DewiBrynJones commited on
Commit
21a680a
1 Parent(s): a5a9f5e

Model save

Browse files
Files changed (1) hide show
  1. README.md +104 -106
README.md CHANGED
@@ -2,8 +2,6 @@
2
  license: apache-2.0
3
  base_model: facebook/wav2vec2-large-xlsr-53
4
  tags:
5
- - automatic-speech-recognition
6
- - DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv
7
  - generated_from_trainer
8
  metrics:
9
  - wer
@@ -17,10 +15,10 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # wav2vec2-xlsr-53-ft-btb-ccv-cy
19
 
20
- This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN-WITH-CCV - DEFAULT dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.4118
23
- - Wer: 0.3219
24
 
25
  ## Model description
26
 
@@ -53,111 +51,111 @@ The following hyperparameters were used during training:
53
 
54
  | Training Loss | Epoch | Step | Validation Loss | Wer |
55
  |:-------------:|:------:|:-----:|:---------------:|:------:|
56
- | No log | 0.0194 | 100 | 3.5728 | 1.0 |
57
- | No log | 0.0387 | 200 | 3.0768 | 1.0 |
58
- | No log | 0.0581 | 300 | 3.5010 | 1.0 |
59
- | No log | 0.0774 | 400 | 2.0594 | 0.9900 |
60
- | 4.06 | 0.0968 | 500 | 1.4703 | 0.8800 |
61
- | 4.06 | 0.1161 | 600 | 1.2464 | 0.8297 |
62
- | 4.06 | 0.1355 | 700 | 1.0686 | 0.7493 |
63
- | 4.06 | 0.1549 | 800 | 1.0069 | 0.7116 |
64
- | 4.06 | 0.1742 | 900 | 0.9367 | 0.6888 |
65
- | 1.0399 | 0.1936 | 1000 | 0.8961 | 0.6742 |
66
- | 1.0399 | 0.2129 | 1100 | 0.8967 | 0.6413 |
67
- | 1.0399 | 0.2323 | 1200 | 0.8311 | 0.6153 |
68
- | 1.0399 | 0.2516 | 1300 | 0.8019 | 0.5965 |
69
- | 1.0399 | 0.2710 | 1400 | 0.7925 | 0.5927 |
70
- | 0.8395 | 0.2904 | 1500 | 0.8165 | 0.5987 |
71
- | 0.8395 | 0.3097 | 1600 | 0.7696 | 0.6150 |
72
- | 0.8395 | 0.3291 | 1700 | 0.7455 | 0.5624 |
73
- | 0.8395 | 0.3484 | 1800 | 0.7681 | 0.5684 |
74
- | 0.8395 | 0.3678 | 1900 | 0.7292 | 0.5609 |
75
- | 0.7574 | 0.3871 | 2000 | 0.7305 | 0.5534 |
76
- | 0.7574 | 0.4065 | 2100 | 0.7096 | 0.5363 |
77
- | 0.7574 | 0.4259 | 2200 | 0.7108 | 0.5572 |
78
- | 0.7574 | 0.4452 | 2300 | 0.6703 | 0.5175 |
79
- | 0.7574 | 0.4646 | 2400 | 0.6596 | 0.5149 |
80
- | 0.6864 | 0.4839 | 2500 | 0.6846 | 0.5336 |
81
- | 0.6864 | 0.5033 | 2600 | 0.6666 | 0.5286 |
82
- | 0.6864 | 0.5226 | 2700 | 0.6391 | 0.4949 |
83
- | 0.6864 | 0.5420 | 2800 | 0.6296 | 0.4990 |
84
- | 0.6864 | 0.5614 | 2900 | 0.6292 | 0.4957 |
85
- | 0.6734 | 0.5807 | 3000 | 0.6164 | 0.4765 |
86
- | 0.6734 | 0.6001 | 3100 | 0.6180 | 0.4778 |
87
- | 0.6734 | 0.6194 | 3200 | 0.6132 | 0.4909 |
88
- | 0.6734 | 0.6388 | 3300 | 0.6107 | 0.4683 |
89
- | 0.6734 | 0.6581 | 3400 | 0.6068 | 0.4749 |
90
- | 0.6433 | 0.6775 | 3500 | 0.6008 | 0.4773 |
91
- | 0.6433 | 0.6969 | 3600 | 0.5917 | 0.4656 |
92
- | 0.6433 | 0.7162 | 3700 | 0.5885 | 0.4601 |
93
- | 0.6433 | 0.7356 | 3800 | 0.5848 | 0.4482 |
94
- | 0.6433 | 0.7549 | 3900 | 0.5852 | 0.4496 |
95
- | 0.6217 | 0.7743 | 4000 | 0.5772 | 0.4416 |
96
- | 0.6217 | 0.7937 | 4100 | 0.5671 | 0.4469 |
97
- | 0.6217 | 0.8130 | 4200 | 0.5668 | 0.4463 |
