Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +834 -0
- config.json +25 -0
- config_sentence_transformers.json +14 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,834 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- dense
|
| 7 |
+
- generated_from_trainer
|
| 8 |
+
- dataset_size:9020
|
| 9 |
+
- loss:MultipleNegativesRankingLoss
|
| 10 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
| 11 |
+
widget:
|
| 12 |
+
- source_sentence: python multiprocessing show cpu count
|
| 13 |
+
sentences:
|
| 14 |
+
- "def unique(seq):\n \"\"\"Return the unique elements of a collection even if\
|
| 15 |
+
\ those elements are\n unhashable and unsortable, like dicts and sets\"\"\
|
| 16 |
+
\"\n cleaned = []\n for each in seq:\n if each not in cleaned:\n\
|
| 17 |
+
\ cleaned.append(each)\n return cleaned"
|
| 18 |
+
- "def is_in(self, point_x, point_y):\n \"\"\" Test if a point is within\
|
| 19 |
+
\ this polygonal region \"\"\"\n\n point_array = array(((point_x, point_y),))\n\
|
| 20 |
+
\ vertices = array(self.points)\n winding = self.inside_rule ==\
|
| 21 |
+
\ \"winding\"\n result = points_in_polygon(point_array, vertices, winding)\n\
|
| 22 |
+
\ return result[0]"
|
| 23 |
+
- "def machine_info():\n \"\"\"Retrieve core and memory information for the current\
|
| 24 |
+
\ machine.\n \"\"\"\n import psutil\n BYTES_IN_GIG = 1073741824.0\n \
|
| 25 |
+
\ free_bytes = psutil.virtual_memory().total\n return [{\"memory\": float(\"\
|
| 26 |
+
%.1f\" % (free_bytes / BYTES_IN_GIG)), \"cores\": multiprocessing.cpu_count(),\n\
|
| 27 |
+
\ \"name\": socket.gethostname()}]"
|
| 28 |
+
- source_sentence: python subplot set the whole title
|
| 29 |
+
sentences:
|
| 30 |
+
- "def set_title(self, title, **kwargs):\n \"\"\"Sets the title on the underlying\
|
| 31 |
+
\ matplotlib AxesSubplot.\"\"\"\n ax = self.get_axes()\n ax.set_title(title,\
|
| 32 |
+
\ **kwargs)"
|
| 33 |
+
- "def moving_average(array, n=3):\n \"\"\"\n Calculates the moving average\
|
| 34 |
+
\ of an array.\n\n Parameters\n ----------\n array : array\n The\
|
| 35 |
+
\ array to have the moving average taken of\n n : int\n The number of\
|
| 36 |
+
\ points of moving average to take\n \n Returns\n -------\n MovingAverageArray\
|
| 37 |
+
\ : array\n The n-point moving average of the input array\n \"\"\"\n\
|
| 38 |
+
\ ret = _np.cumsum(array, dtype=float)\n ret[n:] = ret[n:] - ret[:-n]\n\
|
| 39 |
+
\ return ret[n - 1:] / n"
|
| 40 |
+
- "def to_query_parameters(parameters):\n \"\"\"Converts DB-API parameter values\
|
| 41 |
+
\ into query parameters.\n\n :type parameters: Mapping[str, Any] or Sequence[Any]\n\
|
| 42 |
+
\ :param parameters: A dictionary or sequence of query parameter values.\n\n\
|
| 43 |
+
\ :rtype: List[google.cloud.bigquery.query._AbstractQueryParameter]\n :returns:\
|
| 44 |
+
\ A list of query parameters.\n \"\"\"\n if parameters is None:\n \
|
| 45 |
+
\ return []\n\n if isinstance(parameters, collections_abc.Mapping):\n \
|
| 46 |
+
\ return to_query_parameters_dict(parameters)\n\n return to_query_parameters_list(parameters)"
|
| 47 |
+
- source_sentence: python merge two set to dict
|
| 48 |
+
sentences:
|
| 49 |
+
- "def make_regex(separator):\n \"\"\"Utility function to create regexp for matching\
|
| 50 |
+
\ escaped separators\n in strings.\n\n \"\"\"\n return re.compile(r'(?:'\
|
| 51 |
+
\ + re.escape(separator) + r')?((?:[^' +\n re.escape(separator)\
|
| 52 |
+
\ + r'\\\\]|\\\\.)+)')"
|
| 53 |
+
- "def csvtolist(inputstr):\n \"\"\" converts a csv string into a list \"\"\"\
|
| 54 |
+
\n reader = csv.reader([inputstr], skipinitialspace=True)\n output = []\n\
|
| 55 |
+
\ for r in reader:\n output += r\n return output"
|
| 56 |
+
- "def dict_merge(set1, set2):\n \"\"\"Joins two dictionaries.\"\"\"\n return\
|
| 57 |
+
\ dict(list(set1.items()) + list(set2.items()))"
|
| 58 |
+
- source_sentence: python string % substitution float
|
| 59 |
+
sentences:
|
| 60 |
+
- "def _configure_logger():\n \"\"\"Configure the logging module.\"\"\"\n \
|
| 61 |
+
\ if not app.debug:\n _configure_logger_for_production(logging.getLogger())\n\
|
| 62 |
+
\ elif not app.testing:\n _configure_logger_for_debugging(logging.getLogger())"
|
| 63 |
+
- "def __set__(self, instance, value):\n \"\"\" Set a related object for\
|
| 64 |
+
\ an instance. \"\"\"\n\n self.map[id(instance)] = (weakref.ref(instance),\
|
| 65 |
+
\ value)"
|
| 66 |
+
- "def format_float(value): # not used\n \"\"\"Modified form of the 'g' format\
|
| 67 |
+
\ specifier.\n \"\"\"\n string = \"{:g}\".format(value).replace(\"e+\",\
|
| 68 |
+
\ \"e\")\n string = re.sub(\"e(-?)0*(\\d+)\", r\"e\\1\\2\", string)\n return\
|
| 69 |
+
\ string"
|
| 70 |
+
- source_sentence: bottom 5 rows in python
|
| 71 |
+
sentences:
|
| 72 |
+
- "def refresh(self, document):\n\t\t\"\"\" Load a new copy of a document from the\
|
| 73 |
+
\ database. does not\n\t\t\treplace the old one \"\"\"\n\t\ttry:\n\t\t\told_cache_size\
|
| 74 |
+
\ = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\
|
| 75 |
+
\t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\
|
| 76 |
+
\t\treturn obj"
|
| 77 |
+
- "def table_top_abs(self):\n \"\"\"Returns the absolute position of table\
|
| 78 |
+
\ top\"\"\"\n table_height = np.array([0, 0, self.table_full_size[2]])\n\
|
| 79 |
+
\ return string_to_array(self.floor.get(\"pos\")) + table_height"
|
| 80 |
+
- "def get_dimension_array(array):\n \"\"\"\n Get dimension of an array getting\
|
| 81 |
+
\ the number of rows and the max num of\n columns.\n \"\"\"\n if all(isinstance(el,\
|
| 82 |
+
\ list) for el in array):\n result = [len(array), len(max([x for x in array],\
|
| 83 |
+
\ key=len,))]\n\n # elif array and isinstance(array, list):\n else:\n \
|
| 84 |
+
\ result = [len(array), 1]\n\n return result"
|
| 85 |
+
pipeline_tag: sentence-similarity
|
| 86 |
+
library_name: sentence-transformers
|
| 87 |
+
---
|
| 88 |
+
|
| 89 |
+
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
| 90 |
+
|
| 91 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 92 |
+
|
| 93 |
+
## Model Details
|
| 94 |
+
|
| 95 |
+
### Model Description
|
| 96 |
+
- **Model Type:** Sentence Transformer
|
| 97 |
+
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
|
| 98 |
+
- **Maximum Sequence Length:** 256 tokens
|
| 99 |
+
- **Output Dimensionality:** 384 dimensions
|
| 100 |
+
- **Similarity Function:** Cosine Similarity
|
| 101 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 102 |
+
<!-- - **Language:** Unknown -->
|
| 103 |
+
<!-- - **License:** Unknown -->
|
| 104 |
+
|
| 105 |
+
### Model Sources
|
| 106 |
+
|
| 107 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 108 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 109 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 110 |
+
|
| 111 |
+
### Full Model Architecture
|
| 112 |
+
|
| 113 |
+
```
|
| 114 |
+
SentenceTransformer(
|
| 115 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
|
| 116 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 117 |
+
(2): Normalize()
|
| 118 |
+
)
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
## Usage
|
| 122 |
+
|
| 123 |
+
### Direct Usage (Sentence Transformers)
|
| 124 |
+
|
| 125 |
+
First install the Sentence Transformers library:
|
| 126 |
+
|
| 127 |
+
```bash
|
| 128 |
+
pip install -U sentence-transformers
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
Then you can load this model and run inference.
