Developer-Karthi commited on
Commit
e700ac3
1 Parent(s): c0e0c1f

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.21 +/- 0.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2eed68bb993f23174add4a4986f777b926e2ad23b5b1b7baf934ddf2074a9151
3
+ size 108112
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0933b0fd30>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f0933b16680>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680426341111184030,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAw5DVPqI7AbvYQw0/w5DVPqI7AbvYQw0/w5DVPqI7AbvYQw0/w5DVPqI7AbvYQw0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyzuovz9zir/t9qk/3pTTv0yupj6Rt2Q/dZIfv6B7pT10Pb89KOTGPbnWvz8q+om/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADDkNU+ojsBu9hDDT+92zk8p90DOuOfOzzDkNU+ojsBu9hDDT+92zk8p90DOuOfOzzDkNU+ojsBu9hDDT+92zk8p90DOuOfOzzDkNU+ojsBu9hDDT+92zk8p90DOuOfOzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.41712007 -0.00197194 0.55181646]\n [ 0.41712007 -0.00197194 0.55181646]\n [ 0.41712007 -0.00197194 0.55181646]\n [ 0.41712007 -0.00197194 0.55181646]]",
60
+ "desired_goal": "[[-1.3143247 -1.081642 1.3278481 ]\n [-1.6529806 0.32554853 0.893426 ]\n [-0.6233285 0.0808022 0.09337893]\n [ 0.09711486 1.4987403 -1.0779469 ]]",
61
+ "observation": "[[ 4.1712007e-01 -1.9719382e-03 5.5181646e-01 1.1343894e-02\n 5.0302822e-04 1.1451694e-02]\n [ 4.1712007e-01 -1.9719382e-03 5.5181646e-01 1.1343894e-02\n 5.0302822e-04 1.1451694e-02]\n [ 4.1712007e-01 -1.9719382e-03 5.5181646e-01 1.1343894e-02\n 5.0302822e-04 1.1451694e-02]\n [ 4.1712007e-01 -1.9719382e-03 5.5181646e-01 1.1343894e-02\n 5.0302822e-04 1.1451694e-02]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdaNXvV16/jxw9j8+qirhPHwj9b2wcTQ+7KzKvaGdq72eKYE+Y0vFPbmxDz1F17U8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.05264612 0.03106421 0.18746352]\n [ 0.02748616 -0.11969659 