Devy1 commited on
Commit
843be27
·
verified ·
1 Parent(s): ffb531f

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:9020
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: sentence-transformers/all-MiniLM-L6-v2
11
+ widget:
12
+ - source_sentence: python multiprocessing show cpu count
13
+ sentences:
14
+ - "def unique(seq):\n \"\"\"Return the unique elements of a collection even if\
15
+ \ those elements are\n unhashable and unsortable, like dicts and sets\"\"\
16
+ \"\n cleaned = []\n for each in seq:\n if each not in cleaned:\n\
17
+ \ cleaned.append(each)\n return cleaned"
18
+ - "def is_in(self, point_x, point_y):\n \"\"\" Test if a point is within\
19
+ \ this polygonal region \"\"\"\n\n point_array = array(((point_x, point_y),))\n\
20
+ \ vertices = array(self.points)\n winding = self.inside_rule ==\
21
+ \ \"winding\"\n result = points_in_polygon(point_array, vertices, winding)\n\
22
+ \ return result[0]"
23
+ - "def machine_info():\n \"\"\"Retrieve core and memory information for the current\
24
+ \ machine.\n \"\"\"\n import psutil\n BYTES_IN_GIG = 1073741824.0\n \
25
+ \ free_bytes = psutil.virtual_memory().total\n return [{\"memory\": float(\"\
26
+ %.1f\" % (free_bytes / BYTES_IN_GIG)), \"cores\": multiprocessing.cpu_count(),\n\
27
+ \ \"name\": socket.gethostname()}]"
28
+ - source_sentence: python subplot set the whole title
29
+ sentences:
30
+ - "def set_title(self, title, **kwargs):\n \"\"\"Sets the title on the underlying\
31
+ \ matplotlib AxesSubplot.\"\"\"\n ax = self.get_axes()\n ax.set_title(title,\
32
+ \ **kwargs)"
33
+ - "def moving_average(array, n=3):\n \"\"\"\n Calculates the moving average\
34
+ \ of an array.\n\n Parameters\n ----------\n array : array\n The\
35
+ \ array to have the moving average taken of\n n : int\n The number of\
36
+ \ points of moving average to take\n \n Returns\n -------\n MovingAverageArray\
37
+ \ : array\n The n-point moving average of the input array\n \"\"\"\n\
38
+ \ ret = _np.cumsum(array, dtype=float)\n ret[n:] = ret[n:] - ret[:-n]\n\
39
+ \ return ret[n - 1:] / n"
40
+ - "def to_query_parameters(parameters):\n \"\"\"Converts DB-API parameter values\
41
+ \ into query parameters.\n\n :type parameters: Mapping[str, Any] or Sequence[Any]\n\
42
+ \ :param parameters: A dictionary or sequence of query parameter values.\n\n\
43
+ \ :rtype: List[google.cloud.bigquery.query._AbstractQueryParameter]\n :returns:\
44
+ \ A list of query parameters.\n \"\"\"\n if parameters is None:\n \
45
+ \ return []\n\n if isinstance(parameters, collections_abc.Mapping):\n \
46
+ \ return to_query_parameters_dict(parameters)\n\n return to_query_parameters_list(parameters)"
47
+ - source_sentence: python merge two set to dict
48
+ sentences:
49
+ - "def make_regex(separator):\n \"\"\"Utility function to create regexp for matching\
50
+ \ escaped separators\n in strings.\n\n \"\"\"\n return re.compile(r'(?:'\
51
+ \ + re.escape(separator) + r')?((?:[^' +\n re.escape(separator)\
52
+ \ + r'\\\\]|\\\\.)+)')"
53
+ - "def csvtolist(inputstr):\n \"\"\" converts a csv string into a list \"\"\"\
54
+ \n reader = csv.reader([inputstr], skipinitialspace=True)\n output = []\n\
55
+ \ for r in reader:\n output += r\n return output"
56
+ - "def dict_merge(set1, set2):\n \"\"\"Joins two dictionaries.\"\"\"\n return\
57
+ \ dict(list(set1.items()) + list(set2.items()))"
58
+ - source_sentence: python string % substitution float
59
+ sentences:
60
+ - "def _configure_logger():\n \"\"\"Configure the logging module.\"\"\"\n \
61
+ \ if not app.debug:\n _configure_logger_for_production(logging.getLogger())\n\
62
+ \ elif not app.testing:\n _configure_logger_for_debugging(logging.getLogger())"
63
+ - "def __set__(self, instance, value):\n \"\"\" Set a related object for\