|
| 132 |
+
```python
|
| 133 |
+
from sentence_transformers import SentenceTransformer
|
| 134 |
+
|
| 135 |
+
# Download from the 🤗 Hub
|
| 136 |
+
model = SentenceTransformer("Devy1/MiniLM-cosqa-64")
|
| 137 |
+
# Run inference
|
| 138 |
+
sentences = [
|
| 139 |
+
'bottom 5 rows in python',
|
| 140 |
+
'def table_top_abs(self):\n """Returns the absolute position of table top"""\n table_height = np.array([0, 0, self.table_full_size[2]])\n return string_to_array(self.floor.get("pos")) + table_height',
|
| 141 |
+
'def refresh(self, document):\n\t\t""" Load a new copy of a document from the database. does not\n\t\t\treplace the old one """\n\t\ttry:\n\t\t\told_cache_size = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\t\treturn obj',
|
| 142 |
+
]
|
| 143 |
+
embeddings = model.encode(sentences)
|
| 144 |
+
print(embeddings.shape)
|
| 145 |
+
# [3, 384]
|
| 146 |
+
|
| 147 |
+
# Get the similarity scores for the embeddings
|
| 148 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 149 |
+
print(similarities)
|
| 150 |
+
# tensor([[ 1.0000, 0.4847, -0.0572],
|
| 151 |
+
# [ 0.4847, 1.0000, -0.0541],
|
| 152 |
+
# [-0.0572, -0.0541, 1.0000]])
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
<!--
|
| 156 |
+
### Direct Usage (Transformers)
|
| 157 |
+
|
| 158 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 159 |
+
|
| 160 |
+
</details>
|
| 161 |
+
-->
|
| 162 |
+
|
| 163 |
+
<!--
|
| 164 |
+
### Downstream Usage (Sentence Transformers)
|
| 165 |
+
|
| 166 |
+
You can finetune this model on your own dataset.
|
| 167 |
+
|
| 168 |
+
<details><summary>Click to expand</summary>
|
| 169 |
+
|
| 170 |
+
</details>
|
| 171 |
+
-->
|
| 172 |
+
|
| 173 |
+
<!--
|
| 174 |
+
### Out-of-Scope Use
|
| 175 |
+
|
| 176 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 177 |
+
-->
|
| 178 |
+
|
| 179 |
+
<!--
|
| 180 |
+
## Bias, Risks and Limitations
|
| 181 |
+
|
| 182 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 183 |
+
-->
|
| 184 |
+
|
| 185 |
+
<!--
|
| 186 |
+
### Recommendations
|
| 187 |
+
|
| 188 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 189 |
+
-->
|
| 190 |
+
|
| 191 |
+
## Training Details
|
| 192 |
+
|
| 193 |
+
### Training Dataset
|
| 194 |
+
|
| 195 |
+
#### Unnamed Dataset
|
| 196 |
+
|
| 197 |
+
* Size: 9,020 training samples
|
| 198 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 199 |
+
* Approximate statistics based on the first 1000 samples:
|
| 200 |
+
| | anchor | positive |
|
| 201 |
+
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
| 202 |
+
| type | string | string |
|
| 203 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 9.67 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 40 tokens</li><li>mean: 86.17 tokens</li><li>max: 256 tokens</li></ul> |
|
| 204 |
+
* Samples:
|
| 205 |
+
| anchor | positive |
|
| 206 |
+
|:--------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 207 |
+
| <code>1d array in char datatype in python</code> | <code>def _convert_to_array(array_like, dtype):<br> """<br> Convert Matrix attributes which are array-like or buffer to array.<br> """<br> if isinstance(array_like, bytes):<br> return np.frombuffer(array_like, dtype=dtype)<br> return np.asarray(array_like, dtype=dtype)</code> |
|
| 208 |
+
| <code>python condition non none</code> | <code>def _not(condition=None, **kwargs):<br> """<br> Return the opposite of input condition.<br><br> :param condition: condition to process.<br><br> :result: not condition.<br> :rtype: bool<br> """<br><br> result = True<br><br> if condition is not None:<br> result = not run(condition, **kwargs)<br><br> return result</code> |
|
| 209 |
+
| <code>accessing a column from a matrix in python</code> | <code>def get_column(self, X, column):<br> """Return a column of the given matrix.<br><br> Args:<br> X: `numpy.ndarray` or `pandas.DataFrame`.<br> column: `int` or `str`.<br><br> Returns:<br> np.ndarray: Selected column.<br> """<br> if isinstance(X, pd.DataFrame):<br> return X[column].values<br><br> return X[:, column]</code> |
|
| 210 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 211 |
+
```json
|
| 212 |
+
{
|
| 213 |
