DevBhuyan commited on
Commit
c764a4e
·
verified ·
1 Parent(s): 84a1712

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -38
README.md CHANGED
@@ -15,44 +15,47 @@ base_model:
15
  - glasses/densenet201
16
  pipeline_tag: image-segmentation
17
  model-index:
18
- - name: Skin-Lesion-Segmentation
19
- results:
20
- - task:
21
- type: image-segmentation
22
- dataset:
23
- name: isic2016
24
- type: image
25
- metrics:
26
- - name: accuracy
27
- type: float
28
- value: 98.04
29
- - name: precision
30
- type: float
31
- value: 97.09
32
- - name: IoU (jaccard index)
33
- type: float
34
- value: 90.86
35
- - name: F1-score (dice coefficient)
36
- type: float
37
- value: 94.78
38
- - task:
39
- type: image-segmentation
40
- dataset:
41
- name: isic2017
42
- type: image
43
- metrics:
44
- - name: accuracy
45
- type: float
46
- value: 93.06
47
- - name: precision
48
- type: float
49
- value: 98.63
50
- - name: IoU (jaccard index)
51
- type: float
52
- value: 89.97
53
- - name: F1-score (dice coefficient)
54
- type: float
55
- value: 94.35
 
 
 
56
  ---
57
 
58
  A precise segmentation model trained on the ISIC2016 and 2017 datasets. Throws an accuracy of 98.06% and a Jaccard Index of 90.86. Based on the U-Net architecture with a DenseNet201 backbone.
 
15
  - glasses/densenet201
16
  pipeline_tag: image-segmentation
17
  model-index:
18
+ - name: Skin-Lesion-Segmentation
19
+ results:
20
+ - task:
21
+ type: image-segmentation
22
+ dataset:
23
+ name: isic2016
24
+ type: image
25
+ metrics:
26
+ - name: accuracy
27
+ type: float
28
+ value: 98.04
29
+ - name: precision
30
+ type: float
31
+ value: 97.09
32
+ - name: IoU (jaccard index)
33
+ type: float
34
+ value: 90.86
35
+ - name: F1-score (dice coefficient)
36
+ type: float
37
+ value: 94.78
38
+ - task:
39
+ type: image-segmentation
40
+ dataset:
41
+ name: isic2017
42
+ type: image
43
+ metrics:
44
+ - name: accuracy
45
+ type: float
46
+ value: 93.06
47
+ - name: precision
48
+ type: float
49
+ value: 98.63
50
+ - name: IoU (jaccard index)
51
+ type: float
52
+ value: 89.97
53
+ - name: F1-score (dice coefficient)
54
+ type: float
55
+ value: 94.35
56
+ tags:
57
+ - tensorflow
58
+ - keras
59
  ---
60
 
61
  A precise segmentation model trained on the ISIC2016 and 2017 datasets. Throws an accuracy of 98.06% and a Jaccard Index of 90.86. Based on the U-Net architecture with a DenseNet201 backbone.