compvis / kornia /contrib /image_stitching.py
Dexter's picture
Upload folder using huggingface_hub
36c95ba verified
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn as nn
from kornia.color import rgb_to_grayscale
from kornia.feature import LocalFeatureMatcher, LoFTR
from kornia.geometry.homography import find_homography_dlt_iterated
from kornia.geometry.ransac import RANSAC
from kornia.geometry.transform import warp_perspective
class ImageStitcher(nn.Module):
"""Stitch two images with overlapping fields of view.
Args:
matcher: image feature matching module.
estimator: method to compute homography, either "vanilla" or "ransac".
"ransac" is slower with a better accuracy.
blending_method: method to blend two images together.
Only "naive" is currently supported.
Note:
Current implementation requires strict image ordering from left to right.
.. code-block:: python
IS = ImageStitcher(KF.LoFTR(pretrained='outdoor'), estimator='ransac').cuda()
# Compute the stitched result with less GPU memory cost.
with torch.inference_mode():
out = IS(img_left, img_right)
# Show the result
plt.imshow(K.tensor_to_image(out))
"""
def __init__(
self, matcher: nn.Module, estimator: str = 'ransac', blending_method: str = "naive",
) -> None:
super().__init__()
self.matcher = matcher
self.estimator = estimator
self.blending_method = blending_method
if estimator not in ['ransac', 'vanilla']:
raise NotImplementedError(f"Unsupported estimator {estimator}. Use ‘ransac’ or ‘vanilla’ instead.")
if estimator == "ransac":
self.ransac = RANSAC('homography')
def _estimate_homography(self, keypoints1: torch.Tensor, keypoints2: torch.Tensor) -> torch.Tensor:
"""Estimate homography by the matched keypoints.
Args:
keypoints1: matched keypoint set from an image, shaped as :math:`(N, 2)`.
keypoints2: matched keypoint set from the other image, shaped as :math:`(N, 2)`.
"""
homo: torch.Tensor
if self.estimator == "vanilla":
homo = find_homography_dlt_iterated(
keypoints2[None],
keypoints1[None],
torch.ones_like(keypoints1[None, :, 0])
)
elif self.estimator == "ransac":
homo, _ = self.ransac(keypoints2, keypoints1)
homo = homo[None]
else:
raise NotImplementedError(f"Unsupported estimator {self.estimator}. Use ‘ransac’ or ‘vanilla’ instead.")
return homo
def estimate_transform(self, **kwargs) -> torch.Tensor:
"""Compute the corresponding homography."""
homos: List[torch.Tensor] = []
kp1, kp2, idx = kwargs['keypoints0'], kwargs['keypoints1'], kwargs['batch_indexes']
for i in range(len(idx.unique())):
homos.append(self._estimate_homography(kp1[idx == i], kp2[idx == i]))
if len(homos) == 0:
raise RuntimeError("Compute homography failed. No matched keypoints found.")
return torch.cat(homos)
def blend_image(self, src_img: torch.Tensor, dst_img: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
"""Blend two images together."""
out: torch.Tensor
if self.blending_method == "naive":
out = torch.where(mask == 1, src_img, dst_img)
else:
raise NotImplementedError(f"Unsupported blending method {self.blending_method}. Use ‘naive’.")
return out
def preprocess(self, image_1: torch.Tensor, image_2: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Preprocess input to the required format."""
# TODO: probably perform histogram matching here.
if isinstance(self.matcher, LoFTR) or isinstance(self.matcher, LocalFeatureMatcher):
input_dict: Dict[str, torch.Tensor] = { # LofTR works on grayscale images only
"image0": rgb_to_grayscale(image_1),
"image1": rgb_to_grayscale(image_2)
}
else:
raise NotImplementedError(f"The preprocessor for {self.matcher} has not been implemented.")
return input_dict
def postprocess(self, image: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
# NOTE: assumes no batch mode. This method keeps all valid regions after stitching.
mask_: torch.Tensor = mask.sum((0, 1))
index: int = int(mask_.bool().any(0).long().argmin().item())
if index == 0: # If no redundant space
return image
return image[..., :index]
def on_matcher(self, data) -> dict:
return self.matcher(data)
def stitch_pair(
self, images_left: torch.Tensor, images_right: torch.Tensor,
mask_left: Optional[torch.Tensor] = None, mask_right: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
# Compute the transformed images
input_dict: Dict[str, torch.Tensor] = self.preprocess(images_left, images_right)
out_shape: Tuple[int, int] = (images_left.shape[-2], images_left.shape[-1] + images_right.shape[-1])
correspondences: dict = self.on_matcher(input_dict)
homo: torch.Tensor = self.estimate_transform(**correspondences)
src_img = warp_perspective(images_right, homo, out_shape)
dst_img = torch.cat([images_left, torch.zeros_like(images_right)], dim=-1)
# Compute the transformed masks
if mask_left is None:
mask_left = torch.ones_like(images_left)
if mask_right is None:
mask_right = torch.ones_like(images_right)
# 'nearest' to ensure no floating points in the mask
src_mask = warp_perspective(mask_right, homo, out_shape, mode='nearest')
dst_mask = torch.cat([mask_left, torch.zeros_like(mask_right)], dim=-1)
return self.blend_image(src_img, dst_img, src_mask), (dst_mask + src_mask).bool().to(src_mask.dtype)
def forward(self, *imgs: torch.Tensor) -> torch.Tensor:
img_out = imgs[0]
mask_left = torch.ones_like(img_out)
for i in range(len(imgs) - 1):
img_out, mask_left = self.stitch_pair(img_out, imgs[i + 1], mask_left)
return self.postprocess(img_out, mask_left)