64
+ \ an instance. \"\"\"\n\n self.map[id(instance)] = (weakref.ref(instance),\
65
+ \ value)"
66
+ - "def format_float(value): # not used\n \"\"\"Modified form of the 'g' format\
67
+ \ specifier.\n \"\"\"\n string = \"{:g}\".format(value).replace(\"e+\",\
68
+ \ \"e\")\n string = re.sub(\"e(-?)0*(\\d+)\", r\"e\\1\\2\", string)\n return\
69
+ \ string"
70
+ - source_sentence: bottom 5 rows in python
71
+ sentences:
72
+ - "def refresh(self, document):\n\t\t\"\"\" Load a new copy of a document from the\
73
+ \ database. does not\n\t\t\treplace the old one \"\"\"\n\t\ttry:\n\t\t\told_cache_size\
74
+ \ = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\
75
+ \t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\
76
+ \t\treturn obj"
77
+ - "def table_top_abs(self):\n \"\"\"Returns the absolute position of table\
78
+ \ top\"\"\"\n table_height = np.array([0, 0, self.table_full_size[2]])\n\
79
+ \ return string_to_array(self.floor.get(\"pos\")) + table_height"
80
+ - "def get_dimension_array(array):\n \"\"\"\n Get dimension of an array getting\
81
+ \ the number of rows and the max num of\n columns.\n \"\"\"\n if all(isinstance(el,\
82
+ \ list) for el in array):\n result = [len(array), len(max([x for x in array],\
83
+ \ key=len,))]\n\n # elif array and isinstance(array, list):\n else:\n \
84
+ \ result = [len(array), 1]\n\n return result"
85
+ pipeline_tag: sentence-similarity
86
+ library_name: sentence-transformers
87
+ ---
88
+
89
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
90
+
91
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
92
+
93
+ ## Model Details
94
+
95
+ ### Model Description
96
+ - **Model Type:** Sentence Transformer
97
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
98
+ - **Maximum Sequence Length:** 256 tokens
99
+ - **Output Dimensionality:** 384 dimensions
100
+ - **Similarity Function:** Cosine Similarity
101
+ <!-- - **Training Dataset:** Unknown -->
102
+ <!-- - **Language:** Unknown -->
103
+ <!-- - **License:** Unknown -->
104
+
105
+ ### Model Sources
106
+
107
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
108
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
109
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
110
+
111
+ ### Full Model Architecture
112
+
113
+ ```
114
+ SentenceTransformer(
115
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
116
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
117
+ (2): Normalize()
118
+ )
119
+ ```
120
+
121
+ ## Usage
122
+
123
+ ### Direct Usage (Sentence Transformers)
124
+
125
+ First install the Sentence Transformers library:
126
+
127
+ ```bash
128
+ pip install -U sentence-transformers
129
+ ```
130
+
131
+ Then you can load this model and run inference.
132
+ ```python
133
+ from sentence_transformers import SentenceTransformer
134
+
135
+ # Download from the 🤗 Hub
136
+ model = SentenceTransformer("Devy1/MiniLM-cosqa-64")
137
+ # Run inference
138
+ sentences = [
139
+ 'bottom 5 rows in python',
140
+ 'def table_top_abs(self):\n """Returns the absolute position of table top"""\n table_height = np.array([0, 0, self.table_full_size[2]])\n return string_to_array(self.floor.get("pos")) + table_height',
141
+ 'def refresh(self, document):\n\t\t""" Load a new copy of a document from the database. does not\n\t\t\treplace the old one """\n\t\ttry:\n\t\t\told_cache_size = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\t\treturn obj',
142
+ ]
143
+ embeddings = model.encode(sentences)
144
+ print(embeddings.shape)
145
+ # [3, 384]
146
+
147
+ # Get the similarity scores for the embeddings
148
+ similarities = model.similarity(embeddings, embeddings)
149
+ print(similarities)
150
+ # tensor([[ 1.0000, 0.4847, -0.0572],