+
"scale": 20.0,
|
| 214 |
+
"similarity_fct": "cos_sim",
|
| 215 |
+
"gather_across_devices": false
|
| 216 |
+
}
|
| 217 |
+
```
|
| 218 |
+
|
| 219 |
+
### Training Hyperparameters
|
| 220 |
+
#### Non-Default Hyperparameters
|
| 221 |
+
|
| 222 |
+
- `per_device_train_batch_size`: 64
|
| 223 |
+
- `fp16`: True
|
| 224 |
+
|
| 225 |
+
#### All Hyperparameters
|
| 226 |
+
<details><summary>Click to expand</summary>
|
| 227 |
+
|
| 228 |
+
- `overwrite_output_dir`: False
|
| 229 |
+
- `do_predict`: False
|
| 230 |
+
- `eval_strategy`: no
|
| 231 |
+
- `prediction_loss_only`: True
|
| 232 |
+
- `per_device_train_batch_size`: 64
|
| 233 |
+
- `per_device_eval_batch_size`: 8
|
| 234 |
+
- `per_gpu_train_batch_size`: None
|
| 235 |
+
- `per_gpu_eval_batch_size`: None
|
| 236 |
+
- `gradient_accumulation_steps`: 1
|
| 237 |
+
- `eval_accumulation_steps`: None
|
| 238 |
+
- `torch_empty_cache_steps`: None
|
| 239 |
+
- `learning_rate`: 5e-05
|
| 240 |
+
- `weight_decay`: 0.0
|
| 241 |
+
- `adam_beta1`: 0.9
|
| 242 |
+
- `adam_beta2`: 0.999
|
| 243 |
+
- `adam_epsilon`: 1e-08
|
| 244 |
+
- `max_grad_norm`: 1.0
|
| 245 |
+
- `num_train_epochs`: 3
|
| 246 |
+
- `max_steps`: -1
|
| 247 |
+
- `lr_scheduler_type`: linear
|
| 248 |
+
- `lr_scheduler_kwargs`: {}
|
| 249 |
+
- `warmup_ratio`: 0.0
|
| 250 |
+
- `warmup_steps`: 0
|
| 251 |
+
- `log_level`: passive
|
| 252 |
+
- `log_level_replica`: warning
|
| 253 |
+
- `log_on_each_node`: True
|
| 254 |
+
- `logging_nan_inf_filter`: True
|
| 255 |
+
- `save_safetensors`: True
|
| 256 |
+
- `save_on_each_node`: False
|
| 257 |
+
- `save_only_model`: False
|
| 258 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 259 |
+
- `no_cuda`: False
|
| 260 |
+
- `use_cpu`: False
|
| 261 |
+
- `use_mps_device`: False
|
| 262 |
+
- `seed`: 42
|
| 263 |
+
- `data_seed`: None
|
| 264 |
+
- `jit_mode_eval`: False
|
| 265 |
+
- `use_ipex`: False
|
| 266 |
+
- `bf16`: False
|
| 267 |
+
- `fp16`: True
|
| 268 |
+
- `fp16_opt_level`: O1
|
| 269 |
+
- `half_precision_backend`: auto
|
| 270 |
+
- `bf16_full_eval`: False
|
| 271 |
+
- `fp16_full_eval`: False
|
| 272 |
+
- `tf32`: None
|
| 273 |
+
- `local_rank`: 0
|
| 274 |
+
- `ddp_backend`: None
|
| 275 |
+
- `tpu_num_cores`: None
|
| 276 |
+
- `tpu_metrics_debug`: False
|
| 277 |
+
- `debug`: []
|
| 278 |
+
- `dataloader_drop_last`: False
|
| 279 |
+
- `dataloader_num_workers`: 0
|
| 280 |
+
- `dataloader_prefetch_factor`: None
|
| 281 |
+
- `past_index`: -1
|
| 282 |
+
- `disable_tqdm`: False
|
| 283 |
+
- `remove_unused_columns`: True
|
| 284 |
+
- `label_names`: None
|
| 285 |
+
- `load_best_model_at_end`: False
|
| 286 |
+
- `ignore_data_skip`: False
|
| 287 |
+
- `fsdp`: []
|
| 288 |
+
- `fsdp_min_num_params`: 0
|
| 289 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 290 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 291 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 292 |
+
- `parallelism_config`: None
|
| 293 |
+
- `deepspeed`: None
|
| 294 |
+
- `label_smoothing_factor`: 0.0
|
| 295 |
+
- `optim`: adamw_torch_fused
|
| 296 |
+
- `optim_args`: None
|
| 297 |
+
- `adafactor`: False
|
| 298 |
+
- `group_by_length`: False
|
| 299 |
+
- `length_column_name`: length
|
| 300 |
+
- `ddp_find_unused_parameters`: None
|
| 301 |
+
- `ddp_bucket_cap_mb`: None
|
| 302 |
+
- `ddp_broadcast_buffers`: False
|
| 303 |
+
- `dataloader_pin_memory`: True
|
| 304 |
+
- `dataloader_persistent_workers`: False
|
| 305 |
+
- `skip_memory_metrics`: True
|
| 306 |
+
- `use_legacy_prediction_loop`: False
|
| 307 |
+
- `push_to_hub`: False
|
| 308 |
+
- `resume_from_checkpoint`: None
|
| 309 |
+
- `hub_model_id`: None
|
| 310 |
+
- `hub_strategy`: every_save
|
| 311 |
+
- `hub_private_repo`: None
|
| 312 |
+
- `hub_always_push`: False
|
| 313 |
+
- `hub_revision`: None
|
| 314 |
+
- `gradient_checkpointing`: False
|
| 315 |
+
- `gradient_checkpointing_kwargs`: None
|
| 316 |
+
- `include_inputs_for_metrics`: False
|
| 317 |
+
- `include_for_metrics`: []
|
| 318 |
+
- `eval_do_concat_batches`: True
|
| 319 |
+
- `fp16_backend`: auto
|
| 320 |
+
- `push_to_hub_model_id`: None
|
| 321 |
+