98
- | 0.6217 | 0.8324 | 4300 | 0.5558 | 0.4401 |
99
- | 0.6217 | 0.8517 | 4400 | 0.5652 | 0.4307 |
100
- | 0.5954 | 0.8711 | 4500 | 0.5561 | 0.4307 |
101
- | 0.5954 | 0.8904 | 4600 | 0.5432 | 0.4206 |
102
- | 0.5954 | 0.9098 | 4700 | 0.5294 | 0.4137 |
103
- | 0.5954 | 0.9292 | 4800 | 0.5444 | 0.4210 |
104
- | 0.5954 | 0.9485 | 4900 | 0.5291 | 0.4157 |
105
- | 0.5663 | 0.9679 | 5000 | 0.5429 | 0.4140 |
106
- | 0.5663 | 0.9872 | 5100 | 0.5209 | 0.4116 |
107
- | 0.5663 | 1.0066 | 5200 | 0.5282 | 0.4042 |
108
- | 0.5663 | 1.0259 | 5300 | 0.5118 | 0.3918 |
109
- | 0.5663 | 1.0453 | 5400 | 0.5089 | 0.3993 |
110
- | 0.4941 | 1.0647 | 5500 | 0.5011 | 0.3921 |
111
- | 0.4941 | 1.0840 | 5600 | 0.5022 | 0.3887 |
112
- | 0.4941 | 1.1034 | 5700 | 0.5066 | 0.3853 |
113
- | 0.4941 | 1.1227 | 5800 | 0.4907 | 0.3815 |
114
- | 0.4941 | 1.1421 | 5900 | 0.4982 | 0.3809 |
115
- | 0.4628 | 1.1614 | 6000 | 0.4913 | 0.3896 |
116
- | 0.4628 | 1.1808 | 6100 | 0.4826 | 0.3734 |
117
- | 0.4628 | 1.2002 | 6200 | 0.4884 | 0.3740 |
118
- | 0.4628 | 1.2195 | 6300 | 0.4841 | 0.3700 |
119
- | 0.4628 | 1.2389 | 6400 | 0.4828 | 0.3697 |
120
- | 0.4435 | 1.2582 | 6500 | 0.4816 | 0.3739 |
121
- | 0.4435 | 1.2776 | 6600 | 0.4793 | 0.3674 |
122
- | 0.4435 | 1.2969 | 6700 | 0.4744 | 0.3669 |
123
- | 0.4435 | 1.3163 | 6800 | 0.4682 | 0.3609 |
124
- | 0.4435 | 1.3357 | 6900 | 0.4628 | 0.3594 |
125
- | 0.4298 | 1.3550 | 7000 | 0.4663 | 0.3554 |
126
- | 0.4298 | 1.3744 | 7100 | 0.4656 | 0.3584 |
127
- | 0.4298 | 1.3937 | 7200 | 0.4593 | 0.3565 |
128
- | 0.4298 | 1.4131 | 7300 | 0.4599 | 0.3566 |
129
- | 0.4298 | 1.4324 | 7400 | 0.4613 | 0.3521 |
130
- | 0.4292 | 1.4518 | 7500 | 0.4521 | 0.3475 |
131
- | 0.4292 | 1.4712 | 7600 | 0.4512 | 0.3491 |
132
- | 0.4292 | 1.4905 | 7700 | 0.4478 | 0.3518 |
133
- | 0.4292 | 1.5099 | 7800 | 0.4416 | 0.3421 |
134
- | 0.4292 | 1.5292 | 7900 | 0.4427 | 0.3459 |
135
- | 0.4072 | 1.5486 | 8000 | 0.4388 | 0.3457 |
136
- | 0.4072 | 1.5679 | 8100 | 0.4401 | 0.3453 |
137
- | 0.4072 | 1.5873 | 8200 | 0.4365 | 0.3434 |
138
- | 0.4072 | 1.6067 | 8300 | 0.4346 | 0.3397 |
139
- | 0.4072 | 1.6260 | 8400 | 0.4325 | 0.3360 |
140
- | 0.3991 | 1.6454 | 8500 | 0.4320 | 0.3358 |
141
- | 0.3991 | 1.6647 | 8600 | 0.4287 | 0.3355 |
142
- | 0.3991 | 1.6841 | 8700 | 0.4293 | 0.3334 |
143
- | 0.3991 | 1.7034 | 8800 | 0.4272 | 0.3333 |
144
- | 0.3991 | 1.7228 | 8900 | 0.4220 | 0.3303 |
145
- | 0.3916 | 1.7422 | 9000 | 0.4238 | 0.3292 |
146
- | 0.3916 | 1.7615 | 9100 | 0.4215 | 0.3281 |
147
- | 0.3916 | 1.7809 | 9200 | 0.4177 | 0.3266 |
148
- | 0.3916 | 1.8002 | 9300 | 0.4188 | 0.3257 |
149
- | 0.3916 | 1.8196 | 9400 | 0.4164 | 0.3247 |
150
- | 0.3687 | 1.8389 | 9500 | 0.4163 | 0.3243 |
151
- | 0.3687 | 1.8583 | 9600 | 0.4140 | 0.3239 |
152
- | 0.3687 | 1.8777 | 9700 | 0.4132 | 0.3247 |
153
- | 0.3687 | 1.8970 | 9800 | 0.4122 | 0.3224 |
154
- | 0.3687 | 1.9164 | 9900 | 0.4117 | 0.3219 |
155
- | 0.3707 | 1.9357 | 10000 | 0.4118 | 0.3219 |
156
 