0.17621493]\n [-0.09896263 -0.08379675 0.25227064]\n [ 0.0963352 0.0350816 0.02219738]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItJHrppS3CcCUhpRSlIwBbJRLMowBdJRHQKjkeb2Dg651fZQoaAZoCWgPQwggXtcv2M0BwJSGlFKUaBVLMmgWR0Co5CPBi1ArdX2UKGgGaAloD0MIVKhuLv72CcCUhpRSlGgVSzJoFkdAqOPOR9w3pHV9lChoBmgJaA9DCK4NFeP8DfS/lIaUUpRoFUsyaBZHQKjjj3GGVRl1fZQoaAZoCWgPQwjjqNxELY38v5SGlFKUaBVLMmgWR0Co5Xg5zYEodX2UKGgGaAloD0MIC0RPyqSG/r+UhpRSlGgVSzJoFkdAqOUiDqW1MXV9lChoBmgJaA9DCDZaDvRQ+wPAlIaUUpRoFUsyaBZHQKjkzLK3d9F1fZQoaAZoCWgPQwjTTWIQWFkDwJSGlFKUaBVLMmgWR0Co5I3o9s7/dX2UKGgGaAloD0MInrEv2XiwAcCUhpRSlGgVSzJoFkdAqOZ9VrAP/nV9lChoBmgJaA9DCNbgfVUu9AvAlIaUUpRoFUsyaBZHQKjmJyxzJZJ1fZQoaAZoCWgPQwgpIsMq3mgEwJSGlFKUaBVLMmgWR0Co5dG9HtngdX2UKGgGaAloD0MIn3JMFvcfA8CUhpRSlGgVSzJoFkdAqOWS5wwTNHV9lChoBmgJaA9DCGjNj7+0CAPAlIaUUpRoFUsyaBZHQKjnd2LYPG11fZQoaAZoCWgPQwiW58HdWbsRwJSGlFKUaBVLMmgWR0Co5yF/6O5sdX2UKGgGaAloD0MIUaOQZFavDcCUhpRSlGgVSzJoFkdAqObMMmWt2nV9lChoBmgJaA9DCIqw4emVEgTAlIaUUpRoFUsyaBZHQKjmjVc2R7t1fZQoaAZoCWgPQwjKbfse9RcFwJSGlFKUaBVLMmgWR0Co6GdRrJr+dX2UKGgGaAloD0MIyD8ziA8sBMCUhpRSlGgVSzJoFkdAqOgRD5TIenV9lChoBmgJaA9DCJCfjVw3JQbAlIaUUpRoFUsyaBZHQKjnu82aUiZ1fZQoaAZoCWgPQwj1ZP7RN+kDwJSGlFKUaBVLMmgWR0Co530EPlMidX2UKGgGaAloD0MIMQisHFrkAMCUhpRSlGgVSzJoFkdAqOlj2nKnvXV9lChoBmgJaA9DCPcA3ZczewfAlIaUUpRoFUsyaBZHQKjpDeb/ffp1fZQoaAZoCWgPQwgVqpuLv63+v5SGlFKUaBVLMmgWR0Co6LioCMgmdX2UKGgGaAloD0MIqRd8mpMXBMCUhpRSlGgVSzJoFkdAqOh53s5XEXV9lChoBmgJaA9DCCLgEKrUDAnAlIaUUpRoFUsyaBZHQKjqYEovzvt1fZQoaAZoCWgPQwjUYYVbPhIEwJSGlFKUaBVLMmgWR0Co6gomPYFrdX2UKGgGaAloD0MIaydKQiKtA8CUhpRSlGgVSzJoFkdAqOm0zGgi/3V9lChoBmgJaA9DCO9yEd+JuQTAlIaUUpRoFUsyaBZHQKjpdgbZOBV1fZQoaAZoCWgPQwi6SQwCK4f8v5SGlFKUaBVLMmgWR0Co613xFy7xdX2UKGgGaAloD0MIOQzmr5DZDMCUhpRSlGgVSzJoFkdAqOsH1YhdMXV9lChoBmgJaA9DCP9dnznrcwrAlIaUUpRoFUsyaBZHQKjqsn0Cih51fZQoaAZoCWgPQwjxEpz6QPL/v5SGlFKUaBVLMmgWR0Co6nOO801qdX2UKGgGaAloD0MIvVMB9zyvEsCUhpRSlGgVSzJoFkdAqOxY+nqFAXV9lChoBmgJaA9DCOviNhrA+wXAlIaUUpRoFUsyaBZHQKjsAy2QXAN1fZQoaAZoCWgPQwhUVz7L86D+v5SGlFKUaBVLMmgWR0Co663zDn/2dX2UKGgGaAloD0MI/KawUkFlA8CUhpRSlGgVSzJoFkdAqOtvcFhXsHV9lChoBmgJaA9DCP5kjA+z1wHAlIaUUpRoFUsyaBZHQKjtY/iYLLJ1fZQoaAZoCWgPQwijryDNWLT9v5SGlFKUaBVLMmgWR0Co7Q43Ns3ydX2UKGgGaAloD0MIhugQOBIIBcCUhpRSlGgVSzJoFkdAqOy402tMf3V9lChoBmgJaA9DCDffiO5Z1/y/lIaUUpRoFUsyaBZHQKjsee18b711fZQoaAZoCWgPQwilaybfbNMBwJSGlFKUaBVLMmgWR0Co7lOVPepGdX2UKGgGaAloD0MIuMzpspj4CcCUhpRSlGgVSzJoFkdAqO39ar3j/HV9lChoBmgJaA9DCHSy1Hq/sQXAlIaUUpRoFUsyaBZHQKjtp/95yEN1fZQoaAZoCWgPQwhrC89LxQYIwJSGlFKUaBVLMmgWR0Co7WkeZG8VdX2UKGgGaAloD0MIsd8T61SZCMCUhpRSlGgVSzJoFkdAqO9Cq+8Gs3V9lChoBmgJaA9DCJsCmZ1FTwHAlIaUUpRoFUsyaBZHQKju7GACnxd1fZQoaAZoCWgPQwhV3o5wWvANwJSGlFKUaBVLMmgWR0Co7pcRtgrpdX2UKGgGaAloD0MI1UFeDyaF/L+UhpRSlGgVSzJoFkdAqO5YPmPo3nV9lChoBmgJaA9DCPIolfCEvgLAlIaUUpRoFUsyaBZHQKjwMgGKQ7t1fZQoaAZoCWgPQwiHpBZKJqcLwJSGlFKUaBVLMmgWR0Co79vGACnxdX2UKGgGaAloD0MISbw8nSvqA8CUhpRSlGgVSzJoFkdAqO+Gl9BrvnV9lChoBmgJaA9DCCIZcmw9IwPAlIaUUpRoFUsyaBZHQKjvR+R5kbx1fZQoaAZoCWgPQwhPJJhqZu0EwJSGlFKUaBVLMmgWR0Co8TRLTQVsdX2UKGgGaAloD0MIkX9mEB/YEcCUhpRSlGgVSzJoFkdAqPDeO2iL23V9lChoBmgJaA9DCIjyBS0koALAlIaUUpRoFUsyaBZHQKjwiURFqi51fZQoaAZoCWgPQwhjmuleJ3UCwJSGlFKUaBVLMmgWR0Co8EqVQhwEdX2UKGgGaAloD0MIsB9ig4WTAMCUhpRSlGgVSzJoFkdAqPI1zltCRnV9lChoBmgJaA9DCK67eapD7vy/lIaUUpRoFUsyaBZHQKjx37laKUF1fZQoaAZoCWgPQwirIAa69iUBwJSGlFKUaBVLMmgWR0Co8YpCrtE5dX2UKGgGaAloD0MID5pd91Zk/r+UhpRSlGgVSzJoFkdAqPFLiCJ40XV9lChoBmgJaA9DCFzjM9k/jwTAlIaUUpRoFUsyaBZHQKjzO87IT5B1fZQoaAZoCWgPQwh32hoRjCMHwJSGlFKUaBVLMmgWR0Co8uWqDK5kdX2UKGgGaAloD0MIQ+OJIM4DBsCUhpRSlGgVSzJoFkdAqPKQi7kGRnV9lChoBmgJaA9DCJvG9lrQGwPAlIaUUpRoFUsyaBZHQKjyUdnTRY11fZQoaAZoCWgPQwhhi90+q2wCwJSGlFKUaBVLMmgWR0Co9ECDM/yHdX2UKGgGaAloD0MIihwibk5lAMCUhpRSlGgVSzJoFkdAqPPqWE9MbnV9lChoBmgJaA9DCAVtcvikUwfAlIaUUpRoFUsyaBZHQKjzlRR/EwZ1fZQoaAZoCWgPQwgBLzNslNUCwJSGlFKUaBVLMmgWR0Co