151
+ # [ 0.4847, 1.0000, -0.0541],
152
+ # [-0.0572, -0.0541, 1.0000]])
153
+ ```
154
+
155
+ <!--
156
+ ### Direct Usage (Transformers)
157
+
158
+ <details><summary>Click to see the direct usage in Transformers</summary>
159
+
160
+ </details>
161
+ -->
162
+
163
+ <!--
164
+ ### Downstream Usage (Sentence Transformers)
165
+
166
+ You can finetune this model on your own dataset.
167
+
168
+ <details><summary>Click to expand</summary>
169
+
170
+ </details>
171
+ -->
172
+
173
+ <!--
174
+ ### Out-of-Scope Use
175
+
176
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
177
+ -->
178
+
179
+ <!--
180
+ ## Bias, Risks and Limitations
181
+
182
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
183
+ -->
184
+
185
+ <!--
186
+ ### Recommendations
187
+
188
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
189
+ -->
190
+
191
+ ## Training Details
192
+
193
+ ### Training Dataset
194
+
195
+ #### Unnamed Dataset
196
+
197
+ * Size: 9,020 training samples
198
+ * Columns: <code>anchor</code> and <code>positive</code>
199
+ * Approximate statistics based on the first 1000 samples:
200
+ | | anchor | positive |
201
+ |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
202
+ | type | string | string |
203
+ | details | <ul><li>min: 6 tokens</li><li>mean: 9.67 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 40 tokens</li><li>mean: 86.17 tokens</li><li>max: 256 tokens</li></ul> |
204
+ * Samples:
205
+ | anchor | positive |
206
+ |:--------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
207
+ | <code>1d array in char datatype in python</code> | <code>def _convert_to_array(array_like, dtype):<br> """<br> Convert Matrix attributes which are array-like or buffer to array.<br> """<br> if isinstance(array_like, bytes):<br> return np.frombuffer(array_like, dtype=dtype)<br> return np.asarray(array_like, dtype=dtype)</code> |
208
+ | <code>python condition non none</code> | <code>def _not(condition=None, **kwargs):<br> """<br> Return the opposite of input condition.<br><br> :param condition: condition to process.<br><br> :result: not condition.<br> :rtype: bool<br> """<br><br> result = True<br><br> if condition is not None:<br> result = not run(condition, **kwargs)<br><br> return result</code> |
209
+ | <code>accessing a column from a matrix in python</code> | <code>def get_column(self, X, column):<br> """Return a column of the given matrix.<br><br> Args:<br> X: `numpy.ndarray` or `pandas.DataFrame`.<br> column: `int` or `str`.<br><br> Returns:<br> np.ndarray: Selected column.<br> """<br> if isinstance(X, pd.DataFrame):<br> return X[column].values<br><br> return X[:, column]</code> |
210
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
211
+ ```json
212
+ {
213
+ "scale": 20.0,
214
+ "similarity_fct": "cos_sim",
215
+ "gather_across_devices": false
216
+ }
217
+ ```
218
+
219
+ ### Training Hyperparameters
220
+ #### Non-Default Hyperparameters
221
+
222
+ - `per_device_train_batch_size`: 64
223
+ - `fp16`: True
224
+
225
+ #### All Hyperparameters
226
+ <details><summary>Click to expand</summary>
227
+
228
+ - `overwrite_output_dir`: False
229
+ - `do_predict`: False
230
+ - `eval_strategy`: no
231
+ - `prediction_loss_only`: True
232
+ - `per_device_train_batch_size`: 64
233
+ - `per_device_eval_batch_size`: 8
234
+ - `per_gpu_train_batch_size`: None
235
+ - `per_gpu_eval_batch_size`: None
236
+ - `gradient_accumulation_steps`: 1
237
+ - `eval_accumulation_steps`: None
238
+ - `torch_empty_cache_steps`: None
239
+ - `learning_rate`: 5e-05
240
+ - `weight_decay`: 0.0
241
+ - `adam_beta1`: 0.9
242
+ - `adam_beta2`: 0.999
243
+ - `adam_epsilon`: 1e-08
244
+ - `max_grad_norm`: 1.0
245
+ - `num_train_epochs`: 3
246
+ - `max_steps`: -1
247
+ - `lr_scheduler_type`: linear