157
 
158
  ### Framework versions
159
 
160
  - Transformers 4.41.2
161
  - Pytorch 2.3.1+cu121
162
- - Datasets 2.19.2
163
  - Tokenizers 0.19.1
 
2
  license: apache-2.0
3
  base_model: facebook/wav2vec2-large-xlsr-53
4
  tags:
 
 
5
  - generated_from_trainer
6
  metrics:
7
  - wer
 
15
 
16
  # wav2vec2-xlsr-53-ft-btb-ccv-cy
17
 
18
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.4122
21
+ - Wer: 0.3223
22
 
23
  ## Model description
24
 
 
51
 
52
  | Training Loss | Epoch | Step | Validation Loss | Wer |
53
  |:-------------:|:------:|:-----:|:---------------:|:------:|
54
+ | No log | 0.0194 | 100 | 3.5545 | 1.0 |
55
+ | No log | 0.0387 | 200 | 3.0260 | 1.0 |
56
+ | No log | 0.0581 | 300 | 2.9066 | 1.0 |
57
+ | No log | 0.0774 | 400 | 2.0133 | 0.9847 |
58
+ | 4.0489 | 0.0968 | 500 | 1.4598 | 0.9004 |
59
+ | 4.0489 | 0.1161 | 600 | 1.1772 | 0.8042 |
60
+ | 4.0489 | 0.1355 | 700 | 1.0787 | 0.7590 |
61
+ | 4.0489 | 0.1549 | 800 | 1.0144 | 0.7212 |
62
+ | 4.0489 | 0.1742 | 900 | 0.9339 | 0.6932 |
63
+ | 1.0454 | 0.1936 | 1000 | 0.8806 | 0.6597 |
64
+ | 1.0454 | 0.2129 | 1100 | 0.8644 | 0.6554 |
65
+ | 1.0454 | 0.2323 | 1200 | 0.8454 | 0.6314 |
66
+ | 1.0454 | 0.2516 | 1300 | 0.8093 | 0.5919 |
67
+ | 1.0454 | 0.2710 | 1400 | 0.8076 | 0.6072 |
68
+ | 0.842 | 0.2904 | 1500 | 0.7783 | 0.5857 |
69
+ | 0.842 | 0.3097 | 1600 | 0.7965 | 0.5941 |
70
+ | 0.842 | 0.3291 | 1700 | 0.7415 | 0.5505 |
71
+ | 0.842 | 0.3484 | 1800 | 0.7440 | 0.5637 |
72
+ | 0.842 | 0.3678 | 1900 | 0.7361 | 0.5865 |
73
+ | 0.755 | 0.3871 | 2000 | 0.7314 | 0.5427 |
74
+ | 0.755 | 0.4065 | 2100 | 0.6866 | 0.5181 |
75
+ | 0.755 | 0.4259 | 2200 | 0.6948 | 0.5426 |
76
+ | 0.755 | 0.4452 | 2300 | 0.6796 | 0.5159 |
77
+ | 0.755 | 0.4646 | 2400 | 0.6899 | 0.5305 |
78
+ | 0.6884 | 0.4839 | 2500 | 0.6736 | 0.5103 |
79
+ | 0.6884 | 0.5033 | 2600 | 0.6728 | 0.5257 |
80
+ | 0.6884 | 0.5226 | 2700 | 0.6537 | 0.5027 |
81