81Y9X9zfdX2UKGgGaAloD0MIgsmNImtNAMCUhpRSlGgVSzJoFkdAqPXF/OMVDnV9lChoBmgJaA9DCLrXSX1ZegHAlIaUUpRoFUsyaBZHQKj1cIP9UCJ1fZQoaAZoCWgPQwgysI7jh4oGwJSGlFKUaBVLMmgWR0Co9RwJHAh0dX2UKGgGaAloD0MIumWH+IcNAMCUhpRSlGgVSzJoFkdAqPTePxQSBnV9lChoBmgJaA9DCIrkK4GU+ATAlIaUUpRoFUsyaBZHQKj3Qu01IiF1fZQoaAZoCWgPQwiZg6CjVQ0EwJSGlFKUaBVLMmgWR0Co9u1O0svqdX2UKGgGaAloD0MIaam8HeHUBMCUhpRSlGgVSzJoFkdAqPaYjbBXS3V9lChoBmgJaA9DCC9uowG8xQnAlIaUUpRoFUsyaBZHQKj2WqABkqd1fZQoaAZoCWgPQwiISE27mKb/v5SGlFKUaBVLMmgWR0Co+LsImgJ1dX2UKGgGaAloD0MIDjLJyFlYA8CUhpRSlGgVSzJoFkdAqPhlc8kleHV9lChoBmgJaA9DCLh0zHnGvgLAlIaUUpRoFUsyaBZHQKj4EMm4RVZ1fZQoaAZoCWgPQwjHEAAce7YCwJSGlFKUaBVLMmgWR0Co99J9AooedX2UKGgGaAloD0MI/pyC/GzEAMCUhpRSlGgVSzJoFkdAqPpaYJE6UHV9lChoBmgJaA9DCFlpUgq6XQXAlIaUUpRoFUsyaBZHQKj6BOyE+Pl1fZQoaAZoCWgPQwiFlnX/WGgGwJSGlFKUaBVLMmgWR0Co+bB60IC2dX2UKGgGaAloD0MIkuf6PhxEBsCUhpRSlGgVSzJoFkdAqPlyaAnUlXV9lChoBmgJaA9DCKURM/s85gvAlIaUUpRoFUsyaBZHQKj7/gVoHs11fZQoaAZoCWgPQwhdMSO8PagBwJSGlFKUaBVLMmgWR0Co+6iDdxhldX2UKGgGaAloD0MIR1oqb0f4/r+UhpRSlGgVSzJoFkdAqPtTzTWoWHV9lChoBmgJaA9DCD7shQK2Q/+/lIaUUpRoFUsyaBZHQKj7FZ+x4Y91fZQoaAZoCWgPQwgsuB/wwAAIwJSGlFKUaBVLMmgWR0Co/ak/B3zMdX2UKGgGaAloD0MI+py7XS9tAcCUhpRSlGgVSzJoFkdAqP1UKLKmsXV9lChoBmgJaA9DCJBlwcQfBf+/lIaUUpRoFUsyaBZHQKj8/6YVqN91fZQoaAZoCWgPQwjWOnE5XkEGwJSGlFKUaBVLMmgWR0Co/MGYSg5BdX2UKGgGaAloD0MIG/M64pBtBMCUhpRSlGgVSzJoFkdAqP8S3RXwLHV9lChoBmgJaA9DCBMqOLwgYv6/lIaUUpRoFUsyaBZHQKj+vQnhKlJ1fZQoaAZoCWgPQwhwXwfOGZH9v5SGlFKUaBVLMmgWR0Co/mgC4jKQdX2UKGgGaAloD0MI2uVbH9a7CMCUhpRSlGgVSzJoFkdAqP4pT/ACXHV9lChoBmgJaA9DCG3F/rJ7svy/lIaUUpRoFUsyaBZHQKkAHGRV6u51fZQoaAZoCWgPQwio/dZOlAQAwJSGlFKUaBVLMmgWR0Co/8Yw7DEWdX2UKGgGaAloD0MItOidCrgn/7+UhpRSlGgVSzJoFkdAqP9w8wHqvHV9lChoBmgJaA9DCFQaMbPP4/u/lIaUUpRoFUsyaBZHQKj/MjEehf11ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81deba40c724ba46178c3d4ec23638e3ceb8ea954c7680c918ef8d956fbb9a3b