248
+ - `lr_scheduler_kwargs`: {}
249
+ - `warmup_ratio`: 0.0
250
+ - `warmup_steps`: 0
251
+ - `log_level`: passive
252
+ - `log_level_replica`: warning
253
+ - `log_on_each_node`: True
254
+ - `logging_nan_inf_filter`: True
255
+ - `save_safetensors`: True
256
+ - `save_on_each_node`: False
257
+ - `save_only_model`: False
258
+ - `restore_callback_states_from_checkpoint`: False
259
+ - `no_cuda`: False
260
+ - `use_cpu`: False
261
+ - `use_mps_device`: False
262
+ - `seed`: 42
263
+ - `data_seed`: None
264
+ - `jit_mode_eval`: False
265
+ - `use_ipex`: False
266
+ - `bf16`: False
267
+ - `fp16`: True
268
+ - `fp16_opt_level`: O1
269
+ - `half_precision_backend`: auto
270
+ - `bf16_full_eval`: False
271
+ - `fp16_full_eval`: False
272
+ - `tf32`: None
273
+ - `local_rank`: 0
274
+ - `ddp_backend`: None
275
+ - `tpu_num_cores`: None
276
+ - `tpu_metrics_debug`: False
277
+ - `debug`: []
278
+ - `dataloader_drop_last`: False
279
+ - `dataloader_num_workers`: 0
280
+ - `dataloader_prefetch_factor`: None
281
+ - `past_index`: -1
282
+ - `disable_tqdm`: False
283
+ - `remove_unused_columns`: True
284
+ - `label_names`: None
285
+ - `load_best_model_at_end`: False
286
+ - `ignore_data_skip`: False
287
+ - `fsdp`: []
288
+ - `fsdp_min_num_params`: 0
289
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
290
+ - `fsdp_transformer_layer_cls_to_wrap`: None
291
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
292
+ - `parallelism_config`: None
293
+ - `deepspeed`: None
294
+ - `label_smoothing_factor`: 0.0
295
+ - `optim`: adamw_torch_fused
296
+ - `optim_args`: None
297
+ - `adafactor`: False
298
+ - `group_by_length`: False
299
+ - `length_column_name`: length
300
+ - `ddp_find_unused_parameters`: None
301
+ - `ddp_bucket_cap_mb`: None
302
+ - `ddp_broadcast_buffers`: False
303
+ - `dataloader_pin_memory`: True
304
+ - `dataloader_persistent_workers`: False
305
+ - `skip_memory_metrics`: True
306
+ - `use_legacy_prediction_loop`: False
307
+ - `push_to_hub`: False
308
+ - `resume_from_checkpoint`: None
309
+ - `hub_model_id`: None
310
+ - `hub_strategy`: every_save
311
+ - `hub_private_repo`: None
312
+ - `hub_always_push`: False
313
+ - `hub_revision`: None
314
+ - `gradient_checkpointing`: False
315
+ - `gradient_checkpointing_kwargs`: None
316
+ - `include_inputs_for_metrics`: False
317
+ - `include_for_metrics`: []
318
+ - `eval_do_concat_batches`: True
319
+ - `fp16_backend`: auto
320
+ - `push_to_hub_model_id`: None
321
+ - `push_to_hub_organization`: None
322
+ - `mp_parameters`:
323
+ - `auto_find_batch_size`: False
324
+ - `full_determinism`: False
325
+ - `torchdynamo`: None
326
+ - `ray_scope`: last
327
+ - `ddp_timeout`: 1800
328
+ - `torch_compile`: False
329
+ - `torch_compile_backend`: None
330
+ - `torch_compile_mode`: None
331
+ - `include_tokens_per_second`: False
332
+ - `include_num_input_tokens_seen`: False
333
+ - `neftune_noise_alpha`: None
334
+ - `optim_target_modules`: None
335
+ - `batch_eval_metrics`: False
336
+ - `eval_on_start`: False
337
+ - `use_liger_kernel`: False
338
+ - `liger_kernel_config`: None
339
+ - `eval_use_gather_object`: False
340
+ - `average_tokens_across_devices`: False
341
+ - `prompts`: None
342
+ - `batch_sampler`: batch_sampler
343
+ - `multi_dataset_batch_sampler`: proportional
344
+ - `router_mapping`: {}
345
+ - `learning_rate_mapping`: {}
346
+
347
+ </details>
348
+
349
+ ### Training Logs
350
+ <details><summary>Click to expand</summary>
351
+
352
+ | Epoch | Step | Training Loss |
353
+ |:------:|:----:|:-------------:|
354
+ | 0.0071 | 1 | 0.4603 |
355
+ | 0.0142 | 2 | 0.3179 |
356
+ | 0.0213 | 3 | 0.1802 |
357
+ | 0.0284 | 4 | 0.2268 |
358
+ | 0.0355 | 5 | 0.2288 |
359
+ | 0.0426 | 6 | 0.1769 |
360
