Developer-Karthi commited on
Commit
221ca87
·
1 Parent(s): 3ca49de

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1388.84 +/- 217.63
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBullet.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4a383e8731065ad2552c54082da5609b0dcae4a68004b9ecc19d8f9b58bad70
3
+ size 129265
a2c-AntBullet/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBullet/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0933b0f5e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0933b0f670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0933b0f700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0933b0f790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0933b0f820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0933b0f8b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0933b0f940>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0933b0f9d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0933b0fa60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0933b0faf0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0933b0fb80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0933b0fc10>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f0933b164c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680418628670089429,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHlZH78UdL4/OL8dv2C0CD8pl5Q/jeW9v/KtVb9gO26+u/isvquZtr/Mv2a+QHtAP12FTz8Ew6W/KciAPyevFr5SBKo+n5r5vxHfh70o2IE/rykWv5Q7Bz4lG8U9POk/wCqZlL8ihL8+6ubSPu1PsL/lEqw+dTo/P+31uj53xQg/J59/Pw7fiz9Qz/09C/eGv0L7Hj6IE2I/gdx4P0uHIT+0jey/X0AVP4KQvL5QYIO++2wQvqq5bz1qUDY/qeW3PNItAr7Tza6/esumP6co4j0qmZS/IoS/Purm0j4k2jk/rCZ0vkWU6L5trg4/eqolv2TZjj5D0QG/ce93PgejDUCIhLg/lf12vJsQI76G3V6+fsK1v3DPAEA9hiG/cU/3PM7jez/m9vo+VDotv66YkD/fbV+/euDJvR5pfL8Eppg9k4NcPwsZK8Dq5tI+JNo5P6MhsD66cpM/CqVhvWwdsT+ZsBxAxa4yv+E9ATzEFLa/juw+uxWteL5auAC/tTYuwOqOZz84PYY/WEOFP/o6rj/KXiQ/OSDcP+MWDj+LOoG/7Lc2v1YjBr+k5rk/Pp8UPiqZlL8ihL8+6ubSPiTaOT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAvR5m2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+roCPgAAAAAbiem/AAAAAAOexj0AAAAA27/8PwAAAABaw7u9AAAAAPrs2z8AAAAAYZ2ePQAAAACiUOW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAirN5NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFMyrb0AAAAAqYTZvwAAAABq5KS9AAAAAAvq/z8AAAAA8WlJPQAAAABLYPY/AAAAAKM+mjwAAAAAFDb+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMs+MLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICP0Ka7AAAAAOs/AMAAAAAA8A83PAAAAACYe+w/AAAAAFD9vL0AAAAAyznpPwAAAADw00y9AAAAANXs778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLSAY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeeqDvQAAAABJO/W/AAAAAAydor0AAAAAJY32PwAAAAAoQmQ7AAAAAFp6/j8AAAAAsKTJvQAAAACsrPe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIbUDqrzXjGMAWyUTegDjAF0lEdAqqpLl3hXKnV9lChoBkdAh+XI8p1A7mgHTegDaAhHQKquIzD4xlB1fZQoaAZHQIPI7iyY5T9oB03oA2gIR0CqtBgAhje9dX2UKGgGR0CC/K1kUbkwaAdN6ANoCEdAqrXyj8DSxHV9lChoBkdAiAXWlEZzgmgHTegDaAhHQKq5fsw+MZR1fZQoaAZHQIkSvvnbItFoB03oA2gIR0Cqu+Fv60pmdX2UKGgGR0CIM9dCVrylaAdN6ANoCEdAqsBWF10T13V9lChoBkdAhmJgdfb9ImgHTegDaAhHQKrCRXV9Wp91fZQoaAZHQISX1ymygPFoB03oA2gIR0CqxdR7JGONdX2UKGgGR0CB0BCm/FisaAdN6ANoCEdAqsmBaHKwIXV9lChoBkdAi5wTAFgUlGgHTegDaAhHQKrQeVafSQZ1fZQoaAZHQIhxgHNX5nFoB03oA2gIR0Cq0lu6NEPUdX2UKGgGR0CJ5oP91loUaAdN6ANoCEdAqtX1i2DxsnV9lChoBkdAkHtT6eoUBWgHTegDaAhHQKrYWOf/WDp1fZQoaAZHQJCLZ+mWMS9oB03oA2gIR0Cq3I9dNWU9dX2UKGgGR0CUqhH+qBEsaAdN6ANoCEdAqt5mNipeeHV9lChoBkdAk9eLEgntwGgHTegDaAhHQKrh9ied07t1fZQoaAZHQIhnuw3YL9doB03oA2gIR0Cq5G7q6e5GdX2UKGgGR0CQNOjghr31aAdN6ANoCEdAqusPLTx5LXV9lChoBkdAh6Yc+A3DN2gHTegDaAhHQKruGXvYvnN1fZQoaAZHQJJT880UGmloB03oA2gIR0Cq8gcWTHKfdX2UKGgGR0CXbTeOXE61aAdN6ANoCEdAqvRzKq4pdHV9lChoBkdAlE3lrRBu42gHTegDaAhHQKr4sGorFwV1fZQoaAZHQJQrgVSGahJoB03oA2gIR0Cq+qQ2dd3TdX2UKGgGR0CXL3XMhX8waAdN6ANoCEdAqv48PjGT93V9lChoBkdAl6bXPqs2emgHTegDaAhHQKsAmnAIpph1fZQoaAZHQJPxhcNYr8RoB03oA2gIR0CrBbzt9hJAdX2UKGgGR0CRPO4PPLPlaAdN6ANoCEdAqwinBP9DQnV9lChoBkdAlaU1n7Hhj2gHTegDaAhHQKsOGiwB5op1fZQoaAZHQJgfHRmbsnloB03oA2gIR0CrEG2kzoECdX2UKGgGR0CQAdTFl05maAdN6ANoCEdAqxSaEpRXOnV9lChoBkdAkQpWRJVbRmgHTegDaAhHQKsWguuieup1fZQoaAZHQJQxuUFB6a9oB03oA2gIR0CrGixBVuJldX2UKGgGR0CJsqpsoDxLaAdN6ANoCEdAqxyQhpxm03V9lChoBkdAkc2aSLZSN2gHTegDaAhHQKsgq7L+xW11fZQoaAZHQJWcFcTrVvxoB03oA2gIR0CrIwhUrCm/dX2UKGgGR0COAdwtrbg1aAdN6ANoCEdAqyip7RfF73V9lChoBkdAhya1w5vLo2gHTegDaAhHQKssgH2RJVd1fZQoaAZHQJZsoMOPNmloB03oA2gIR0CrMLgcT8HfdX2UKGgGR0CWwXm1pj+aaAdN6ANoCEdAqzKcibDuSnV9lChoBkdAlJHNL6DXe2gHTegDaAhHQKs1/IeYD1Z1fZQoaAZHQJZ6dwS8J2NoB03oA2gIR0CrOItK7I1cdX2UKGgGR0CXPCBSUC7saAdN6ANoCEdAqzywUahpQHV9lChoBkdAlScKv3ai9WgHTegDaAhHQKs+e9mpVCJ1fZQoaAZHQJSum+VTrE9oB03oA2gIR0CrQriSJTESdX2UKGgGR0CWe4vH93r2aAdN6ANoCEdAq0ZyfHxSYXV9lChoBkdAk0oW0E5hjWgHTegDaAhHQKtMPustCiR1fZQoaAZHQJHCE2cawUxoB03oA2gIR0CrThuAiFCcdX2UKGgGR0CP+amm+CbuaAdN6ANoCEdAq1GQ2VE/jnV9lChoBkdAk4sClJpWWGgHTegDaAhHQKtT7ah6By11fZQoaAZHQJOMIraufVZoB03oA2gIR0CrV/JuMuOCdX2UKGgGR0CUE3edkJ8faAdN6ANoCEdAq1nMKeCkGnV9lChoBkdAiIyaX0Gu92gHTegDaAhHQKtdRbnoxHp1fZQoaAZHQJOyniuMdcVoB03oA2gIR0CrYDxOLzf8dX2UKGgGR0CUiP57w8W9aAdN6ANoCEdAq2bm1rqMWHV9lChoBkdAlGibzf779GgHTegDaAhHQKtpp14gRsd1fZQoaAZHQJKykvkBCD5oB03oA2gIR0CrbTAmzBykdX2UKGgGR0CVQr8OTaCdaAdN6ANoCEdAq2+VuxbB43V9lChoBkdAlj5lnAZbZGgHTegDaAhHQKtzxJFLFn91fZQoaAZHQJOVPbzshPloB03oA2gIR0Crdd1NQCSzdX2UKGgGR0CUvSOmzjWDaAdN6ANoCEdAq3lgPK+zt3V9lChoBkdAlJKj2i+L32gHTegDaAhHQKt7wjsUqQR1fZQoaAZHQJP6wJWvKU5oB03oA2gIR0CrgWliay8jdX2UKGgGR0CVRmiV0Lc9aAdN6ANoCEdAq4RnkRzzVnV9lChoBkdAkkl02DQJHGgHTegDaAhHQKuJQOx0MgF1fZQoaAZHQJIsa37UG3ZoB03oA2gIR0Cri7IvSMLndX2UKGgGR0CSaPVfeDWcaAdN6ANoCEdAq4/TobGWEHV9lChoBkdAkMDp8Sf16GgHTegDaAhHQKuRvWCEpRZ1fZQoaAZHQJK2OUs4DLdoB03oA2gIR0CrlWJDE3sHdX2UKGgGR0CTsSzvqkdnaAdN6ANoCEdAq5fRN7BwdnV9lChoBkdAk2cSh37k4mgHTegDaAhHQKucTpGFzuF1fZQoaAZHQJKIHyLAHmloB03oA2gIR0Crnx37k4m1dX2UKGgGR0CVzirfcer/aAdN6ANoCEdAq6Ta5/b0v3V9lChoBkdAk1p6cEvCdmgHTegDaAhHQKunraSLZSN1fZQoaAZHQJMWzwLE1l5oB03oA2gIR0Crq+b04BFNdX2UKGgGR0CS+WlMyrPuaAdN6ANoCEdAq63U8xKxs3V9lChoBkdAlCxzawljVmgHTegDaAhHQKuxhyLhrFh1fZQoaAZHQJGlxQl8gIRoB03oA2gIR0Crs+bhFVkudX2UKGgGR0CUruwosqaxaAdN6ANoCEdAq7gMxZdOZnV9lChoBkdAlYhgM6RyO2gHTegDaAhHQKu54qiGnGd1fZQoaAZHQJCjnppvgm9oB03oA2gIR0Crv1u+RHPNdX2UKGgGR0COdqxUNrj6aAdN6ANoCEdAq8Nef9P1tnV9lChoBkdAlbw6gyuZC2gHTegDaAhHQKvIHCP6sQx1fZQoaAZHQInnuvdM0xdoB03oA2gIR0Crye/QjUutdX2UKGgGR0CI0Y2MKkVOaAdN6ANoCEdAq81tjbzshXV9lChoBkdAlY753LV4HGgHTegDaAhHQKvPvXFLnLd1fZQoaAZHQJVgpiiItUZoB03oA2gIR0Cr0/jn/1g6dX2UKGgGR0CKvR1f3N9qaAdN6ANoCEdAq9XGLBKtgnV9lChoBkdAlKzh8YyftmgHTegDaAhHQKvbHRJEpiJ1fZQoaAZHQJWcxKFqSHNoB03oA2gIR0Cr3vO58Sf2dX2UKGgGR0CUKB9ovi97aAdN6ANoCEdAq+Y6HZbpvHV9lChoBkdAkp4B6KLsKWgHTegDaAhHQKvpUjQAuI11fZQoaAZHQIqzT9Q40dloB03oA2gIR0Cr7OBg3LmqdX2UKGgGR0CWKoIGQjlgaAdN6ANoCEdAq+81oDgZTHV9lChoBkdAlXm2ygPEsWgHTegDaAhHQKvzX0jkdWB1fZQoaAZHQJPdD+VC5VhoB03oA2gIR0Cr9XXTd+G5dX2UKGgGR0CWT4cOskpraAdN6ANoCEdAq/j5Sm65G3V9lChoBkdAlALXdj5KvmgHTegDaAhHQKv7cLaVUuN1fZQoaAZHQJE8SEcsDnxoB03oA2gIR0CsAJKg7HQydX2UKGgGR0CT1JNyYG+saAdN6ANoCEdArAOFUS7GvXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBullet/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9bff0cc488838f555e918945c6be5ea8cbd4549e263e906f6c15cc2015dc280
3
+ size 56190
a2c-AntBullet/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:669882893e0a8003cd40372072e7c42a85b166c54798d65bf4c95c95e3240716
3
+ size 56958
a2c-AntBullet/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBullet/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0933b0f5e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0933b0f670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0933b0f700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0933b0f790>", "_build": "<function ActorCriticPolicy._build at 0x7f0933b0f820>", "forward": "<function ActorCriticPolicy.forward at 0x7f0933b0f8b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0933b0f940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0933b0f9d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0933b0fa60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0933b0faf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0933b0fb80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0933b0fc10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0933b164c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680418628670089429, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHlZH78UdL4/OL8dv2C0CD8pl5Q/jeW9v/KtVb9gO26+u/isvquZtr/Mv2a+QHtAP12FTz8Ew6W/KciAPyevFr5SBKo+n5r5vxHfh70o2IE/rykWv5Q7Bz4lG8U9POk/wCqZlL8ihL8+6ubSPu1PsL/lEqw+dTo/P+31uj53xQg/J59/Pw7fiz9Qz/09C/eGv0L7Hj6IE2I/gdx4P0uHIT+0jey/X0AVP4KQvL5QYIO++2wQvqq5bz1qUDY/qeW3PNItAr7Tza6/esumP6co4j0qmZS/IoS/Purm0j4k2jk/rCZ0vkWU6L5trg4/eqolv2TZjj5D0QG/ce93PgejDUCIhLg/lf12vJsQI76G3V6+fsK1v3DPAEA9hiG/cU/3PM7jez/m9vo+VDotv66YkD/fbV+/euDJvR5pfL8Eppg9k4NcPwsZK8Dq5tI+JNo5P6MhsD66cpM/CqVhvWwdsT+ZsBxAxa4yv+E9ATzEFLa/juw+uxWteL5auAC/tTYuwOqOZz84PYY/WEOFP/o6rj/KXiQ/OSDcP+MWDj+LOoG/7Lc2v1YjBr+k5rk/Pp8UPiqZlL8ihL8+6ubSPiTaOT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAvR5m2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+roCPgAAAAAbiem/AAAAAAOexj0AAAAA27/8PwAAAABaw7u9AAAAAPrs2z8AAAAAYZ2ePQAAAACiUOW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAirN5NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFMyrb0AAAAAqYTZvwAAAABq5KS9AAAAAAvq/z8AAAAA8WlJPQAAAABLYPY/AAAAAKM+mjwAAAAAFDb+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMs+MLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICP0Ka7AAAAAOs/AMAAAAAA8A83PAAAAACYe+w/AAAAAFD9vL0AAAAAyznpPwAAAADw00y9AAAAANXs778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLSAY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeeqDvQAAAABJO/W/AAAAAAydor0AAAAAJY32PwAAAAAoQmQ7AAAAAFp6/j8AAAAAsKTJvQAAAACsrPe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIbUDqrzXjGMAWyUTegDjAF0lEdAqqpLl3hXKnV9lChoBkdAh+XI8p1A7mgHTegDaAhHQKquIzD4xlB1fZQoaAZHQIPI7iyY5T9oB03oA2gIR0CqtBgAhje9dX2UKGgGR0CC/K1kUbkwaAdN6ANoCEdAqrXyj8DSxHV9lChoBkdAiAXWlEZzgmgHTegDaAhHQKq5fsw+MZR1fZQoaAZHQIkSvvnbItFoB03oA2gIR0Cqu+Fv60pmdX2UKGgGR0CIM9dCVrylaAdN6ANoCEdAqsBWF10T13V9lChoBkdAhmJgdfb9ImgHTegDaAhHQKrCRXV9Wp91fZQoaAZHQISX1ymygPFoB03oA2gIR0CqxdR7JGONdX2UKGgGR0CB0BCm/FisaAdN6ANoCEdAqsmBaHKwIXV9lChoBkdAi5wTAFgUlGgHTegDaAhHQKrQeVafSQZ1fZQoaAZHQIhxgHNX5nFoB03oA2gIR0Cq0lu6NEPUdX2UKGgGR0CJ5oP91loUaAdN6ANoCEdAqtX1i2DxsnV9lChoBkdAkHtT6eoUBWgHTegDaAhHQKrYWOf/WDp1fZQoaAZHQJCLZ+mWMS9oB03oA2gIR0Cq3I9dNWU9dX2UKGgGR0CUqhH+qBEsaAdN6ANoCEdAqt5mNipeeHV9lChoBkdAk9eLEgntwGgHTegDaAhHQKrh9ied07t1fZQoaAZHQIhnuw3YL9doB03oA2gIR0Cq5G7q6e5GdX2UKGgGR0CQNOjghr31aAdN6ANoCEdAqusPLTx5LXV9lChoBkdAh6Yc+A3DN2gHTegDaAhHQKruGXvYvnN1fZQoaAZHQJJT880UGmloB03oA2gIR0Cq8gcWTHKfdX2UKGgGR0CXbTeOXE61aAdN6ANoCEdAqvRzKq4pdHV9lChoBkdAlE3lrRBu42gHTegDaAhHQKr4sGorFwV1fZQoaAZHQJQrgVSGahJoB03oA2gIR0Cq+qQ2dd3TdX2UKGgGR0CXL3XMhX8waAdN6ANoCEdAqv48PjGT93V9lChoBkdAl6bXPqs2emgHTegDaAhHQKsAmnAIpph1fZQoaAZHQJPxhcNYr8RoB03oA2gIR0CrBbzt9hJAdX2UKGgGR0CRPO4PPLPlaAdN6ANoCEdAqwinBP9DQnV9lChoBkdAlaU1n7Hhj2gHTegDaAhHQKsOGiwB5op1fZQoaAZHQJgfHRmbsnloB03oA2gIR0CrEG2kzoECdX2UKGgGR0CQAdTFl05maAdN6ANoCEdAqxSaEpRXOnV9lChoBkdAkQpWRJVbRmgHTegDaAhHQKsWguuieup1fZQoaAZHQJQxuUFB6a9oB03oA2gIR0CrGixBVuJldX2UKGgGR0CJsqpsoDxLaAdN6ANoCEdAqxyQhpxm03V9lChoBkdAkc2aSLZSN2gHTegDaAhHQKsgq7L+xW11fZQoaAZHQJWcFcTrVvxoB03oA2gIR0CrIwhUrCm/dX2UKGgGR0COAdwtrbg1aAdN6ANoCEdAqyip7RfF73V9lChoBkdAhya1w5vLo2gHTegDaAhHQKssgH2RJVd1fZQoaAZHQJZsoMOPNmloB03oA2gIR0CrMLgcT8HfdX2UKGgGR0CWwXm1pj+aaAdN6ANoCEdAqzKcibDuSnV9lChoBkdAlJHNL6DXe2gHTegDaAhHQKs1/IeYD1Z1fZQoaAZHQJZ6dwS8J2NoB03oA2gIR0CrOItK7I1cdX2UKGgGR0CXPCBSUC7saAdN6ANoCEdAqzywUahpQHV9lChoBkdAlScKv3ai9WgHTegDaAhHQKs+e9mpVCJ1fZQoaAZHQJSum+VTrE9oB03oA2gIR0CrQriSJTESdX2UKGgGR0CWe4vH93r2aAdN6ANoCEdAq0ZyfHxSYXV9lChoBkdAk0oW0E5hjWgHTegDaAhHQKtMPustCiR1fZQoaAZHQJHCE2cawUxoB03oA2gIR0CrThuAiFCcdX2UKGgGR0CP+amm+CbuaAdN6ANoCEdAq1GQ2VE/jnV9lChoBkdAk4sClJpWWGgHTegDaAhHQKtT7ah6By11fZQoaAZHQJOMIraufVZoB03oA2gIR0CrV/JuMuOCdX2UKGgGR0CUE3edkJ8faAdN6ANoCEdAq1nMKeCkGnV9lChoBkdAiIyaX0Gu92gHTegDaAhHQKtdRbnoxHp1fZQoaAZHQJOyniuMdcVoB03oA2gIR0CrYDxOLzf8dX2UKGgGR0CUiP57w8W9aAdN6ANoCEdAq2bm1rqMWHV9lChoBkdAlGibzf779GgHTegDaAhHQKtpp14gRsd1fZQoaAZHQJKykvkBCD5oB03oA2gIR0CrbTAmzBykdX2UKGgGR0CVQr8OTaCdaAdN6ANoCEdAq2+VuxbB43V9lChoBkdAlj5lnAZbZGgHTegDaAhHQKtzxJFLFn91fZQoaAZHQJOVPbzshPloB03oA2gIR0Crdd1NQCSzdX2UKGgGR0CUvSOmzjWDaAdN6ANoCEdAq3lgPK+zt3V9lChoBkdAlJKj2i+L32gHTegDaAhHQKt7wjsUqQR1fZQoaAZHQJP6wJWvKU5oB03oA2gIR0CrgWliay8jdX2UKGgGR0CVRmiV0Lc9aAdN6ANoCEdAq4RnkRzzVnV9lChoBkdAkkl02DQJHGgHTegDaAhHQKuJQOx0MgF1fZQoaAZHQJIsa37UG3ZoB03oA2gIR0Cri7IvSMLndX2UKGgGR0CSaPVfeDWcaAdN6ANoCEdAq4/TobGWEHV9lChoBkdAkMDp8Sf16GgHTegDaAhHQKuRvWCEpRZ1fZQoaAZHQJK2OUs4DLdoB03oA2gIR0CrlWJDE3sHdX2UKGgGR0CTsSzvqkdnaAdN6ANoCEdAq5fRN7BwdnV9lChoBkdAk2cSh37k4mgHTegDaAhHQKucTpGFzuF1fZQoaAZHQJKIHyLAHmloB03oA2gIR0Crnx37k4m1dX2UKGgGR0CVzirfcer/aAdN6ANoCEdAq6Ta5/b0v3V9lChoBkdAk1p6cEvCdmgHTegDaAhHQKunraSLZSN1fZQoaAZHQJMWzwLE1l5oB03oA2gIR0Crq+b04BFNdX2UKGgGR0CS+WlMyrPuaAdN6ANoCEdAq63U8xKxs3V9lChoBkdAlCxzawljVmgHTegDaAhHQKuxhyLhrFh1fZQoaAZHQJGlxQl8gIRoB03oA2gIR0Crs+bhFVkudX2UKGgGR0CUruwosqaxaAdN6ANoCEdAq7gMxZdOZnV9lChoBkdAlYhgM6RyO2gHTegDaAhHQKu54qiGnGd1fZQoaAZHQJCjnppvgm9oB03oA2gIR0Crv1u+RHPNdX2UKGgGR0COdqxUNrj6aAdN6ANoCEdAq8Nef9P1tnV9lChoBkdAlbw6gyuZC2gHTegDaAhHQKvIHCP6sQx1fZQoaAZHQInnuvdM0xdoB03oA2gIR0Crye/QjUutdX2UKGgGR0CI0Y2MKkVOaAdN6ANoCEdAq81tjbzshXV9lChoBkdAlY753LV4HGgHTegDaAhHQKvPvXFLnLd1fZQoaAZHQJVgpiiItUZoB03oA2gIR0Cr0/jn/1g6dX2UKGgGR0CKvR1f3N9qaAdN6ANoCEdAq9XGLBKtgnV9lChoBkdAlKzh8YyftmgHTegDaAhHQKvbHRJEpiJ1fZQoaAZHQJWcxKFqSHNoB03oA2gIR0Cr3vO58Sf2dX2UKGgGR0CUKB9ovi97aAdN6ANoCEdAq+Y6HZbpvHV9lChoBkdAkp4B6KLsKWgHTegDaAhHQKvpUjQAuI11fZQoaAZHQIqzT9Q40dloB03oA2gIR0Cr7OBg3LmqdX2UKGgGR0CWKoIGQjlgaAdN6ANoCEdAq+81oDgZTHV9lChoBkdAlXm2ygPEsWgHTegDaAhHQKvzX0jkdWB1fZQoaAZHQJPdD+VC5VhoB03oA2gIR0Cr9XXTd+G5dX2UKGgGR0CWT4cOskpraAdN6ANoCEdAq/j5Sm65G3V9lChoBkdAlALXdj5KvmgHTegDaAhHQKv7cLaVUuN1fZQoaAZHQJE8SEcsDnxoB03oA2gIR0CsAJKg7HQydX2UKGgGR0CT1JNyYG+saAdN6ANoCEdArAOFUS7GvXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48f6b09ac7fd0ef3ad548a885d2b9f76734089f78b7c8d16b199ec08498149e6
3
+ size 1012737
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1388.8351635927568, "std_reward": 217.6335343576892, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-02T08:02:45.992988"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aaab05bd681ac8a55e4a28368a3d251fe47325b1eea920b908aac69e21776985
3
+ size 2136