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64bb7c69a86964a9c1f5cd6cee200cd2d46ca5924b4b26cdab8bd13789df9260
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0933b0fd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0933b16680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680426341111184030, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAw5DVPqI7AbvYQw0/w5DVPqI7AbvYQw0/w5DVPqI7AbvYQw0/w5DVPqI7AbvYQw0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyzuovz9zir/t9qk/3pTTv0yupj6Rt2Q/dZIfv6B7pT10Pb89KOTGPbnWvz8q+om/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADDkNU+ojsBu9hDDT+92zk8p90DOuOfOzzDkNU+ojsBu9hDDT+92zk8p90DOuOfOzzDkNU+ojsBu9hDDT+92zk8p90DOuOfOzzDkNU+ojsBu9hDDT+92zk8p90DOuOfOzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41712007 -0.00197194 0.55181646]\n [ 0.41712007 -0.00197194 0.55181646]\n [ 0.41712007 -0.00197194 0.55181646]\n [ 0.41712007 -0.00197194 0.55181646]]", "desired_goal": "[[-1.3143247 -1.081642 1.3278481 ]\n [-1.6529806 0.32554853 0.893426 ]\n [-0.6233285 0.0808022 0.09337893]\n [ 0.09711486 1.4987403 -1.0779469 ]]", "observation": "[[ 4.1712007e-01 -1.9719382e-03 5.5181646e-01 1.1343894e-02\n 5.0302822e-04 1.1451694e-02]\n [ 4.1712007e-01 -1.9719382e-03 5.5181646e-01 1.1343894e-02\n 5.0302822e-04 1.1451694e-02]\n [ 4.1712007e-01 -1.9719382e-03 5.5181646e-01 1.1343894e-02\n 5.0302822e-04 1.1451694e-02]\n [ 4.1712007e-01 -1.9719382e-03 5.5181646e-01 1.1343894e-02\n 5.0302822e-04 1.1451694e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdaNXvV16/jxw9j8+qirhPHwj9b2wcTQ+7KzKvaGdq72eKYE+Y0vFPbmxDz1F17U8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05264612 0.03106421 0.18746352]\n [ 0.02748616 -0.11969659 0.17621493]\n [-0.09896263 -0.08379675 0.25227064]\n [ 0.0963352 0.0350816 