+ | 0.0496 | 7 | 0.1555 |
361
+ | 0.0567 | 8 | 0.2626 |
362
+ | 0.0638 | 9 | 0.3319 |
363
+ | 0.0709 | 10 | 0.28 |
364
+ | 0.0780 | 11 | 0.3356 |
365
+ | 0.0851 | 12 | 0.3241 |
366
+ | 0.0922 | 13 | 0.2933 |
367
+ | 0.0993 | 14 | 0.3929 |
368
+ | 0.1064 | 15 | 0.1861 |
369
+ | 0.1135 | 16 | 0.1983 |
370
+ | 0.1206 | 17 | 0.1605 |
371
+ | 0.1277 | 18 | 0.0918 |
372
+ | 0.1348 | 19 | 0.2831 |
373
+ | 0.1418 | 20 | 0.1709 |
374
+ | 0.1489 | 21 | 0.1984 |
375
+ | 0.1560 | 22 | 0.2657 |
376
+ | 0.1631 | 23 | 0.1619 |
377
+ | 0.1702 | 24 | 0.1728 |
378
+ | 0.1773 | 25 | 0.1791 |
379
+ | 0.1844 | 26 | 0.2429 |
380
+ | 0.1915 | 27 | 0.2743 |
381
+ | 0.1986 | 28 | 0.2813 |
382
+ | 0.2057 | 29 | 0.2192 |
383
+ | 0.2128 | 30 | 0.166 |
384
+ | 0.2199 | 31 | 0.2557 |
385
+ | 0.2270 | 32 | 0.3556 |
386
+ | 0.2340 | 33 | 0.2238 |
387
+ | 0.2411 | 34 | 0.2552 |
388
+ | 0.2482 | 35 | 0.2266 |
389
+ | 0.2553 | 36 | 0.4347 |
390
+ | 0.2624 | 37 | 0.2803 |
391
+ | 0.2695 | 38 | 0.1219 |
392
+ | 0.2766 | 39 | 0.1989 |
393
+ | 0.2837 | 40 | 0.2364 |
394
+ | 0.2908 | 41 | 0.2237 |
395
+ | 0.2979 | 42 | 0.1567 |
396
+ | 0.3050 | 43 | 0.2509 |
397
+ | 0.3121 | 44 | 0.16 |
398
+ | 0.3191 | 45 | 0.2148 |
399
+ | 0.3262 | 46 | 0.1953 |
400
+ | 0.3333 | 47 | 0.2447 |
401
+ | 0.3404 | 48 | 0.2001 |
402
+ | 0.3475 | 49 | 0.283 |
403
+ | 0.3546 | 50 | 0.1505 |
404
+ | 0.3617 | 51 | 0.2825 |
405
+ | 0.3688 | 52 | 0.2137 |
406
+ | 0.3759 | 53 | 0.1376 |
407
+ | 0.3830 | 54 | 0.3898 |
408
+ | 0.3901 | 55 | 0.1873 |
409
+ | 0.3972 | 56 | 0.2226 |
410
+ | 0.4043 | 57 | 0.3129 |
411
+ | 0.4113 | 58 | 0.2127 |
412
+ | 0.4184 | 59 | 0.3474 |
413
+ | 0.4255 | 60 | 0.0971 |
414
+ | 0.4326 | 61 | 0.1728 |
415
+ | 0.4397 | 62 | 0.2851 |
416
+ | 0.4468 | 63 | 0.2608 |
417
+ | 0.4539 | 64 | 0.3269 |
418
+ | 0.4610 | 65 | 0.4905 |
419
+ | 0.4681 | 66 | 0.1886 |
420
+ | 0.4752 | 67 | 0.1465 |
421
+ | 0.4823 | 68 | 0.2342 |
422
+ | 0.4894 | 69 | 0.1915 |
423
+ | 0.4965 | 70 | 0.2291 |
424
+ | 0.5035 | 71 | 0.3232 |
425
+ | 0.5106 | 72 | 0.1633 |
426
+ | 0.5177 | 73 | 0.2039 |
427
+ | 0.5248 | 74 | 0.2441 |
428
+ | 0.5319 | 75 | 0.2336 |
429
+ | 0.5390 | 76 | 0.139 |
430
+ | 0.5461 | 77 | 0.4471 |
431
+ | 0.5532 | 78 | 0.1989 |
432
+ | 0.5603 | 79 | 0.2112 |
433
+ | 0.5674 | 80 | 0.1862 |
434
+ | 0.5745 | 81 | 0.2353 |
435
+ | 0.5816 | 82 | 0.2326 |
436
+ | 0.5887 | 83 | 0.3223 |
437
+ | 0.5957 | 84 | 0.2055 |
438
+ | 0.6028 | 85 | 0.2968 |
439
+ | 0.6099 | 86 | 0.2531 |
440
+ | 0.6170 | 87 | 0.2401 |
441
+ | 0.6241 | 88 | 0.1632 |
442
+ | 0.6312 | 89 | 0.4203 |
443
+ | 0.6383 | 90 | 0.1959 |
444
+ | 0.6454 | 91 | 0.2309 |
445
+ | 0.6525 | 92 | 0.3729 |
446
+ | 0.6596 | 93 | 0.2488 |
447
+ | 0.6667 | 94 | 0.1698 |
448
+ | 0.6738 | 95 | 0.267 |
449
+ | 0.6809 | 96 | 0.1658 |
450
+ | 0.6879 | 97 | 0.2158 |
451
+ | 0.6950 | 98 | 0.1665 |
452
+ | 0.7021 | 99 | 0.1897 |
453
+ | 0.7092 | 100 | 0.2159 |
454
+ | 0.7163 | 101 | 0.1932 |
455
+ | 0.7234 | 102 | 0.2236 |
456
+ | 0.7305 | 103 | 0.1287 |
457
+ | 0.7376 | 104 | 0.1917 |
458
+ | 0.7447 | 105 | 0.4039 |
459
+ | 0.7518 | 106 | 0.388 |
460
+ | 0.7589 | 107 | 0.1267 |
461
+ | 0.7660 | 108 | 0.1851 |
462
+ | 0.7730 | 109 | 0.1916 |
463
+ | 0.7801 | 110 | 0.1893 |
464
+ | 0.7872 | 111 | 0.1702 |
465
+ | 0.7943 | 112 | 0.1552 |
466
+ | 0.8014 | 113 | 0.1529 |
467
+ | 0.8085 | 114 | 0.1634 |
468
+ | 0.8156 | 115 | 0.2136 |
469
+ | 0.8227 | 116 | 0.1719 |
470
+ | 0.8298 | 117 | 0.2529 |
471
+ | 0.8369 | 118 | 0.2329 |
472
+ | 0.8440 | 119 | 0.2483 |
473
+ | 0.8511 | 120 | 0.132 |
474
+ | 0.8582 | 121 | 0.182 |
475
+ | 0.8652 | 122 | 0.127 |
476
+ | 0.8723 | 123 | 0.3685 |
477
+ | 0.8794 | 124 | 0.4202 |
478
+ | 0.8865 | 125 | 0.2173 |
479
+ | 0.8936 | 126 | 0.0657 |
480