- `push_to_hub_organization`: None
|
| 322 |
+
- `mp_parameters`:
|
| 323 |
+
- `auto_find_batch_size`: False
|
| 324 |
+
- `full_determinism`: False
|
| 325 |
+
- `torchdynamo`: None
|
| 326 |
+
- `ray_scope`: last
|
| 327 |
+
- `ddp_timeout`: 1800
|
| 328 |
+
- `torch_compile`: False
|
| 329 |
+
- `torch_compile_backend`: None
|
| 330 |
+
- `torch_compile_mode`: None
|
| 331 |
+
- `include_tokens_per_second`: False
|
| 332 |
+
- `include_num_input_tokens_seen`: False
|
| 333 |
+
- `neftune_noise_alpha`: None
|
| 334 |
+
- `optim_target_modules`: None
|
| 335 |
+
- `batch_eval_metrics`: False
|
| 336 |
+
- `eval_on_start`: False
|
| 337 |
+
- `use_liger_kernel`: False
|
| 338 |
+
- `liger_kernel_config`: None
|
| 339 |
+
- `eval_use_gather_object`: False
|
| 340 |
+
- `average_tokens_across_devices`: False
|
| 341 |
+
- `prompts`: None
|
| 342 |
+
- `batch_sampler`: batch_sampler
|
| 343 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 344 |
+
- `router_mapping`: {}
|
| 345 |
+
- `learning_rate_mapping`: {}
|
| 346 |
+
|
| 347 |
+
</details>
|
| 348 |
+
|
| 349 |
+
### Training Logs
|
| 350 |
+
<details><summary>Click to expand</summary>
|
| 351 |
+
|
| 352 |
+
| Epoch | Step | Training Loss |
|
| 353 |
+
|:------:|:----:|:-------------:|
|
| 354 |
+
| 0.0071 | 1 | 0.4603 |
|
| 355 |
+
| 0.0142 | 2 | 0.3179 |
|
| 356 |
+
| 0.0213 | 3 | 0.1802 |
|
| 357 |
+
| 0.0284 | 4 | 0.2268 |
|
| 358 |
+
| 0.0355 | 5 | 0.2288 |
|
| 359 |
+
| 0.0426 | 6 | 0.1769 |
|
| 360 |
+
| 0.0496 | 7 | 0.1555 |
|
| 361 |
+
| 0.0567 | 8 | 0.2626 |
|
| 362 |
+
| 0.0638 | 9 | 0.3319 |
|
| 363 |
+
| 0.0709 | 10 | 0.28 |
|
| 364 |
+
| 0.0780 | 11 | 0.3356 |
|
| 365 |
+
| 0.0851 | 12 | 0.3241 |
|
| 366 |
+
| 0.0922 | 13 | 0.2933 |
|
| 367 |
+
| 0.0993 | 14 | 0.3929 |
|
| 368 |
+
| 0.1064 | 15 | 0.1861 |
|
| 369 |
+
| 0.1135 | 16 | 0.1983 |
|
| 370 |
+
| 0.1206 | 17 | 0.1605 |
|
| 371 |
+
| 0.1277 | 18 | 0.0918 |
|
| 372 |
+
| 0.1348 | 19 | 0.2831 |
|
| 373 |
+
| 0.1418 | 20 | 0.1709 |
|
| 374 |
+
| 0.1489 | 21 | 0.1984 |
|
| 375 |
+
| 0.1560 | 22 | 0.2657 |
|
| 376 |
+
| 0.1631 | 23 | 0.1619 |
|
| 377 |
+
| 0.1702 | 24 | 0.1728 |
|
| 378 |
+
| 0.1773 | 25 | 0.1791 |
|
| 379 |
+
| 0.1844 | 26 | 0.2429 |
|
| 380 |
+
| 0.1915 | 27 | 0.2743 |
|
| 381 |
+
| 0.1986 | 28 | 0.2813 |
|
| 382 |
+
| 0.2057 | 29 | 0.2192 |
|
| 383 |
+
| 0.2128 | 30 | 0.166 |
|
| 384 |
+
| 0.2199 | 31 | 0.2557 |
|
| 385 |
+
| 0.2270 | 32 | 0.3556 |
|
| 386 |
+
| 0.2340 | 33 | 0.2238 |
|
| 387 |
+
| 0.2411 | 34 | 0.2552 |
|
| 388 |
+
| 0.2482 | 35 | 0.2266 |
|
| 389 |
+
| 0.2553 | 36 | 0.4347 |
|
| 390 |
+
| 0.2624 | 37 | 0.2803 |
|
| 391 |
+
| 0.2695 | 38 | 0.1219 |
|
| 392 |
+
| 0.2766 | 39 | 0.1989 |
|
| 393 |
+
| 0.2837 | 40 | 0.2364 |
|
| 394 |
+
| 0.2908 | 41 | 0.2237 |
|
| 395 |
+
| 0.2979 | 42 | 0.1567 |
|
| 396 |
+
| 0.3050 | 43 | 0.2509 |
|
| 397 |
+
| 0.3121 | 44 | 0.16 |
|
| 398 |
+
| 0.3191 | 45 | 0.2148 |
|
| 399 |
+
| 0.3262 | 46 | 0.1953 |
|
| 400 |
+
| 0.3333 | 47 | 0.2447 |
|
| 401 |
+
| 0.3404 | 48 | 0.2001 |
|
| 402 |
+
| 0.3475 | 49 | 0.283 |
|
| 403 |
+
| 0.3546 | 50 | 0.1505 |
|
| 404 |
+
| 0.3617 | 51 | 0.2825 |
|
| 405 |
+
| 0.3688 | 52 | 0.2137 |
|
| 406 |
+
| 0.3759 | 53 | 0.1376 |
|
| 407 |
+
| 0.3830 | 54 | 0.3898 |
|
| 408 |
+
| 0.3901 | 55 | 0.1873 |
|
| 409 |
+
| 0.3972 | 56 | 0.2226 |
|
| 410 |
+
| 0.4043 | 57 | 0.3129 |
|
| 411 |
+
| 0.4113 | 58 | 0.2127 |
|
| 412 |
+
| 0.4184 | 59 | 0.3474 |
|
| 413 |
+
| 0.4255 | 60 | 0.0971 |
|
| 414 |
+
| 0.4326 | 61 | 0.1728 |
|
| 415 |
+
| 0.4397 | 62 | 0.2851 |
|
| 416 |
+
| 0.4468 | 63 | 0.2608 |
|
| 417 |
+
| 0.4539 | 64 | 0.3269 |
|
| 418 |
+
| 0.4610 | 65 | 0.4905 |
|
| 419 |
+
| 0.4681 | 66 | 0.1886 |
|
| 420 |
+
| 0.4752 | 67 | 0.1465 |
|
| 421 |
+
| 0.4823 | 68 | 0.2342 |
|
| 422 |
+
| 0.4894 | 69 | 0.1915 |
|
| 423 |
+
| 0.4965 | 70 | 0.2291 |
|
| 424 |
+
| 0.5035 | 71 | 0.3232 |
|
| 425 |
+
| 0.5106 | 72 | 0.1633 |
|
| 426 |
+
| 0.5177 | 73 | 0.2039 |
|
| 427 |
+
| 0.5248 | 74 | 0.2441 |
|
| 428 |
+
| 0.5319 | 75 | 0.2336 |
|
| 429 |
+
| 0.5390 | 76 | 0.139 |
|
| 430 |
+
| 0.5461 | 77 | 0.4471 |
|
| 431 |
+
| 0.5532 | 78 | 0.1989 |
|
| 432 |
+
| 0.5603 | 79 | 0.2112 |
|
| 433 |
+
| 0.5674 | 80 | 0.1862 |
|
| 434 |
+
| 0.5745 | 81 | 0.2353 |
|
| 435 |
+
| 0.5816 | 82 | 0.2326 |
|
| 436 |
+
| 0.5887 | 83 | 0.3223 |
|
| 437 |
+
| 0.5957 | 84 | 0.2055 |
|
| 438 |
+
| 0.6028 | 85 | 0.2968 |
|
| 439 |
+
| 0.6099 | 86 | 0.2531 |
|
| 440 |
+
| 0.6170 | 87 | 0.2401 |
|
| 441 |
+
| 0.6241 | 88 | 0.1632 |
|
| 442 |
+
| 0.6312 | 89 | 0.4203 |
|
| 443 |
+
| 0.6383 | 90 | 0.1959 |
|
| 444 |
+
| 0.6454 | 91 | 0.2309 |
|
| 445 |
+
| 0.6525 | 92 | 0.3729 |
|
| 446 |
+
| 0.6596 | 93 | 0.2488 |
|
| 447 |
+
| 0.6667 | 94 | 0.1698 |
|
| 448 |
+
| 0.6738 | 95 | 0.267 |
|
| 449 |
+
| 0.6809 | 96 | 0.1658 |
|
| 450 |
+
| 0.6879 | 97 | 0.2158 |
|
| 451 |
+
| 0.6950 | 98 | 0.1665 |
|
| 452 |
+
| 0.7021 | 99 | 0.1897 |
|
| 453 |
+
| 0.7092 | 100 | 0.2159 |
|
| 454 |
+
| 0.7163 | 101 | 0.1932 |
|
| 455 |
+
| 0.7234 | 102 | 0.2236 |
|
| 456 |
+
| 0.7305 | 103 | 0.1287 |
|
| 457 |
+
| 0.7376 | 104 | 0.1917 |
|
| 458 |
+
| 0.7447 | 105 | 0.4039 |
|
| 459 |
+
| 0.7518 | 106 | 0.388 |
|
| 460 |
+
| 0.7589 | 107 | 0.1267 |
|
| 461 |
+
| 0.7660 | 108 | 0.1851 |
|
| 462 |
+
| 0.7730 | 109 | 0.1916 |
|
| 463 |
+
| 0.7801 | 110 | 0.1893 |
|
| 464 |
+
| 0.7872 | 111 | 0.1702 |
|
| 465 |
+
| 0.7943 | 112 | 0.1552 |
|
| 466 |
+
| 0.8014 | 113 | 0.1529 |
|
| 467 |
+
| 0.8085 | 114 | 0.1634 |
|
| 468 |
+
| 0.8156 | 115 | 0.2136 |
|
| 469 |
+
| 0.8227 | 116 | 0.1719 |
|
| 470 |
+
| 0.8298 | 117 | 0.2529 |
|
| 471 |
+
| 0.8369 | 118 | 0.2329 |
|
| 472 |
+
| 0.8440 | 119 | 0.2483 |
|
| 473 |
+
| 0.8511 | 120 | 0.132 |
|
| 474 |
+
| 0.8582 | 121 | 0.182 |
|
| 475 |
+
| 0.8652 | 122 | 0.127 |
|
| 476 |
+
| 0.8723 | 123 | 0.3685 |
|
| 477 |
+
| 0.8794 | 124 | 0.4202 |
|
| 478 |
+
| 0.8865 | 125 | 0.2173 |
|
| 479 |
+
| 0.8936 | 126 | 0.0657 |
|
| 480 |
+
| 0.9007 | 127 | 0.0838 |
|
| 481 |
+
| 0.9078 | 128 | 0.1592 |
|
| 482 |
+
| 0.9149 | 129 | 0.2506 |
|
| 483 |
+
| 0.9220 | 130 | 0.1624 |
|
| 484 |
+
| 0.9291 | 131 | 0.1511 |
|
| 485 |
+
| 0.9362 | 132 | 0.138 |
|
| 486 |
+
| 0.9433 | 133 | 0.2187 |
|
| 487 |
+
| 0.9504 | 134 | 0.2891 |
|
| 488 |
+
| 0.9574 | 135 | 0.158 |
|
| 489 |
+
| 0.9645 | 136 | 0.2595 |
|
| 490 |
+
| 0.9716 | 137 | 0.2911 |
|
| 491 |
+
| 0.9787 | 138 | 0.2141 |
|
| 492 |
+
| 0.9858 | 139 | 0.1723 |
|
| 493 |
+
| 0.9929 | 140 | 0.1847 |
|
| 494 |
+
| 1.0 | 141 | 0.2606 |
|
| 495 |
+
| 1.0071 | 142 | 0.1283 |
|
| 496 |
+
| 1.0142 | 143 | 0.1626 |
|
| 497 |
+
| 1.0213 | 144 | 0.2121 |
|
| 498 |
+
| 1.0284 | 145 | 0.142 |
|
| 499 |
+
| 1.0355 | 146 | 0.1335 |
|
| 500 |
+
| 1.0426 | 147 | 0.1084 |
|
| 501 |
+
| 1.0496 | 148 | 0.15 |
|
| 502 |
+
| 1.0567 | 149 | 0.1459 |
|
| 503 |
+
| 1.0638 | 150 | 0.0674 |
|
| 504 |
+
| 1.0709 | 151 | 0.1393 |
|
| 505 |
+
| 1.0780 | 152 | 0.1582 |
|
| 506 |
+
| 1.0851 | 153 | 0.1295 |
|
| 507 |
+
| 1.0922 | 154 | 0.1402 |
|
| 508 |
+
| 1.0993 | 155 | 0.2266 |
|
| 509 |
+
| 1.1064 | 156 | 0.1025 |
|
| 510 |
+
| 1.1135 | 157 | 0.1616 |
|
| 511 |
+
| 1.1206 | 158 | 0.1795 |
|
| 512 |
+
| 1.1277 | 159 | 0.1583 |
|
| 513 |
+
| 1.1348 | 160 | 0.1624 |
|
| 514 |
+
| 1.1418 | 161 | 0.1068 |
|
| 515 |
+
| 1.1489 | 162 | 0.1301 |
|
| 516 |
+
| 1.1560 | 163 | 0.1792 |
|
| 517 |
+
| 1.1631 | 164 | 0.1656 |
|
| 518 |
+
| 1.1702 | 165 | 0.1666 |
|
| 519 |
+
| 1.1773 | 166 | 0.1031 |
|
| 520 |
+
| 1.1844 | 167 | 0.1092 |
|
| 521 |
+
| 1.1915 | 168 | 0.1668 |
|
| 522 |
+
| 1.1986 | 169 | 0.1218 |
|
| 523 |
+
| 1.2057 | 170 | 0.146 |
|
| 524 |
+
| 1.2128 | 171 | 0.1041 |
|
| 525 |
+
| 1.2199 | 172 | 0.2275 |
|
| 526 |
+
| 1.2270 | 173 | 0.1017 |
|
| 527 |
+
| 1.2340 | 174 | 0.1025 |
|
| 528 |
+
| 1.2411 | 175 | 0.1385 |
|
| 529 |
+
| 1.2482 | 176 | 0.1024 |
|
| 530 |
+
| 1.2553 | 177 | 0.1073 |
|
| 531 |
+
| 1.2624 | 178 | 0.0802 |
|
| 532 |
+
| 1.2695 | 179 | 0.1985 |
|
| 533 |
+
| 1.2766 | 180 | 0.1918 |
|
| 534 |
+
| 1.2837 | 181 | 0.092 |
|
| 535 |
+
| 1.2908 | 182 | 0.1591 |
|
| 536 |
+
| 1.2979 | 183 | 0.2512 |
|
| 537 |
+
| 1.3050 | 184 | 0.2213 |
|
| 538 |
+
| 1.3121 | 185 | 0.129 |
|
| 539 |
+
| 1.3191 | 186 | 0.0759 |
|
| 540 |
+
| 1.3262 | 187 | 0.243 |
|
| 541 |
+
| 1.3333 | 188 | 0.1759 |
