Upload main.py
Browse files
main.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
from transformers import (
|
7 |
+
VisionEncoderDecoderModel,
|
8 |
+
ViTImageProcessor,
|
9 |
+
AutoTokenizer,
|
10 |
+
BlipProcessor,
|
11 |
+
BlipForConditionalGeneration,
|
12 |
+
)
|
13 |
+
from diffusers import (
|
14 |
+
DiffusionPipeline,
|
15 |
+
StableDiffusionPipeline,
|
16 |
+
StableDiffusionImageVariationPipeline,
|
17 |
+
)
|
18 |
+
|
19 |
+
def generate_image_caption(image_path):
|
20 |
+
# Diffusion pipeline
|
21 |
+
device = torch.device("cpu")
|
22 |
+
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
23 |
+
|
24 |
+
sd_pipe = StableDiffusionImageVariationPipeline.from_pretrained(
|
25 |
+
"lambdalabs/sd-image-variations-diffusers", revision="v2.0"
|
26 |
+
)
|
27 |
+
sd_pipe = sd_pipe.to(device)
|
28 |
+
|
29 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
30 |
+
"lambdalabs/sd-image-variations-diffusers"
|
31 |
+
)
|
32 |
+
|
33 |
+
# Image transformations
|
34 |
+
img_transforms = transforms.Compose(
|
35 |
+
[
|
36 |
+
transforms.ToTensor(),
|
37 |
+
transforms.Resize(
|
38 |
+
(224, 224),
|
39 |
+
interpolation=transforms.InterpolationMode.BICUBIC,
|
40 |
+
antialias=False,
|
41 |
+
),
|
42 |
+
transforms.Normalize(
|
43 |
+
[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
|
44 |
+
),
|
45 |
+
]
|
46 |
+
)
|
47 |
+
|
48 |
+
# Image-to-image
|
49 |
+
with Image.open(image_path) as img:
|
50 |
+
img_tensor = img_transforms(img).to(device).unsqueeze(0)
|
51 |
+
out = sd_pipe(img_tensor, guidance_scale=3)
|
52 |
+
out["images"][0].save("img1.jpg")
|
53 |
+
|
54 |
+
# Blip image captioning
|
55 |
+
raw_image = Image.open(image_path).convert("RGB")
|
56 |
+
|
57 |
+
processor = BlipProcessor.from_pretrained(
|
58 |
+
"Salesforce/blip-image-captioning-large"
|
59 |
+
)
|
60 |
+
model = BlipForConditionalGeneration.from_pretrained(
|
61 |
+
"Salesforce/blip-image-captioning-large"
|
62 |
+
).to(device)
|
63 |
+
|
64 |
+
# Conditional image captioning
|
65 |
+
text = "a photography of"
|
66 |
+
inputs = processor(raw_image, text, return_tensors="pt").to(device)
|
67 |
+
out = model.generate(**inputs)
|
68 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
69 |
+
|
70 |
+
# Unconditional image captioning
|
71 |
+
inputs = processor(raw_image, return_tensors="pt").to(device)
|
72 |
+
out = model.generate(**inputs)
|
73 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
74 |
+
|
75 |
+
# Stable diffusion pipeline
|
76 |
+
model_id = "prompthero/openjourney"
|
77 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
78 |
+
model_id, torch_dtype=torch.float32
|
79 |
+
)
|
80 |
+
pipe = pipe.to(device)
|
81 |
+
|
82 |
+
Room = "Living Room"
|
83 |
+
AI_Intervention = "High"
|
84 |
+
Mode = "Redesign"
|
85 |
+
Design = "Modern"
|
86 |
+
prompt = (
|
87 |
+
f"Give me a realistic and complete image of {caption} "
|
88 |
+
f"which room type: {Room}, AI Intervention: {AI_Intervention}, "
|
89 |
+
f"Mode: {Mode} and Design style: {Design}"
|
90 |
+
)
|
91 |
+
image = pipe(prompt).images[0]
|
92 |
+
image.save("result3.jpg")
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
generate_image_caption("C:\Master\First.jpg")
|
97 |
+
|
98 |
+
|