+ | 0.9007 | 127 | 0.0838 |
481
+ | 0.9078 | 128 | 0.1592 |
482
+ | 0.9149 | 129 | 0.2506 |
483
+ | 0.9220 | 130 | 0.1624 |
484
+ | 0.9291 | 131 | 0.1511 |
485
+ | 0.9362 | 132 | 0.138 |
486
+ | 0.9433 | 133 | 0.2187 |
487
+ | 0.9504 | 134 | 0.2891 |
488
+ | 0.9574 | 135 | 0.158 |
489
+ | 0.9645 | 136 | 0.2595 |
490
+ | 0.9716 | 137 | 0.2911 |
491
+ | 0.9787 | 138 | 0.2141 |
492
+ | 0.9858 | 139 | 0.1723 |
493
+ | 0.9929 | 140 | 0.1847 |
494
+ | 1.0 | 141 | 0.2606 |
495
+ | 1.0071 | 142 | 0.1283 |
496
+ | 1.0142 | 143 | 0.1626 |
497
+ | 1.0213 | 144 | 0.2121 |
498
+ | 1.0284 | 145 | 0.142 |
499
+ | 1.0355 | 146 | 0.1335 |
500
+ | 1.0426 | 147 | 0.1084 |
501
+ | 1.0496 | 148 | 0.15 |
502
+ | 1.0567 | 149 | 0.1459 |
503
+ | 1.0638 | 150 | 0.0674 |
504
+ | 1.0709 | 151 | 0.1393 |
505
+ | 1.0780 | 152 | 0.1582 |
506
+ | 1.0851 | 153 | 0.1295 |
507
+ | 1.0922 | 154 | 0.1402 |
508
+ | 1.0993 | 155 | 0.2266 |
509
+ | 1.1064 | 156 | 0.1025 |
510
+ | 1.1135 | 157 | 0.1616 |
511
+ | 1.1206 | 158 | 0.1795 |
512
+ | 1.1277 | 159 | 0.1583 |
513
+ | 1.1348 | 160 | 0.1624 |
514
+ | 1.1418 | 161 | 0.1068 |
515
+ | 1.1489 | 162 | 0.1301 |
516
+ | 1.1560 | 163 | 0.1792 |
517
+ | 1.1631 | 164 | 0.1656 |
518
+ | 1.1702 | 165 | 0.1666 |
519
+ | 1.1773 | 166 | 0.1031 |
520
+ | 1.1844 | 167 | 0.1092 |
521
+ | 1.1915 | 168 | 0.1668 |
522
+ | 1.1986 | 169 | 0.1218 |
523
+ | 1.2057 | 170 | 0.146 |
524
+ | 1.2128 | 171 | 0.1041 |
525
+ | 1.2199 | 172 | 0.2275 |
526
+ | 1.2270 | 173 | 0.1017 |
527
+ | 1.2340 | 174 | 0.1025 |
528
+ | 1.2411 | 175 | 0.1385 |
529
+ | 1.2482 | 176 | 0.1024 |
530
+ | 1.2553 | 177 | 0.1073 |
531
+ | 1.2624 | 178 | 0.0802 |
532
+ | 1.2695 | 179 | 0.1985 |
533
+ | 1.2766 | 180 | 0.1918 |
534
+ | 1.2837 | 181 | 0.092 |
535
+ | 1.2908 | 182 | 0.1591 |
536
+ | 1.2979 | 183 | 0.2512 |
537
+ | 1.3050 | 184 | 0.2213 |
538
+ | 1.3121 | 185 | 0.129 |
539
+ | 1.3191 | 186 | 0.0759 |
540
+ | 1.3262 | 187 | 0.243 |
541
+ | 1.3333 | 188 | 0.1759 |
542
+ | 1.3404 | 189 | 0.126 |
543
+ | 1.3475 | 190 | 0.1105 |
544
+ | 1.3546 | 191 | 0.1789 |
545
+ | 1.3617 | 192 | 0.1841 |
546
+ | 1.3688 | 193 | 0.1074 |
547
+ | 1.3759 | 194 | 0.1293 |
548
+ | 1.3830 | 195 | 0.1228 |
549
+ | 1.3901 | 196 | 0.1574 |
550
+ | 1.3972 | 197 | 0.1073 |
551
+ | 1.4043 | 198 | 0.1305 |
552
+ | 1.4113 | 199 | 0.1911 |
553
+ | 1.4184 | 200 | 0.1088 |
554
+ | 1.4255 | 201 | 0.111 |
555
+ | 1.4326 | 202 | 0.1639 |
556
+ | 1.4397 | 203 | 0.0944 |
557
+ | 1.4468 | 204 | 0.2008 |
558
+ | 1.4539 | 205 | 0.136 |
559
+ | 1.4610 | 206 | 0.1981 |
560
+ | 1.4681 | 207 | 0.0848 |
561
+ | 1.4752 | 208 | 0.0771 |
562
+ | 1.4823 | 209 | 0.0933 |
563
+ | 1.4894 | 210 | 0.1794 |
564
+ | 1.4965 | 211 | 0.1533 |
565
+ | 1.5035 | 212 | 0.1841 |
566
+ | 1.5106 | 213 | 0.1724 |
567
+ | 1.5177 | 214 | 0.1205 |
568
+ | 1.5248 | 215 | 0.1118 |
569
+ | 1.5319 | 216 | 0.16 |
570
+ | 1.5390 | 217 | 0.2911 |
571
+ | 1.5461 | 218 | 0.1678 |
572
+ | 1.5532 | 219 | 0.1032 |
573
+ | 1.5603 | 220 | 0.1438 |
574
+ | 1.5674 | 221 | 0.1581 |
575
+ | 1.5745 | 222 | 0.1143 |
576
+ | 1.5816 | 223 | 0.1782 |
577
+ | 1.5887 | 224 | 0.2768 |
578
+ | 1.5957 | 225 | 0.1127 |
579
+ | 1.6028 | 226 | 0.1719 |
580
+ | 1.6099 | 227 | 0.2252 |
581
+ | 1.6170 | 228 | 0.2182 |
582
+ | 1.6241 | 229 | 0.287 |
583
+ | 1.6312 | 230 | 0.1314 |
584
+ | 1.6383 | 231 | 0.1951 |
585
+ | 1.6454 | 232 | 0.13 |
586
+ | 1.6525 | 233 | 0.0677 |
587
+ | 1.6596 | 234 | 0.1188 |
588
+ | 1.6667 | 235 | 0.1214 |
589
+ | 1.6738 | 236 | 0.1219 |
590
+ | 1.6809 | 237 | 0.1646 |
591
+ | 1.6879 | 238 | 0.1079 |
592
+ | 1.6950 | 239 | 0.1624 |
593
+ | 1.7021 | 240 | 0.0994 |
594
+ | 1.7092 | 241 | 0.194 |
595
+ | 1.7163 | 242 | 0.1104 |
596
+ | 1.7234 | 243 | 0.1223 |
597
+ | 1.7305 | 244 | 0.0918 |