|
| 542 |
+
| 1.3404 | 189 | 0.126 |
|
| 543 |
+
| 1.3475 | 190 | 0.1105 |
|
| 544 |
+
| 1.3546 | 191 | 0.1789 |
|
| 545 |
+
| 1.3617 | 192 | 0.1841 |
|
| 546 |
+
| 1.3688 | 193 | 0.1074 |
|
| 547 |
+
| 1.3759 | 194 | 0.1293 |
|
| 548 |
+
| 1.3830 | 195 | 0.1228 |
|
| 549 |
+
| 1.3901 | 196 | 0.1574 |
|
| 550 |
+
| 1.3972 | 197 | 0.1073 |
|
| 551 |
+
| 1.4043 | 198 | 0.1305 |
|
| 552 |
+
| 1.4113 | 199 | 0.1911 |
|
| 553 |
+
| 1.4184 | 200 | 0.1088 |
|
| 554 |
+
| 1.4255 | 201 | 0.111 |
|
| 555 |
+
| 1.4326 | 202 | 0.1639 |
|
| 556 |
+
| 1.4397 | 203 | 0.0944 |
|
| 557 |
+
| 1.4468 | 204 | 0.2008 |
|
| 558 |
+
| 1.4539 | 205 | 0.136 |
|
| 559 |
+
| 1.4610 | 206 | 0.1981 |
|
| 560 |
+
| 1.4681 | 207 | 0.0848 |
|
| 561 |
+
| 1.4752 | 208 | 0.0771 |
|
| 562 |
+
| 1.4823 | 209 | 0.0933 |
|
| 563 |
+
| 1.4894 | 210 | 0.1794 |
|
| 564 |
+
| 1.4965 | 211 | 0.1533 |
|
| 565 |
+
| 1.5035 | 212 | 0.1841 |
|
| 566 |
+
| 1.5106 | 213 | 0.1724 |
|
| 567 |
+
| 1.5177 | 214 | 0.1205 |
|
| 568 |
+
| 1.5248 | 215 | 0.1118 |
|
| 569 |
+
| 1.5319 | 216 | 0.16 |
|
| 570 |
+
| 1.5390 | 217 | 0.2911 |
|
| 571 |
+
| 1.5461 | 218 | 0.1678 |
|
| 572 |
+
| 1.5532 | 219 | 0.1032 |
|
| 573 |
+
| 1.5603 | 220 | 0.1438 |
|
| 574 |
+
| 1.5674 | 221 | 0.1581 |
|
| 575 |
+
| 1.5745 | 222 | 0.1143 |
|
| 576 |
+
| 1.5816 | 223 | 0.1782 |
|
| 577 |
+
| 1.5887 | 224 | 0.2768 |
|
| 578 |
+
| 1.5957 | 225 | 0.1127 |
|
| 579 |
+
| 1.6028 | 226 | 0.1719 |
|
| 580 |
+
| 1.6099 | 227 | 0.2252 |
|
| 581 |
+
| 1.6170 | 228 | 0.2182 |
|
| 582 |
+
| 1.6241 | 229 | 0.287 |
|
| 583 |
+
| 1.6312 | 230 | 0.1314 |
|
| 584 |
+
| 1.6383 | 231 | 0.1951 |
|
| 585 |
+
| 1.6454 | 232 | 0.13 |
|
| 586 |
+
| 1.6525 | 233 | 0.0677 |
|
| 587 |
+
| 1.6596 | 234 | 0.1188 |
|
| 588 |
+
| 1.6667 | 235 | 0.1214 |
|
| 589 |
+
| 1.6738 | 236 | 0.1219 |
|
| 590 |
+
| 1.6809 | 237 | 0.1646 |
|
| 591 |
+
| 1.6879 | 238 | 0.1079 |
|
| 592 |
+
| 1.6950 | 239 | 0.1624 |
|
| 593 |
+
| 1.7021 | 240 | 0.0994 |
|
| 594 |
+
| 1.7092 | 241 | 0.194 |
|
| 595 |
+
| 1.7163 | 242 | 0.1104 |
|
| 596 |
+
| 1.7234 | 243 | 0.1223 |
|
| 597 |
+
| 1.7305 | 244 | 0.0918 |
|
| 598 |
+
| 1.7376 | 245 | 0.0835 |
|
| 599 |
+
| 1.7447 | 246 | 0.0994 |
|
| 600 |
+
| 1.7518 | 247 | 0.1375 |
|
| 601 |
+
| 1.7589 | 248 | 0.1004 |
|
| 602 |
+
| 1.7660 | 249 | 0.1164 |
|
| 603 |
+
| 1.7730 | 250 | 0.1151 |
|
| 604 |
+
| 1.7801 | 251 | 0.0868 |
|
| 605 |
+
| 1.7872 | 252 | 0.2498 |
|
| 606 |
+
| 1.7943 | 253 | 0.0741 |
|
| 607 |
+
| 1.8014 | 254 | 0.1417 |
|
| 608 |
+
| 1.8085 | 255 | 0.0514 |
|
| 609 |
+
| 1.8156 | 256 | 0.2346 |
|
| 610 |
+
| 1.8227 | 257 | 0.2383 |
|
| 611 |
+
| 1.8298 | 258 | 0.1432 |
|
| 612 |
+
| 1.8369 | 259 | 0.1563 |
|
| 613 |
+
| 1.8440 | 260 | 0.1267 |
|
| 614 |
+
| 1.8511 | 261 | 0.1331 |
|
| 615 |
+
| 1.8582 | 262 | 0.1904 |
|
| 616 |
+
| 1.8652 | 263 | 0.0912 |
|
| 617 |
+
| 1.8723 | 264 | 0.214 |
|
| 618 |
+
| 1.8794 | 265 | 0.1846 |
|
| 619 |
+
| 1.8865 | 266 | 0.1378 |
|
| 620 |
+
| 1.8936 | 267 | 0.1012 |
|
| 621 |
+
| 1.9007 | 268 | 0.1468 |
|
| 622 |
+
| 1.9078 | 269 | 0.109 |
|
| 623 |
+
| 1.9149 | 270 | 0.1136 |
|
| 624 |
+
| 1.9220 | 271 | 0.1734 |
|
| 625 |
+
| 1.9291 | 272 | 0.0785 |
|
| 626 |
+
| 1.9362 | 273 | 0.0388 |
|
| 627 |
+
| 1.9433 | 274 | 0.1138 |
|
| 628 |
+
| 1.9504 | 275 | 0.0806 |
|
| 629 |
+
| 1.9574 | 276 | 0.2819 |
|
| 630 |
+
| 1.9645 | 277 | 0.1719 |
|
| 631 |
+
| 1.9716 | 278 | 0.0479 |
|
| 632 |
+
| 1.9787 | 279 | 0.1038 |
|
| 633 |
+
| 1.9858 | 280 | 0.1401 |
|
| 634 |
+
| 1.9929 | 281 | 0.1961 |
|
| 635 |
+
| 2.0 | 282 | 0.1072 |
|
| 636 |
+
| 2.0071 | 283 | 0.1005 |
|
| 637 |
+
| 2.0142 | 284 | 0.147 |
|
| 638 |
+
| 2.0213 | 285 | 0.1011 |
|
| 639 |
+
| 2.0284 | 286 | 0.1304 |
|
| 640 |
+
| 2.0355 | 287 | 0.073 |
|
| 641 |
+
| 2.0426 | 288 | 0.0952 |
|
| 642 |
+
| 2.0496 | 289 | 0.0956 |
|
| 643 |
+
| 2.0567 | 290 | 0.1083 |
|
| 644 |
+
| 2.0638 | 291 | 0.1101 |
|
| 645 |
+
| 2.0709 | 292 | 0.0534 |
|
| 646 |
+
| 2.0780 | 293 | 0.0837 |
|
| 647 |
+
| 2.0851 | 294 | 0.0966 |
|
| 648 |
+
| 2.0922 | 295 | 0.195 |
|
| 649 |
+
| 2.0993 | 296 | 0.0608 |
|
| 650 |
+
| 2.1064 | 297 | 0.0999 |
|
| 651 |