0.02219738]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItJHrppS3CcCUhpRSlIwBbJRLMowBdJRHQKjkeb2Dg651fZQoaAZoCWgPQwggXtcv2M0BwJSGlFKUaBVLMmgWR0Co5CPBi1ArdX2UKGgGaAloD0MIVKhuLv72CcCUhpRSlGgVSzJoFkdAqOPOR9w3pHV9lChoBmgJaA9DCK4NFeP8DfS/lIaUUpRoFUsyaBZHQKjjj3GGVRl1fZQoaAZoCWgPQwjjqNxELY38v5SGlFKUaBVLMmgWR0Co5Xg5zYEodX2UKGgGaAloD0MIC0RPyqSG/r+UhpRSlGgVSzJoFkdAqOUiDqW1MXV9lChoBmgJaA9DCDZaDvRQ+wPAlIaUUpRoFUsyaBZHQKjkzLK3d9F1fZQoaAZoCWgPQwjTTWIQWFkDwJSGlFKUaBVLMmgWR0Co5I3o9s7/dX2UKGgGaAloD0MInrEv2XiwAcCUhpRSlGgVSzJoFkdAqOZ9VrAP/nV9lChoBmgJaA9DCNbgfVUu9AvAlIaUUpRoFUsyaBZHQKjmJyxzJZJ1fZQoaAZoCWgPQwgpIsMq3mgEwJSGlFKUaBVLMmgWR0Co5dG9HtngdX2UKGgGaAloD0MIn3JMFvcfA8CUhpRSlGgVSzJoFkdAqOWS5wwTNHV9lChoBmgJaA9DCGjNj7+0CAPAlIaUUpRoFUsyaBZHQKjnd2LYPG11fZQoaAZoCWgPQwiW58HdWbsRwJSGlFKUaBVLMmgWR0Co5yF/6O5sdX2UKGgGaAloD0MIUaOQZFavDcCUhpRSlGgVSzJoFkdAqObMMmWt2nV9lChoBmgJaA9DCIqw4emVEgTAlIaUUpRoFUsyaBZHQKjmjVc2R7t1fZQoaAZoCWgPQwjKbfse9RcFwJSGlFKUaBVLMmgWR0Co6GdRrJr+dX2UKGgGaAloD0MIyD8ziA8sBMCUhpRSlGgVSzJoFkdAqOgRD5TIenV9lChoBmgJaA9DCJCfjVw3JQbAlIaUUpRoFUsyaBZHQKjnu82aUiZ1fZQoaAZoCWgPQwj1ZP7RN+kDwJSGlFKUaBVLMmgWR0Co530EPlMidX2UKGgGaAloD0MIMQisHFrkAMCUhpRSlGgVSzJoFkdAqOlj2nKnvXV9lChoBmgJaA9DCPcA3ZczewfAlIaUUpRoFUsyaBZHQKjpDeb/ffp1fZQoaAZoCWgPQwgVqpuLv63+v5SGlFKUaBVLMmgWR0Co6LioCMgmdX2UKGgGaAloD0MIqRd8mpMXBMCUhpRSlGgVSzJoFkdAqOh53s5XEXV9lChoBmgJaA9DCCLgEKrUDAnAlIaUUpRoFUsyaBZHQKjqYEovzvt1fZQoaAZoCWgPQwjUYYVbPhIEwJSGlFKUaBVLMmgWR0Co6gomPYFrdX2UKGgGaAloD0MIaydKQiKtA8CUhpRSlGgVSzJoFkdAqOm0zGgi/3V9lChoBmgJaA9DCO9yEd+JuQTAlIaUUpRoFUsyaBZHQKjpdgbZOBV1fZQoaAZoCWgPQwi6SQwCK4f8v5SGlFKUaBVLMmgWR0Co613xFy7xdX2UKGgGaAloD0MIOQzmr5DZDMCUhpRSlGgVSzJoFkdAqOsH1YhdMXV9lChoBmgJaA9DCP9dnznrcwrAlIaUUpRoFUsyaBZHQKjqsn0Cih51fZQoaAZoCWgPQwjxEpz6QPL/v5SGlFKUaBVLMmgWR0Co6nOO801qdX2UKGgGaAloD0MIvVMB9zyvEsCUhpRSlGgVSzJoFkdAqOxY+nqFAXV9lChoBmgJaA9DCOviNhrA+wXAlIaUUpRoFUsyaBZHQKjsAy2QXAN1fZQoaAZoCWgPQwhUVz7L86D+v5SGlFKUaBVLMmgWR0Co663zDn/2dX2UKGgGaAloD0MI/KawUkFlA8CUhpRSlGgVSzJoFkdAqOtvcFhXsHV9lChoBmgJaA9DCP5kjA+z1wHAlIaUUpRoFUsyaBZHQKjtY/iYLLJ1fZQoaAZoCWgPQwijryDNWLT9v5SGlFKUaBVLMmgWR0Co7Q43Ns3ydX2UKGgGaAloD0MIhugQOBIIBcCUhpRSlGgVSzJoFkdAqOy402tMf3V9lChoBmgJaA9DCDffiO5Z1/y/lIaUUpRoFUsyaBZHQKjsee18b711fZQoaAZoCWgPQwilaybfbNMBwJSGlFKUaBVLMmgWR0Co7lOVPepGdX2UKGgGaAloD0MIuMzpspj4CcCUhpRSlGgVSzJoFkdAqO39ar3j/HV9lChoBmgJaA9DCHSy1Hq/sQXAlIaUUpRoFUsyaBZHQKjtp/95yEN1fZQoaAZoCWgPQwhrC89LxQYIwJSGlFKUaBVLMmgWR0Co7WkeZG8VdX2UKGgGaAloD0MIsd8T61SZCMCUhpRSlGgVSzJoFkdAqO9Cq+8Gs3V9lChoBmgJaA9DCJsCmZ1FTwHAlIaUUpRoFUsyaBZHQKju7GACnxd1fZQoaAZoCWgPQwhV3o5wWvANwJSGlFKUaBVLMmgWR0Co7pcRtgrpdX2UKGgGaAloD0MI1UFeDyaF/L+UhpRSlGgVSzJoFkdAqO5YPmPo3nV9lChoBmgJaA9DCPIolfCEvgLAlIaUUpRoFUsyaBZHQKjwMgGKQ7t1fZQoaAZoCWgPQwiHpBZKJqcLwJSGlFKUaBVLMmgWR0Co79vGACnxdX2UKGgGaAloD0MISbw8nSvqA8CUhpRSlGgVSzJoFkdAqO+Gl9BrvnV9lChoBmgJaA9DCCIZcmw9IwPAlIaUUpRoFUsyaBZHQKjvR+R5kbx1fZQoaAZoCWgPQwhPJJhqZu0EwJSGlFKUaBVLMmgWR0Co8TRLTQVsdX2UKGgGaAloD0MIkX9mEB/YEcCUhpRSlGgVSzJoFkdAqPDeO2iL23V9lChoBmgJaA9DCIjyBS0koALAlIaUUpRoFUsyaBZHQKjwiURFqi51fZQoaAZoCWgPQwhjmuleJ3UCwJSGlFKUaBVLMmgWR0Co8EqVQhwEdX2UKGgGaAloD0MIsB9ig4WTAMCUhpRSlGgVSzJoFkdAqPI1zltCRnV9lChoBmgJaA9DCK67eapD7vy/lIaUUpRoFUsyaBZHQKjx37laKUF1fZQoaAZoCWgPQwirIAa69iUBwJSGlFKUaBVLMmgWR0Co8YpCrtE5dX2UKGgGaAloD0MID5pd91Zk/r+UhpRSlGgVSzJoFkdAqPFLiCJ40XV9lChoBmgJaA9DCFzjM9k/jwTAlIaUUpRoFUsyaBZHQKjzO87IT5B1fZQoaAZoCWgPQwh32hoRjCMHwJSGlFKUaBVLMmgWR0Co8uWqDK5kdX2UKGgGaAloD0MIQ+OJIM4DBsCUhpRSlGgVSzJoFkdAqPKQi7kGRnV9lChoBmgJaA9DCJvG9lrQGwPAlIaUUpRoFUsyaBZHQKjyUdnTRY11fZQoaAZoCWgPQwhhi90+q2wCwJSGlFKUaBVLMmgWR0Co9ECDM/yHdX2UKGgGaAloD0MIihwibk5lAMCUhpRSlGgVSzJoFkdAqPPqWE9MbnV9lChoBmgJaA9DCAVtcvikUwfAlIaUUpRoFUsyaBZHQKjzlRR/EwZ1fZQoaAZoCWgPQwgBLzNslNUCwJSGlFKUaBVLMmgWR0Co81Y9X9zfdX2UKGgGaAloD0MIgsmNImtNAMCUhpRSlGgVSzJoFkdAqPXF/OMVDnV9lChoBmgJaA9DCLrXSX1ZegHAlIaUUpRoFUsyaBZHQKj1cIP9UCJ1fZQoaAZoCWgPQwgysI7jh4oGwJSGlFKUaBVLMmgWR0Co9RwJHAh0dX2UKGgGaAloD0MIumWH+IcNAMCUhpRSlGgVSzJoFkdAqPTePxQSBnV9lChoBmgJaA9DCIrkK4GU+ATAlIaUUpRoFUsyaBZHQKj3Qu01IiF1fZQoaAZoCWgPQwiZg6CjVQ0EwJSGlFKUaBVLMmgWR0Co9u1O0svqdX2UKGgGaAloD0MIaam8HeHUBMCUhpRSlGgVSzJoFkdAqPaYjbBXS3V9lChoBmgJaA9DCC9uowG8xQnAlIaUUpRoFUsyaBZHQKj2WqABkqd1fZQoaAZoCWgPQwiISE27mKb/v5SGlFKUaBVLMmgWR0Co+LsImgJ1dX2UKGgGaAloD0MIDjLJyFlYA8CUhpRSlGgVSzJoFkdAqPhlc8kleHV9lChoBmgJaA9DCLh0zHnGvgLAlIaUUpRoFUsyaBZHQKj4EMm4RVZ1fZQoaAZoCWgPQwjHEAAce7YCwJSGlFKUaBVLMmgWR0Co99J9AooedX2UKGgGaAloD0MI/pyC/GzEAMCUhpRSlGgVSzJoFkdAqPpaYJE6UHV9lChoBmgJaA9DCFlpUgq6XQXAlIaUUpRoFUsyaBZHQKj6BOyE+Pl1fZQoaAZoCWgPQwiFlnX/WGgGwJSGlFKUaBVLMmgWR0Co+bB60IC2dX2UKGgGaAloD0MIkuf6PhxEBsCUhpRSlGgVSzJoFkdAqPlyaAnUlXV9lChoBmgJaA9DCKURM/s85gvAlIaUUpRoFUsyaBZHQKj7/gVoHs11fZQoaAZoCWgPQwhdMSO8PagBwJSGlFKUaBVLMmgWR0Co+6iDdxhldX2UKGgGaAloD0MIR1oqb0f4/r+UhpRSlGgVSzJoFkdAqPtTzTWoWHV9lChoBmgJaA9DCD7shQK2Q/+/lIaUUpRoFUsyaBZHQKj7FZ+x4Y91fZQoaAZoCWgPQwgsuB/wwAAIwJSGlFKUaBVLMmgWR0Co/ak/B3zMdX2UKGgGaAloD0MI+py7XS9tAcCUhpRSlGgVSzJoFkdAqP1UKLKmsXV9lChoBmgJaA9DCJBlwcQfBf+/lIaUUpRoFUsyaBZHQKj8/6YVqN91fZQoaAZoCWgPQwjWOnE5XkEGwJSGlFKUaBVLMmgWR0Co/MGYSg5BdX2UKGgGaAloD0MIG/M64pBtBMCUhpRSlGgVSzJoFkdAqP8S3RXwLHV9lChoBmgJaA9DCBMqOLwgYv6/lIaUUpRoFUsyaBZHQKj+vQnhKlJ1fZQoaAZoCWgPQwhwXwfOGZH9v5SGlFKUaBVLMmgWR0Co/mgC4jKQdX2UKGgGaAloD0MI2uVbH9a7CMCUhpRSlGgVSzJoFkdAqP4pT/ACXHV9lChoBmgJaA9DCG3F/rJ7svy/lIaUUpRoFUsyaBZHQKkAHGRV6u51fZQoaAZoCWgPQwio/dZOlAQAwJSGlFKUaBVLMmgWR0Co/8Yw7DEWdX2UKGgGaAloD0MItOidCrgn/7+UhpRSlGgVSzJoFkdAqP9w8wHqvHV9lChoBmgJaA9DCFQaMbPP4/u/lIaUUpRoFUsyaBZHQKj/MjEehf11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (732 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.212033715751022, "std_reward": 0.4058648029977751, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-02T10:03:49.677033"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9fc5e239e6b8559f5698740873b3e7a478052d8011ec5fe4cc9a0576f9a6f8c
3
+ size 3056