.Tensor, height: int, width: int, eps: float = 1e-8 |
|
) -> torch.Tensor: |
|
r"""Normalize pixel coordinates between -1 and 1. |
|
|
|
Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1). |
|
|
|
Args: |
|
pixel_coordinates: the grid with pixel coordinates. Shape can be :math:`(*, 2)`. |
|
width: the maximum width in the x-axis. |
|
height: the maximum height in the y-axis. |
|
eps: safe division by zero. |
|
|
|
Return: |
|
the normalized pixel coordinates with shape :math:`(*, 2)`. |
|
|
|
Examples: |
|
>>> coords = torch.tensor([[50., 100.]]) |
|
>>> normalize_pixel_coordinates(coords, 100, 50) |
|
tensor([[1.0408, 1.0202]]) |
|
""" |
|
if pixel_coordinates.shape[-1] != 2: |
|
raise ValueError("Input pixel_coordinates must be of shape (*, 2). " "Got {}".format(pixel_coordinates.shape)) |
|
|
|
|
|
hw: torch.Tensor = torch.stack( |
|
[ |
|
torch.tensor(width, device=pixel_coordinates.device, dtype=pixel_coordinates.dtype), |
|
torch.tensor(height, device=pixel_coordinates.device, dtype=pixel_coordinates.dtype), |
|
] |
|
) |
|
|
|
factor: torch.Tensor = torch.tensor(2.0, device=pixel_coordinates.device, dtype=pixel_coordinates.dtype) / ( |
|
hw - 1 |
|
).clamp(eps) |
|
|
|
return factor * pixel_coordinates - 1 |
|
|
|
|
|
def denormalize_pixel_coordinates( |
|
pixel_coordinates: torch.Tensor, height: int, width: int, eps: float = 1e-8 |
|
) -> torch.Tensor: |
|
r"""Denormalize pixel coordinates. |
|
|
|
The input is assumed to be -1 if on extreme left, 1 if on extreme right (x = w-1). |
|
|
|
Args: |
|
pixel_coordinates: the normalized grid coordinates. Shape can be :math:`(*, 2)`. |
|
width: the maximum width in the x-axis. |
|
height: the maximum height in the y-axis. |
|
eps: safe division by zero. |
|
|
|
Return: |
|
the denormalized pixel coordinates with shape :math:`(*, 2)`. |
|
|
|
Examples: |
|
>>> coords = torch.tensor([[-1., -1.]]) |
|
>>> denormalize_pixel_coordinates(coords, 100, 50) |
|
tensor([[0., 0.]]) |
|
""" |
|
if pixel_coordinates.shape[-1] != 2: |
|
raise ValueError("Input pixel_coordinates must be of shape (*, 2). " "Got {}".format(pixel_coordinates.shape)) |
|
|
|
hw: torch.Tensor = ( |
|
torch.stack([torch.tensor(width), torch.tensor(height)]) |
|
.to(pixel_coordinates.device) |
|
.to(pixel_coordinates.dtype) |
|
) |
|
|
|
factor: torch.Tensor = torch.tensor(2.0) / (hw - 1).clamp(eps) |
|
|
|
return torch.tensor(1.0) / factor * (pixel_coordinates + 1) |
|
|
|
|
|
def normalize_pixel_coordinates3d( |
|
pixel_coordinates: torch.Tensor, depth: int, height: int, width: int, eps: float = 1e-8 |
|
) -> torch.Tensor: |
|
r"""Normalize pixel coordinates between -1 and 1. |
|
|
|
Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1). |
|
|
|
Args: |
|
pixel_coordinates: the grid with pixel coordinates. Shape can be :math:`(*, 3)`. |
|
depth: the maximum depth in the z-axis. |
|
height: the maximum height in the y-axis. |
|
width: the maximum width in the x-axis. |
|
eps: safe division by zero. |
|
|
|
Return: |
|
the normalized pixel coordinates. |
|
""" |
|
if pixel_coordinates.shape[-1] != 3: |
|
raise ValueError("Input pixel_coordinates must be of shape (*, 3). " "Got {}".format(pixel_coordinates.shape)) |
|
|
|
dhw: torch.Tensor = ( |
|
torch.stack([torch.tensor(depth), torch.tensor(width), torch.tensor(height)]) |
|
.to(pixel_coordinates.device) |
|
.to(pixel_coordinates.dtype) |
|
) |
|
|
|
factor: torch.Tensor = torch.tensor(2.0) / (dhw - 1).clamp(eps) |
|
|
|
return factor * pixel_coordinates - 1 |
|
|
|
|
|
def denormalize_pixel_coordinates3d( |
|
pixel_coordinates: torch.Tensor, depth: int, height: int, width: int, eps: float = 1e-8 |
|
) -> torch.Tensor: |
|
r"""Denormalize pixel coordinates. |
|
|
|
The input is assumed to be -1 if on extreme left, 1 if on extreme right (x = w-1). |
|
|
|
Args: |
|
pixel_coordinates: the normalized grid coordinates. Shape can be :math:`(*, 3)`. |
|
depth: the maximum depth in the x-axis. |
|
height: the maximum height in the y-axis. |
|
width: the maximum width in the x-axis. |
|
eps: safe division by zero. |
|
|
|
Return: |
|
the denormalized pixel coordinates. |
|
""" |
|
if pixel_coordinates.shape[-1] != 3: |
|
raise ValueError("Input pixel_coordinates must be of shape (*, 3). " "Got {}".format(pixel_coordinates.shape)) |
|
|
|
dhw: torch.Tensor = ( |
|
torch.stack([torch.tensor(depth), torch.tensor(width), torch.tensor(height)]) |
|
.to(pixel_coordinates.device) |
|
.to(pixel_coordinates.dtype) |
|
) |
|
|
|
factor: torch.Tensor = torch.tensor(2.0) / (dhw - 1).clamp(eps) |
|
|
|
return torch.tensor(1.0) / factor * (pixel_coordinates + 1) |
|
|
|
|
|
def angle_to_rotation_matrix(angle: torch.Tensor) -> torch.Tensor: |
|
r"""Create a rotation matrix out of angles in degrees. |
|
|
|
Args: |
|
angle: tensor of angles in degrees, any shape. |
|
|
|
Returns: |
|
tensor of *x2x2 rotation matrices. |
|
|
|
Shape: |
|
- Input: :math:`(*)` |
|
- Output: :math:`(*, 2, 2)` |
|
|
|
Example: |
|
>>> input = torch.rand(1, 3) # Nx3 |
|
>>> output = angle_to_rotation_matrix(input) # Nx3x2x2 |
|
""" |
|
ang_rad = deg2rad(angle) |
|
cos_a: torch.Tensor = torch.cos(ang_rad) |
|
sin_a: torch.Tensor = torch.sin(ang_rad) |
|
return torch.stack([cos_a, sin_a, -sin_a, cos_a], dim=-1).view(*angle.shape, 2, 2) |
|
|