+
| 2.1135 | 298 | 0.1588 |
|
| 652 |
+
| 2.1206 | 299 | 0.1283 |
|
| 653 |
+
| 2.1277 | 300 | 0.0962 |
|
| 654 |
+
| 2.1348 | 301 | 0.0872 |
|
| 655 |
+
| 2.1418 | 302 | 0.0793 |
|
| 656 |
+
| 2.1489 | 303 | 0.1209 |
|
| 657 |
+
| 2.1560 | 304 | 0.1346 |
|
| 658 |
+
| 2.1631 | 305 | 0.131 |
|
| 659 |
+
| 2.1702 | 306 | 0.1081 |
|
| 660 |
+
| 2.1773 | 307 | 0.1109 |
|
| 661 |
+
| 2.1844 | 308 | 0.197 |
|
| 662 |
+
| 2.1915 | 309 | 0.108 |
|
| 663 |
+
| 2.1986 | 310 | 0.1715 |
|
| 664 |
+
| 2.2057 | 311 | 0.0654 |
|
| 665 |
+
| 2.2128 | 312 | 0.1374 |
|
| 666 |
+
| 2.2199 | 313 | 0.0929 |
|
| 667 |
+
| 2.2270 | 314 | 0.033 |
|
| 668 |
+
| 2.2340 | 315 | 0.0903 |
|
| 669 |
+
| 2.2411 | 316 | 0.1417 |
|
| 670 |
+
| 2.2482 | 317 | 0.134 |
|
| 671 |
+
| 2.2553 | 318 | 0.041 |
|
| 672 |
+
| 2.2624 | 319 | 0.0947 |
|
| 673 |
+
| 2.2695 | 320 | 0.0655 |
|
| 674 |
+
| 2.2766 | 321 | 0.0525 |
|
| 675 |
+
| 2.2837 | 322 | 0.0547 |
|
| 676 |
+
| 2.2908 | 323 | 0.1342 |
|
| 677 |
+
| 2.2979 | 324 | 0.1088 |
|
| 678 |
+
| 2.3050 | 325 | 0.162 |
|
| 679 |
+
| 2.3121 | 326 | 0.0962 |
|
| 680 |
+
| 2.3191 | 327 | 0.154 |
|
| 681 |
+
| 2.3262 | 328 | 0.0935 |
|
| 682 |
+
| 2.3333 | 329 | 0.1186 |
|
| 683 |
+
| 2.3404 | 330 | 0.1192 |
|
| 684 |
+
| 2.3475 | 331 | 0.1075 |
|
| 685 |
+
| 2.3546 | 332 | 0.12 |
|
| 686 |
+
| 2.3617 | 333 | 0.0679 |
|
| 687 |
+
| 2.3688 | 334 | 0.1087 |
|
| 688 |
+
| 2.3759 | 335 | 0.1493 |
|
| 689 |
+
| 2.3830 | 336 | 0.085 |
|
| 690 |
+
| 2.3901 | 337 | 0.1784 |
|
| 691 |
+
| 2.3972 | 338 | 0.0567 |
|
| 692 |
+
| 2.4043 | 339 | 0.1842 |
|
| 693 |
+
| 2.4113 | 340 | 0.183 |
|
| 694 |
+
| 2.4184 | 341 | 0.1108 |
|
| 695 |
+
| 2.4255 | 342 | 0.1405 |
|
| 696 |
+
| 2.4326 | 343 | 0.2477 |
|
| 697 |
+
| 2.4397 | 344 | 0.2376 |
|
| 698 |
+
| 2.4468 | 345 | 0.1469 |
|
| 699 |
+
| 2.4539 | 346 | 0.1048 |
|
| 700 |
+
| 2.4610 | 347 | 0.1153 |
|
| 701 |
+
| 2.4681 | 348 | 0.1167 |
|
| 702 |
+
| 2.4752 | 349 | 0.1605 |
|
| 703 |
+
| 2.4823 | 350 | 0.1479 |
|
| 704 |
+
| 2.4894 | 351 | 0.0684 |
|
| 705 |
+
| 2.4965 | 352 | 0.0515 |
|
| 706 |
+
| 2.5035 | 353 | 0.1035 |
|
| 707 |
+
| 2.5106 | 354 | 0.1488 |
|
| 708 |
+
| 2.5177 | 355 | 0.0274 |
|
| 709 |
+
| 2.5248 | 356 | 0.0706 |
|
| 710 |
+
| 2.5319 | 357 | 0.1541 |
|
| 711 |
+
| 2.5390 | 358 | 0.1331 |
|
| 712 |
+
| 2.5461 | 359 | 0.0911 |
|
| 713 |
+
| 2.5532 | 360 | 0.0606 |
|
| 714 |
+
| 2.5603 | 361 | 0.1612 |
|
| 715 |
+
| 2.5674 | 362 | 0.2752 |
|
| 716 |
+
| 2.5745 | 363 | 0.1436 |
|
| 717 |
+
| 2.5816 | 364 | 0.1257 |
|
| 718 |
+
| 2.5887 | 365 | 0.1174 |
|
| 719 |
+
| 2.5957 | 366 | 0.0415 |
|
| 720 |
+
| 2.6028 | 367 | 0.0918 |
|
| 721 |
+
| 2.6099 | 368 | 0.0899 |
|
| 722 |
+
| 2.6170 | 369 | 0.1136 |
|
| 723 |
+
| 2.6241 | 370 | 0.1337 |
|
| 724 |
+
| 2.6312 | 371 | 0.1948 |
|
| 725 |
+
| 2.6383 | 372 | 0.1482 |
|
| 726 |
+
| 2.6454 | 373 | 0.1209 |
|
| 727 |
+
| 2.6525 | 374 | 0.1082 |
|
| 728 |
+
| 2.6596 | 375 | 0.1948 |
|
| 729 |
+
| 2.6667 | 376 | 0.1029 |
|
| 730 |
+
| 2.6738 | 377 | 0.0783 |
|
| 731 |
+
| 2.6809 | 378 | 0.0844 |
|
| 732 |
+
| 2.6879 | 379 | 0.1045 |
|
| 733 |
+
| 2.6950 | 380 | 0.0982 |
|
| 734 |
+
| 2.7021 | 381 | 0.075 |
|
| 735 |
+
| 2.7092 | 382 | 0.15 |
|
| 736 |
+
| 2.7163 | 383 | 0.1155 |
|
| 737 |
+
| 2.7234 | 384 | 0.1334 |
|
| 738 |
+
| 2.7305 | 385 | 0.0767 |
|
| 739 |
+
| 2.7376 | 386 | 0.0476 |
|
| 740 |
+
| 2.7447 | 387 | 0.068 |
|
| 741 |
+
| 2.7518 | 388 | 0.0967 |
|
| 742 |
+
| 2.7589 | 389 | 0.0953 |
|
| 743 |
+
| 2.7660 | 390 | 0.1307 |
|
| 744 |
+
| 2.7730 | 391 | 0.0923 |
|
| 745 |
+
| 2.7801 | 392 | 0.1159 |
|
| 746 |
+
| 2.7872 | 393 | 0.0769 |
|
| 747 |
+
| 2.7943 | 394 | 0.0993 |
|
| 748 |
+
| 2.8014 | 395 | 0.1018 |
|
| 749 |
+
| 2.8085 | 396 | 0.0783 |
|
| 750 |
+
| 2.8156 | 397 | 0.0792 |
|
| 751 |
+
| 2.8227 | 398 | 0.0914 |
|
| 752 |
+
| 2.8298 | 399 | 0.0821 |
|
| 753 |
+
| 2.8369 | 400 | 0.0947 |
|
| 754 |
+
| 2.8440 | 401 | 0.0622 |
|
| 755 |
+
| 2.8511 | 402 | 0.1858 |
|
| 756 |
+
| 2.8582 | 403 | 0.1977 |
|
| 757 |
+
| 2.8652 | 404 | 0.0398 |
|
| 758 |
+
| 2.8723 | 405 | 0.0784 |
|
| 759 |
+
| 2.8794 | 406 | 0.1622 |
|
| 760 |
+
