|
from typing import Dict, List, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from kornia.color import rgb_to_grayscale |
|
from kornia.feature import LocalFeatureMatcher, LoFTR |
|
from kornia.geometry.homography import find_homography_dlt_iterated |
|
from kornia.geometry.ransac import RANSAC |
|
from kornia.geometry.transform import warp_perspective |
|
|
|
|
|
class ImageStitcher(nn.Module): |
|
"""Stitch two images with overlapping fields of view. |
|
|
|
Args: |
|
matcher: image feature matching module. |
|
estimator: method to compute homography, either "vanilla" or "ransac". |
|
"ransac" is slower with a better accuracy. |
|
blending_method: method to blend two images together. |
|
Only "naive" is currently supported. |
|
|
|
Note: |
|
Current implementation requires strict image ordering from left to right. |
|
|
|
.. code-block:: python |
|
|
|
IS = ImageStitcher(KF.LoFTR(pretrained='outdoor'), estimator='ransac').cuda() |
|
# Compute the stitched result with less GPU memory cost. |
|
with torch.inference_mode(): |
|
out = IS(img_left, img_right) |
|
# Show the result |
|
plt.imshow(K.tensor_to_image(out)) |
|
""" |
|
|
|
def __init__( |
|
self, matcher: nn.Module, estimator: str = 'ransac', blending_method: str = "naive", |
|
) -> None: |
|
super().__init__() |
|
self.matcher = matcher |
|
self.estimator = estimator |
|
self.blending_method = blending_method |
|
if estimator not in ['ransac', 'vanilla']: |
|
raise NotImplementedError(f"Unsupported estimator {estimator}. Use ‘ransac’ or ‘vanilla’ instead.") |
|
if estimator == "ransac": |
|
self.ransac = RANSAC('homography') |
|
|
|
def _estimate_homography(self, keypoints1: torch.Tensor, keypoints2: torch.Tensor) -> torch.Tensor: |
|
"""Estimate homography by the matched keypoints. |
|
|
|
Args: |
|
keypoints1: matched keypoint set from an image, shaped as :math:`(N, 2)`. |
|
keypoints2: matched keypoint set from the other image, shaped as :math:`(N, 2)`. |
|
""" |
|
homo: torch.Tensor |
|
if self.estimator == "vanilla": |
|
homo = find_homography_dlt_iterated( |
|
keypoints2[None], |
|
keypoints1[None], |
|
torch.ones_like(keypoints1[None, :, 0]) |
|
) |
|
elif self.estimator == "ransac": |
|
homo, _ = self.ransac(keypoints2, keypoints1) |
|
homo = homo[None] |
|
else: |
|
raise NotImplementedError(f"Unsupported estimator {self.estimator}. Use ‘ransac’ or ‘vanilla’ instead.") |
|
return homo |
|
|
|
def estimate_transform(self, **kwargs) -> torch.Tensor: |
|
"""Compute the corresponding homography.""" |
|
homos: List[torch.Tensor] = [] |
|
kp1, kp2, idx = kwargs['keypoints0'], kwargs['keypoints1'], kwargs['batch_indexes'] |
|
for i in range(len(idx.unique())): |
|
homos.append(self._estimate_homography(kp1[idx == i], kp2[idx == i])) |
|
if len(homos) == 0: |
|
raise RuntimeError("Compute homography failed. No matched keypoints found.") |
|
return torch.cat(homos) |
|
|
|
def blend_image(self, src_img: torch.Tensor, dst_img: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: |
|
"""Blend two images together.""" |
|
out: torch.Tensor |
|
if self.blending_method == "naive": |
|
out = torch.where(mask == 1, src_img, dst_img) |
|
else: |
|
raise NotImplementedError(f"Unsupported blending method {self.blending_method}. Use ‘naive’.") |
|
return out |
|
|
|
def preprocess(self, image_1: torch.Tensor, image_2: torch.Tensor) -> Dict[str, torch.Tensor]: |
|
"""Preprocess input to the required format.""" |
|
|
|
if isinstance(self.matcher, LoFTR) or isinstance(self.matcher, LocalFeatureMatcher): |
|
input_dict: Dict[str, torch.Tensor] = { |
|
"image0": rgb_to_grayscale(image_1), |
|
"image1": rgb_to_grayscale(image_2) |
|
} |
|
else: |
|
raise NotImplementedError(f"The preprocessor for {self.matcher} has not been implemented.") |
|
return input_dict |
|
|
|
def postprocess(self, image: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: |
|
|
|
mask_: torch.Tensor = mask.sum((0, 1)) |
|
index: int = int(mask_.bool().any(0).long().argmin().item()) |
|
if index == 0: |
|
return image |
|
return image[..., :index] |
|
|
|
def on_matcher(self, data) -> dict: |
|
return self.matcher(data) |
|
|
|
def stitch_pair( |
|
self, images_left: torch.Tensor, images_right: torch.Tensor, |
|
mask_left: Optional[torch.Tensor] = None, mask_right: Optional[torch.Tensor] = None |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
input_dict: Dict[str, torch.Tensor] = self.preprocess(images_left, images_right) |
|
out_shape: Tuple[int, int] = (images_left.shape[-2], images_left.shape[-1] + images_right.shape[-1]) |
|
correspondences: dict = self.on_matcher(input_dict) |
|
homo: torch.Tensor = self.estimate_transform(**correspondences) |
|
src_img = warp_perspective(images_right, homo, out_shape) |
|
dst_img = torch.cat([images_left, torch.zeros_like(images_right)], dim=-1) |
|
|
|
|
|
if mask_left is None: |
|
mask_left = torch.ones_like(images_left) |
|
if mask_right is None: |
|
mask_right = torch.ones_like(images_right) |
|
|
|
src_mask = warp_perspective(mask_right, homo, out_shape, mode='nearest') |
|
dst_mask = torch.cat([mask_left, torch.zeros_like(mask_right)], dim=-1) |
|
return self.blend_image(src_img, dst_img, src_mask), (dst_mask + src_mask).bool().to(src_mask.dtype) |
|
|
|
def forward(self, *imgs: torch.Tensor) -> torch.Tensor: |
|
img_out = imgs[0] |
|
mask_left = torch.ones_like(img_out) |
|
for i in range(len(imgs) - 1): |
|
img_out, mask_left = self.stitch_pair(img_out, imgs[i + 1], mask_left) |
|
return self.postprocess(img_out, mask_left) |
|
|