+ | 0.6884 | 0.5420 | 2800 | 0.6314 | 0.4823 |
82
+ | 0.6884 | 0.5614 | 2900 | 0.6317 | 0.4830 |
83
+ | 0.6756 | 0.5807 | 3000 | 0.6204 | 0.4761 |
84
+ | 0.6756 | 0.6001 | 3100 | 0.6311 | 0.4811 |
85
+ | 0.6756 | 0.6194 | 3200 | 0.6236 | 0.4863 |
86
+ | 0.6756 | 0.6388 | 3300 | 0.6224 | 0.4629 |
87
+ | 0.6756 | 0.6581 | 3400 | 0.5973 | 0.4623 |
88
+ | 0.6435 | 0.6775 | 3500 | 0.5913 | 0.4708 |
89
+ | 0.6435 | 0.6969 | 3600 | 0.6087 | 0.4744 |
90
+ | 0.6435 | 0.7162 | 3700 | 0.5827 | 0.4521 |
91
+ | 0.6435 | 0.7356 | 3800 | 0.5875 | 0.4608 |
92
+ | 0.6435 | 0.7549 | 3900 | 0.5925 | 0.4557 |
93
+ | 0.6282 | 0.7743 | 4000 | 0.5799 | 0.4494 |
94
+ | 0.6282 | 0.7937 | 4100 | 0.5679 | 0.4526 |
95
+ | 0.6282 | 0.8130 | 4200 | 0.5700 | 0.4550 |
96
+ | 0.6282 | 0.8324 | 4300 | 0.5610 | 0.4343 |
97
+ | 0.6282 | 0.8517 | 4400 | 0.5616 | 0.4273 |
98
+ | 0.5937 | 0.8711 | 4500 | 0.5464 | 0.4221 |
99
+ | 0.5937 | 0.8904 | 4600 | 0.5486 | 0.4288 |
100
+ | 0.5937 | 0.9098 | 4700 | 0.5308 | 0.4167 |
101
+ | 0.5937 | 0.9292 | 4800 | 0.5520 | 0.4200 |
102
+ | 0.5937 | 0.9485 | 4900 | 0.5321 | 0.4180 |
103
+ | 0.5659 | 0.9679 | 5000 | 0.5333 | 0.4176 |
104
+ | 0.5659 | 0.9872 | 5100 | 0.5260 | 0.4111 |
105
+ | 0.5659 | 1.0066 | 5200 | 0.5185 | 0.3974 |
106
+ | 0.5659 | 1.0259 | 5300 | 0.5147 | 0.3918 |
107
+ | 0.5659 | 1.0453 | 5400 | 0.5155 | 0.3976 |
108
+ | 0.4928 | 1.0647 | 5500 | 0.5058 | 0.3936 |
109
+ | 0.4928 | 1.0840 | 5600 | 0.5048 | 0.3965 |
110
+ | 0.4928 | 1.1034 | 5700 | 0.5011 | 0.3818 |
111
+ | 0.4928 | 1.1227 | 5800 | 0.4965 | 0.3830 |
112
+ | 0.4928 | 1.1421 | 5900 | 0.4969 | 0.3840 |
113
+ | 0.4619 | 1.1614 | 6000 | 0.4863 | 0.3800 |
114
+ | 0.4619 | 1.1808 | 6100 | 0.4908 | 0.3800 |
115
+ | 0.4619 | 1.2002 | 6200 | 0.4835 | 0.3712 |
116
+ | 0.4619 | 1.2195 | 6300 | 0.4927 | 0.3767 |
117
+ | 0.4619 | 1.2389 | 6400 | 0.4942 | 0.3683 |
118
+ | 0.4421 | 1.2582 | 6500 | 0.4834 | 0.3739 |
119
+ | 0.4421 | 1.2776 | 6600 | 0.4751 | 0.3634 |
120
+ | 0.4421 | 1.2969 | 6700 | 0.4734 | 0.3633 |
121
+ | 0.4421 | 1.3163 | 6800 | 0.4685 | 0.3645 |
122
+ | 0.4421 | 1.3357 | 6900 | 0.4654 | 0.3625 |
123
+ | 0.4304 | 1.3550 | 7000 | 0.4742 | 0.3615 |
124
+ | 0.4304 | 1.3744 | 7100 | 0.4645 | 0.3596 |
125
+ | 0.4304 | 1.3937 | 7200 | 0.4599 | 0.3594 |
126
+ | 0.4304 | 1.4131 | 7300 | 0.4554 | 0.3555 |
127
+ | 0.4304 | 1.4324 | 7400 | 0.4578 | 0.3578 |
128
+ | 0.4275 | 1.4518 | 7500 | 0.4518 | 0.3522 |
129
+ | 0.4275 | 1.4712 | 7600 | 0.4480 | 0.3511 |
130
+ | 0.4275 | 1.4905 | 7700 | 0.4465 | 0.3501 |
131
+ | 0.4275 | 1.5099 | 7800 | 0.4454 | 0.3428 |
132
+ | 0.4275 | 1.5292 | 7900 | 0.4427 | 0.3439 |
133
+ | 0.4089 | 1.5486 | 8000 | 0.4376 | 0.3407 |
134
+ | 0.4089 | 1.5679 | 8100 | 0.4396 | 0.3415 |
135
+ | 0.4089 | 1.5873 | 8200 | 0.4343 | 0.3422 |
136
+ | 0.4089 | 1.6067 | 8300 | 0.4359 | 0.3406 |
137
+ | 0.4089 | 1.6260 | 8400 | 0.4358 | 0.3373 |
138
+ | 0.4005 | 1.6454 | 8500 | 0.4331 | 0.3365 |
139
+ | 0.4005 | 1.6647 | 8600 | 0.4302 | 0.3353 |
140
+ | 0.4005 | 1.6841 | 8700 | 0.4308 | 0.3355 |
141
+ | 0.4005 | 1.7034 | 8800 | 0.4258 | 0.3351 |
142
+ | 0.4005 | 1.7228 | 8900 | 0.4222 | 0.3353 |
143
+ | 0.3879 | 1.7422 | 9000 | 0.4238 | 0.3312 |
144
+ | 0.3879 | 1.7615 | 9100 | 0.4245 | 0.3288 |
145
+ | 0.3879 | 1.7809 | 9200 | 0.4206 | 0.3264 |
146
+ | 0.3879 | 1.8002 | 9300 | 0.4201 | 0.3284 |
147
+ | 0.3879 | 1.8196 | 9400 | 0.4189 | 0.3246 |
148
+ | 0.369 | 1.8389 | 9500 | 0.4160 | 0.3258 |
149
+ | 0.369 | 1.8583 | 9600 | 0.4142 | 0.3248 |
150
+ | 0.369 | 1.8777 | 9700 | 0.4131 | 0.3252 |
151
+ | 0.369 | 1.8970 | 9800 | 0.4128 | 0.3228 |
152
+ | 0.369 | 1.9164 | 9900 | 0.4122 | 0.3221 |
153
+ | 0.3738 | 1.9357 | 10000 | 0.4122 | 0.3223 |
154
 
155
 
156
  ### Framework versions
157
 
158
  - Transformers 4.41.2
159
  - Pytorch 2.3.1+cu121
160
+ - Datasets 2.20.0
161
  - Tokenizers 0.19.1