| 2.8865 | 407 | 0.1213 |
|
| 761 |
+
| 2.8936 | 408 | 0.1867 |
|
| 762 |
+
| 2.9007 | 409 | 0.1257 |
|
| 763 |
+
| 2.9078 | 410 | 0.1366 |
|
| 764 |
+
| 2.9149 | 411 | 0.0983 |
|
| 765 |
+
| 2.9220 | 412 | 0.0967 |
|
| 766 |
+
| 2.9291 | 413 | 0.0398 |
|
| 767 |
+
| 2.9362 | 414 | 0.1582 |
|
| 768 |
+
| 2.9433 | 415 | 0.123 |
|
| 769 |
+
| 2.9504 | 416 | 0.1768 |
|
| 770 |
+
| 2.9574 | 417 | 0.131 |
|
| 771 |
+
| 2.9645 | 418 | 0.0731 |
|
| 772 |
+
| 2.9716 | 419 | 0.074 |
|
| 773 |
+
| 2.9787 | 420 | 0.1176 |
|
| 774 |
+
| 2.9858 | 421 | 0.0984 |
|
| 775 |
+
| 2.9929 | 422 | 0.0834 |
|
| 776 |
+
| 3.0 | 423 | 0.1985 |
|
| 777 |
+
|
| 778 |
+
</details>
|
| 779 |
+
|
| 780 |
+
### Framework Versions
|
| 781 |
+
- Python: 3.10.14
|
| 782 |
+
- Sentence Transformers: 5.1.1
|
| 783 |
+
- Transformers: 4.56.2
|
| 784 |
+
- PyTorch: 2.8.0+cu128
|
| 785 |
+
- Accelerate: 1.10.1
|
| 786 |
+
- Datasets: 4.1.1
|
| 787 |
+
- Tokenizers: 0.22.1
|
| 788 |
+
|
| 789 |
+
## Citation
|
| 790 |
+
|
| 791 |
+
### BibTeX
|
| 792 |
+
|
| 793 |
+
#### Sentence Transformers
|
| 794 |
+
```bibtex
|
| 795 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 796 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 797 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 798 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 799 |
+
month = "11",
|
| 800 |
+
year = "2019",
|
| 801 |
+
publisher = "Association for Computational Linguistics",
|
| 802 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 803 |
+
}
|
| 804 |
+
```
|
| 805 |
+
|
| 806 |
+
#### MultipleNegativesRankingLoss
|
| 807 |
+
```bibtex
|
| 808 |
+
@misc{henderson2017efficient,
|
| 809 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
| 810 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
| 811 |
+
year={2017},
|
| 812 |
+
eprint={1705.00652},
|
| 813 |
+
archivePrefix={arXiv},
|
| 814 |
+
primaryClass={cs.CL}
|
| 815 |
+
}
|
| 816 |
+
```
|
| 817 |
+
|
| 818 |
+
<!--
|
| 819 |
+
## Glossary
|
| 820 |
+
|
| 821 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 822 |
+
-->
|
| 823 |
+
|
| 824 |
+
<!--
|
| 825 |
+
## Model Card Authors
|
| 826 |
+
|
| 827 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 828 |
+
-->
|
| 829 |
+
|
| 830 |
+
<!--
|
| 831 |
+
## Model Card Contact
|
| 832 |
+
|
| 833 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 834 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"dtype": "float32",
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 384,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 1536,
|
| 14 |
+
"layer_norm_eps": 1e-12,
|
| 15 |
+
"max_position_embeddings": 512,
|
| 16 |
+
"model_type": "bert",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 6,
|
| 19 |
+
"pad_token_id": 0,
|
| 20 |
+
"position_embedding_type": "absolute",
|
| 21 |
+
"transformers_version": "4.56.2",
|
| 22 |
+
"type_vocab_size": 2,
|
| 23 |
+
"use_cache": true,
|
| 24 |
+
"vocab_size": 30522
|
| 25 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "5.1.1",
|
| 4 |
+
"transformers": "4.56.2",
|
| 5 |
+
"pytorch": "2.8.0+cu128"
|
| 6 |
+
},
|
| 7 |
+
"model_type": "SentenceTransformer",
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
| 11 |
+
},
|
| 12 |
+
"default_prompt_name": null,
|
| 13 |
+
"similarity_fn_name": "cosine"
|
| 14 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a06c4761de826a9dbb4dcfdf49cfe05925a5ffeed26ea0d1c68cb6f6d7656e7a
|
| 3 |
+
size 90864192
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 256,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"max_length": 128,
|
| 51 |
+
"model_max_length": 256,
|
| 52 |
+
"never_split": null,
|
| 53 |
+
"pad_to_multiple_of": null,
|
| 54 |
+
"pad_token": "[PAD]",
|
| 55 |
+
"pad_token_type_id": 0,
|
| 56 |
+
"padding_side": "right",
|
| 57 |
+
"sep_token": "[SEP]",
|
| 58 |
+
"stride": 0,
|
| 59 |
+
"strip_accents": null,
|
| 60 |
+
"tokenize_chinese_chars": true,
|
| 61 |
+
"tokenizer_class": "BertTokenizer",
|
| 62 |
+
"truncation_side": "right",
|
| 63 |
+
"truncation_strategy": "longest_first",
|
| 64 |
+
"unk_token": "[UNK]"
|
| 65 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|