598
+ | 1.7376 | 245 | 0.0835 |
599
+ | 1.7447 | 246 | 0.0994 |
600
+ | 1.7518 | 247 | 0.1375 |
601
+ | 1.7589 | 248 | 0.1004 |
602
+ | 1.7660 | 249 | 0.1164 |
603
+ | 1.7730 | 250 | 0.1151 |
604
+ | 1.7801 | 251 | 0.0868 |
605
+ | 1.7872 | 252 | 0.2498 |
606
+ | 1.7943 | 253 | 0.0741 |
607
+ | 1.8014 | 254 | 0.1417 |
608
+ | 1.8085 | 255 | 0.0514 |
609
+ | 1.8156 | 256 | 0.2346 |
610
+ | 1.8227 | 257 | 0.2383 |
611
+ | 1.8298 | 258 | 0.1432 |
612
+ | 1.8369 | 259 | 0.1563 |
613
+ | 1.8440 | 260 | 0.1267 |
614
+ | 1.8511 | 261 | 0.1331 |
615
+ | 1.8582 | 262 | 0.1904 |
616
+ | 1.8652 | 263 | 0.0912 |
617
+ | 1.8723 | 264 | 0.214 |
618
+ | 1.8794 | 265 | 0.1846 |
619
+ | 1.8865 | 266 | 0.1378 |
620
+ | 1.8936 | 267 | 0.1012 |
621
+ | 1.9007 | 268 | 0.1468 |
622
+ | 1.9078 | 269 | 0.109 |
623
+ | 1.9149 | 270 | 0.1136 |
624
+ | 1.9220 | 271 | 0.1734 |
625
+ | 1.9291 | 272 | 0.0785 |
626
+ | 1.9362 | 273 | 0.0388 |
627
+ | 1.9433 | 274 | 0.1138 |
628
+ | 1.9504 | 275 | 0.0806 |
629
+ | 1.9574 | 276 | 0.2819 |
630
+ | 1.9645 | 277 | 0.1719 |
631
+ | 1.9716 | 278 | 0.0479 |
632
+ | 1.9787 | 279 | 0.1038 |
633
+ | 1.9858 | 280 | 0.1401 |
634
+ | 1.9929 | 281 | 0.1961 |
635
+ | 2.0 | 282 | 0.1072 |
636
+ | 2.0071 | 283 | 0.1005 |
637
+ | 2.0142 | 284 | 0.147 |
638
+ | 2.0213 | 285 | 0.1011 |
639
+ | 2.0284 | 286 | 0.1304 |
640
+ | 2.0355 | 287 | 0.073 |
641
+ | 2.0426 | 288 | 0.0952 |
642
+ | 2.0496 | 289 | 0.0956 |
643
+ | 2.0567 | 290 | 0.1083 |
644
+ | 2.0638 | 291 | 0.1101 |
645
+ | 2.0709 | 292 | 0.0534 |
646
+ | 2.0780 | 293 | 0.0837 |
647
+ | 2.0851 | 294 | 0.0966 |
648
+ | 2.0922 | 295 | 0.195 |
649
+ | 2.0993 | 296 | 0.0608 |
650
+ | 2.1064 | 297 | 0.0999 |
651
+ | 2.1135 | 298 | 0.1588 |
652
+ | 2.1206 | 299 | 0.1283 |
653
+ | 2.1277 | 300 | 0.0962 |
654
+ | 2.1348 | 301 | 0.0872 |
655
+ | 2.1418 | 302 | 0.0793 |
656
+ | 2.1489 | 303 | 0.1209 |
657
+ | 2.1560 | 304 | 0.1346 |
658
+ | 2.1631 | 305 | 0.131 |
659
+ | 2.1702 | 306 | 0.1081 |
660
+ | 2.1773 | 307 | 0.1109 |
661
+ | 2.1844 | 308 | 0.197 |
662
+ | 2.1915 | 309 | 0.108 |
663
+ | 2.1986 | 310 | 0.1715 |
664
+ | 2.2057 | 311 | 0.0654 |
665
+ | 2.2128 | 312 | 0.1374 |
666
+ | 2.2199 | 313 | 0.0929 |
667
+ | 2.2270 | 314 | 0.033 |
668
+ | 2.2340 | 315 | 0.0903 |
669
+ | 2.2411 | 316 | 0.1417 |
670
+ | 2.2482 | 317 | 0.134 |
671
+ | 2.2553 | 318 | 0.041 |
672
+ | 2.2624 | 319 | 0.0947 |
673
+ | 2.2695 | 320 | 0.0655 |
674
+ | 2.2766 | 321 | 0.0525 |
675
+ | 2.2837 | 322 | 0.0547 |
676
+ | 2.2908 | 323 | 0.1342 |
677
+ | 2.2979 | 324 | 0.1088 |
678
+ | 2.3050 | 325 | 0.162 |
679
+ | 2.3121 | 326 | 0.0962 |
680
+ | 2.3191 | 327 | 0.154 |
681
+ | 2.3262 | 328 | 0.0935 |
682
+ | 2.3333 | 329 | 0.1186 |
683
+ | 2.3404 | 330 | 0.1192 |
684
+ | 2.3475 | 331 | 0.1075 |
685
+ | 2.3546 | 332 | 0.12 |
686
+ | 2.3617 | 333 | 0.0679 |
687
+ | 2.3688 | 334 | 0.1087 |
688
+ | 2.3759 | 335 | 0.1493 |
689
+ | 2.3830 | 336 | 0.085 |
690
+ | 2.3901 | 337 | 0.1784 |
691
+ | 2.3972 | 338 | 0.0567 |
692
+ | 2.4043 | 339 | 0.1842 |
693
+ | 2.4113 | 340 | 0.183 |
694
+ | 2.4184 | 341 | 0.1108 |
695
+ | 2.4255 | 342 | 0.1405 |
696
+ | 2.4326 | 343 | 0.2477 |
697
+ | 2.4397 | 344 | 0.2376 |
698
+ | 2.4468 | 345 | 0.1469 |
699
+ | 2.4539 | 346 | 0.1048 |
700
+ | 2.4610 | 347 | 0.1153 |
701
+ | 2.4681 | 348 | 0.1167 |
702
+ | 2.4752 | 349 | 0.1605 |
703
+ | 2.4823 | 350 | 0.1479 |
704
+ | 2.4894 | 351 | 0.0684 |
705
+ | 2.4965 | 352 | 0.0515 |
706
+ | 2.5035 | 353 | 0.1035 |
707
+ | 2.5106 | 354 | 0.1488 |
708
+ | 2.5177 | 355 | 0.0274 |
709
+ | 2.5248 | 356 | 0.0706 |
710
+ | 2.5319 | 357 | 0.1541 |
711
+ | 2.5390 | 358 | 0.1331 |
712
+ | 2.5461 | 359 | 0.0911 |
713
+ | 2.5532 | 360 | 0.0606 |
714
+ | 2.5603 | 361 | 0.1612 |
715
+ | 2.5674 | 362 | 0.2752 |
716
+ | 2.5745 | 363 | 0.1436 |
717
+ | 2.5816 | 364 | 0.1257 |
718
+ | 2.5887 | 365 | 0.1174 |
719
+ | 2.5957 | 366 | 0.0415 |
720
+ | 2.6028 | 367 | 0.0918 |
721
+ | 2.6099 | 368 | 0.0899 |
722
+ | 2.6170 | 369 | 0.1136 |
723
+ | 2.6241 | 370 | 0.1337 |
724
+ | 2.6312 | 371 | 0.1948 |
725
+ | 2.6383 | 372 | 0.1482 |
726
+ | 2.6454 | 373 | 0.1209 |
727
+ | 2.6525 | 374 | 0.1082 |
728
+ | 2.6596 | 375 | 0.1948 |
729
+ | 2.6667 | 376 | 0.1029 |
730
+ | 2.6738 | 377 | 0.0783 |
731
+ | 2.6809 | 378 | 0.0844 |
732
+ | 2.6879 | 379 | 0.1045 |
733
+ | 2.6950 | 380 | 0.0982 |
734
+ | 2.7021 | 381 | 0.075 |
735
+ | 2.7092 | 382 | 0.15 |
736
+ | 2.7163 | 383 | 0.1155 |
737
+ | 2.7234 | 384 | 0.1334 |
738
+ | 2.7305 | 385 | 0.0767 |
739
+ | 2.7376 | 386 | 0.0476 |
740
+ | 2.7447 | 387 | 0.068 |
741
+ | 2.7518 | 388 | 0.0967 |
742
+ | 2.7589 | 389 | 0.0953 |
743
+ | 2.7660 | 390 | 0.1307 |
744
+ | 2.7730 | 391 | 0.0923 |
745
+ | 2.7801 | 392 | 0.1159 |
746
+ | 2.7872 | 393 | 0.0769 |
747
+ | 2.7943 | 394 | 0.0993 |
748
+ | 2.8014 | 395 | 0.1018 |
749
+ | 2.8085 | 396 | 0.0783 |
750
+ | 2.8156 | 397 | 0.0792 |
751
+ | 2.8227 | 398 | 0.0914 |
752
+ | 2.8298 | 399 | 0.0821 |
753
+ | 2.8369 | 400 | 0.0947 |
754
+ | 2.8440 | 401 | 0.0622 |
755
+ | 2.8511 | 402 | 0.1858 |
756
+ | 2.8582 | 403 | 0.1977 |
757
+ | 2.8652 | 404 | 0.0398 |
758
+ | 2.8723 | 405 | 0.0784 |
759
+ | 2.8794 | 406 | 0.1622 |
760
+ | 2.8865 | 407 | 0.1213 |
761
+ | 2.8936 | 408 | 0.1867 |
762
+ | 2.9007 | 409 | 0.1257 |
763
+ | 2.9078 | 410 | 0.1366 |
764
+ | 2.9149 | 411 | 0.0983 |
765
+ | 2.9220 | 412 | 0.0967 |
766
+ | 2.9291 | 413 | 0.0398 |
767
+ | 2.9362 | 414 | 0.1582 |
768
+ | 2.9433 | 415 | 0.123 |
769
+ | 2.9504 | 416 | 0.1768 |
770
+ | 2.9574 | 417 | 0.131 |
771
+ | 2.9645 | 418 | 0.0731 |
772
+ | 2.9716 | 419 | 0.074 |
773
+ | 2.9787 | 420 | 0.1176 |
774
+ | 2.9858 | 421 | 0.0984 |
775
+ | 2.9929 | 422 | 0.0834 |
776
+ | 3.0 | 423 | 0.1985 |
777
+
778
+ </details>
779
+
780
+ ### Framework Versions
781
+ - Python: 3.10.14
782
+ - Sentence Transformers: 5.1.1
783
+ - Transformers: 4.56.2
784
+ - PyTorch: 2.8.0+cu128
785
+ - Accelerate: 1.10.1
786
+ - Datasets: 4.1.1
787
+ - Tokenizers: 0.22.1
788
+
789
+ ## Citation
790
+
791
+ ### BibTeX
792
+
793
+ #### Sentence Transformers
794
+ ```bibtex
795
+ @inproceedings{reimers-2019-sentence-bert,
796
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
797
+ author = "Reimers, Nils and Gurevych, Iryna",
798
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
799
+ month = "11",
800
+ year = "2019",
801
+ publisher = "Association for Computational Linguistics",
802
+ url = "https://arxiv.org/abs/1908.10084",
803
+ }
804
+ ```
805
+
806
+ #### MultipleNegativesRankingLoss
807
+ ```bibtex
808
+ @misc{henderson2017efficient,
809
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
810
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
811
+ year={2017},
812
+ eprint={1705.00652},
813
+ archivePrefix={arXiv},
814
+ primaryClass={cs.CL}
815
+ }
816
+ ```
817
+
818
+ <!--
819
+ ## Glossary
820
+
821
+ *Clearly define terms in order to be accessible across audiences.*
822
+ -->
823
+
824
+ <!--
825
+ ## Model Card Authors
826
+
827
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
828
+ -->
829
+
830
+ <!--
831
+ ## Model Card Contact
832
+
833
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
834
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.56.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.1",
4
+ "transformers": "4.56.2",
5
+ "pytorch": "2.8.0+cu128"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a06c4761de826a9dbb4dcfdf49cfe05925a5ffeed26ea0d1c68cb6f6d7656e7a
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff