DenisKochetov
commited on
Commit
•
1c55a6d
1
Parent(s):
27685ee
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- chika.zip +3 -0
- chika/_stable_baselines3_version +1 -0
- chika/data +94 -0
- chika/policy.optimizer.pth +3 -0
- chika/policy.pth +3 -0
- chika/pytorch_variables.pth +3 -0
- chika/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 157.98 +/- 27.95
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
chika.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26cc4dd01ed16a66842ba054239ec0f251469beea92b8b1f2fed6f9d2967905e
|
3 |
+
size 144048
|
chika/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
chika/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7eff522478c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff52247950>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff522479e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff52247a70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7eff52247b00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7eff52247b90>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff52247c20>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7eff52247cb0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff52247d40>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff52247dd0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff52247e60>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7eff52284e10>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652896606.8595378,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOGkLwpVDi6iwnZOlzKUzbrhRQ7zQ/+uQAAgD8AAIA/M0Nuu+G8l7ryjCo7bBCONkl5kbgSn201AACAPwAAgD8AQMw6jyZHusO0g7wm80g1uU0ROHEHqrQAAIA/AACAP5ofzDzXLB+7uzCyvNagkjx+4VW8M7Z8PQAAgD8AAIA/jn7bvuxEkL3jBfc6O/mPOVitXj60YhG6AACAPwAAgD+6FkU+1zJnu/gtczsi9qa367KavP78RLoAAIA/AACAP4DqGL64yoG7C6fsucqeCrc2v+08xvILOQAAgD8AAIA/APwpPYZNlT875vc90G6gvj5At7wDYho6AAAAAAAAAACzO6+9r2FxP3ZR2L3hGJa+L/7bve5AXr0AAAAAAAAAAK3mOz5l15w/ODswPz5Hcb6/fGM9+2ViPgAAAAAAAAAAOrA2PqwL2jyUtZ6810hRu0dKdT4icmu8AACAPwAAgD96XXs+9fnGPqpLTr4i+mi+O2wWvaO5Yj0AAAAAAAAAAIC/uD1SYIa5G9Vcu3ISDTf9c8s7pZuEtgAAgD8AAIA/zRyMvP7RcD+qimO9uwdUvluYmDyLcCi+AAAAAAAAAAAAt9m9j0ZmuqOXgzuimBc4a2jNOlCPNroAAIA/AACAPxrA3j0YUNU+JHq0vOq+M75QWTC9EvzqvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyLd3DfoUQECUhpRSlIwBbJRNSAGMAXSUR0CCOha11GLDdX2UKGgGaAloD0MIcAorFVTFW0CUhpRSlGgVTegDaBZHQIJL098qnWJ1fZQoaAZoCWgPQwhuisdFtY5aQJSGlFKUaBVN6ANoFkdAgk1emelKsnV9lChoBmgJaA9DCIlFDDuMGFhAlIaUUpRoFU3oA2gWR0CCUBzp5eJIdX2UKGgGaAloD0MIuMt+3enLXkCUhpRSlGgVTegDaBZHQIJW8aAFxGV1fZQoaAZoCWgPQwj9+EuL+gBZQJSGlFKUaBVN6ANoFkdAgl6jrAxi5XV9lChoBmgJaA9DCIwwRbm08mFAlIaUUpRoFU3oA2gWR0CCcvMajvd/dX2UKGgGaAloD0MILdFZZhHRWkCUhpRSlGgVTegDaBZHQIJzhdIGyHF1fZQoaAZoCWgPQwj2YFJ8fCNbQJSGlFKUaBVN6ANoFkdAgnP0Hpr1unV9lChoBmgJaA9DCNDVVuyvo2FAlIaUUpRoFU3oA2gWR0CCdXtIkJKKdX2UKGgGaAloD0MIjXqIRncQ7j+UhpRSlGgVTRoBaBZHQILDSSgXdj51fZQoaAZoCWgPQwhpVOBkG6ldQJSGlFKUaBVN6ANoFkdAgsrykKu0TnV9lChoBmgJaA9DCCpwsg3cg11AlIaUUpRoFU3oA2gWR0CCyvh3JPqLdX2UKGgGaAloD0MIcCU7NgLqWECUhpRSlGgVTegDaBZHQILLdUVBUrF1fZQoaAZoCWgPQwhRgv5CjwtWQJSGlFKUaBVN6ANoFkdAgtP0euFHrnV9lChoBmgJaA9DCG/ZIf5hb2BAlIaUUpRoFU3oA2gWR0CC2pfTCtRvdX2UKGgGaAloD0MIMBNFSF0pY0CUhpRSlGgVTegDaBZHQILawXwb2lF1fZQoaAZoCWgPQwjFjPD2ID9dQJSGlFKUaBVN6ANoFkdAgu3xQaaTfXV9lChoBmgJaA9DCKYLsfqjlWNAlIaUUpRoFU3oA2gWR0CDAR4M4LkTdX2UKGgGaAloD0MIQndJnBVIWkCUhpRSlGgVTegDaBZHQIMDDBInSfF1fZQoaAZoCWgPQwjo3O16aRlbQJSGlFKUaBVN6ANoFkdAgwXugpSaVnV9lChoBmgJaA9DCKw7Ftskm2hAlIaUUpRoFU3VAWgWR0CDCIaOxSpBdX2UKGgGaAloD0MItmeWBKi/YECUhpRSlGgVTegDaBZHQIMMXPzFuNx1fZQoaAZoCWgPQwgnUMQihpNbQJSGlFKUaBVN6ANoFkdAgxK4H5aePXV9lChoBmgJaA9DCBB0tKql02BAlIaUUpRoFU3oA2gWR0CDIiwD/2kBdX2UKGgGaAloD0MIAcEcPX5XW0CUhpRSlGgVTegDaBZHQIMipNdqtYB1fZQoaAZoCWgPQwiGjbJ+MzlZQJSGlFKUaBVN6ANoFkdAgyL4E4ecQXV9lChoBmgJaA9DCC/BqQ8kJyPAlIaUUpRoFU1FAWgWR0CDMJBdD6WPdX2UKGgGaAloD0MIdji6SneHQsCUhpRSlGgVTRgBaBZHQINrMDnvDxd1fZQoaAZoCWgPQwi05VyKq+hYQJSGlFKUaBVN6ANoFkdAg3OW9tdiUnV9lChoBmgJaA9DCIffTbfs5ldAlIaUUpRoFU3oA2gWR0CDc5jDsMRZdX2UKGgGaAloD0MIDmd+NQfESkCUhpRSlGgVTegDaBZHQIN0DE9+w1R1fZQoaAZoCWgPQwgoCvSJvIRkQJSGlFKUaBVN6ANoFkdAg3vi7K7qZHV9lChoBmgJaA9DCAL1ZtR84VxAlIaUUpRoFU3oA2gWR0CDggaEzwc6dX2UKGgGaAloD0MIDtjV5KkIZECUhpRSlGgVTegDaBZHQIOCKsbNr0t1fZQoaAZoCWgPQwj0hvvIra0wQJSGlFKUaBVL9WgWR0CDk9joZAIIdX2UKGgGaAloD0MIJhsPttgbYkCUhpRSlGgVTegDaBZHQIOUIOz6ab51fZQoaAZoCWgPQwigU5CfjRhQQJSGlFKUaBVN6ANoFkdAg6YsB6rvLHV9lChoBmgJaA9DCKMFaFvN+l5AlIaUUpRoFU3oA2gWR0CDp9PM0P6LdX2UKGgGaAloD0MId2SsNv8kV0CUhpRSlGgVTegDaBZHQIOqqmCROlB1fZQoaAZoCWgPQwjJrx9igx9gQJSGlFKUaBVN6ANoFkdAg61r7XQMQXV9lChoBmgJaA9DCNqSVRHuwmFAlIaUUpRoFU3oA2gWR0CDuMoQ4CIUdX2UKGgGaAloD0MIUwPN59xdMUCUhpRSlGgVS/VoFkdAg8bcr7O3UnV9lChoBmgJaA9DCAVsByP2bmFAlIaUUpRoFU3oA2gWR0CDy9IxQBPsdX2UKGgGaAloD0MIixpMw/BOXECUhpRSlGgVTegDaBZHQIPMVXko4Mp1fZQoaAZoCWgPQwgwn6wYLttjQJSGlFKUaBVN6ANoFkdAg9vQl0HQhXV9lChoBmgJaA9DCCFX6lmQgGFAlIaUUpRoFU3oA2gWR0CD8sS5AhStdX2UKGgGaAloD0MIS3ZsBOK6V0CUhpRSlGgVTegDaBZHQIQj4GUwBYF1fZQoaAZoCWgPQwh3ZRcMrlViQJSGlFKUaBVN6ANoFkdAhCRYKYzBRHV9lChoBmgJaA9DCIKLFTWYeF1AlIaUUpRoFU3oA2gWR0CELLH6MzdldX2UKGgGaAloD0MItydIbHcHS0CUhpRSlGgVTegDaBZHQIQy2Zy+6Ah1fZQoaAZoCWgPQwheRxyygftUQJSGlFKUaBVN6ANoFkdAhDL/LcKw6nV9lChoBmgJaA9DCBXI7Cx6elVAlIaUUpRoFU3oA2gWR0CERVgBtDUmdX2UKGgGaAloD0MIXwoPml0gW0CUhpRSlGgVTegDaBZHQIRFnyEtdzJ1fZQoaAZoCWgPQwhgHjLlQygswJSGlFKUaBVNGgFoFkdAhFIOOjqOcXV9lChoBmgJaA9DCDqRYKoZGGVAlIaUUpRoFU3oA2gWR0CEWDQgLZzxdX2UKGgGaAloD0MIih74GKziVUCUhpRSlGgVTegDaBZHQIRbET6BRQ91fZQoaAZoCWgPQwjvxRft8QpSQJSGlFKUaBVN6ANoFkdAhF3G5lOGkHV9lChoBmgJaA9DCMMOY9Lf/F9AlIaUUpRoFU3oA2gWR0CEamOCGvfTdX2UKGgGaAloD0MIO4pz1NH9XECUhpRSlGgVTegDaBZHQIR7Mpqh11Z1fZQoaAZoCWgPQwhstBzooR9gQJSGlFKUaBVN6ANoFkdAhID1bzK9wnV9lChoBmgJaA9DCIDY0qOpF15AlIaUUpRoFU3oA2gWR0CEgYliSaE0dX2UKGgGaAloD0MI2lcepKf7XUCUhpRSlGgVTegDaBZHQISTrdepn6F1fZQoaAZoCWgPQwiasWg6O3kfQJSGlFKUaBVNEAFoFkdAhKsLA57w8XV9lChoBmgJaA9DCHsWhPI++VVAlIaUUpRoFU3oA2gWR0CErXvhqCYkdX2UKGgGaAloD0MIrvAuF/EZWkCUhpRSlGgVTegDaBZHQITbqMkyDZl1fZQoaAZoCWgPQwi4j9yadAhjQJSGlFKUaBVN6ANoFkdAhNwXo9s7+3V9lChoBmgJaA9DCIyBdRw/ulhAlIaUUpRoFU3oA2gWR0CE6z8ZUDMedX2UKGgGaAloD0MIhShf0EIbX0CUhpRSlGgVTegDaBZHQITrjWXkYGd1fZQoaAZoCWgPQwjYvKqzWsxaQJSGlFKUaBVN6ANoFkdAhP45z5oGp3V9lChoBmgJaA9DCM8VpYRgg1hAlIaUUpRoFU3oA2gWR0CE/oHbAUL2dX2UKGgGaAloD0MIxOkkW12cYkCUhpRSlGgVTegDaBZHQIUKmavzOHF1fZQoaAZoCWgPQwifkQiN4AVgQJSGlFKUaBVN6ANoFkdAhRA6QvHtGHV9lChoBmgJaA9DCPsD5bb9NWBAlIaUUpRoFU3oA2gWR0CFEo79Q40edX2UKGgGaAloD0MIlZo90ArOX0CUhpRSlGgVTegDaBZHQIUUyZpi7TV1fZQoaAZoCWgPQwj99nXgnGJZQJSGlFKUaBVN6ANoFkdAhR6c1fmcOXV9lChoBmgJaA9DCOPfZ1w4iFxAlIaUUpRoFU3oA2gWR0CFKqwIt16mdX2UKGgGaAloD0MISOF6FK6mXkCUhpRSlGgVTegDaBZHQIUvclNUOut1fZQoaAZoCWgPQwhJFFrW/RMSQJSGlFKUaBVNZwFoFkdAhTy2zOX3QHV9lChoBmgJaA9DCMx7nGnCSFxAlIaUUpRoFU3oA2gWR0CFPvwrlNlAdX2UKGgGaAloD0MIIa0x6IS7WECUhpRSlGgVTegDaBZHQIVTczKs+3Z1fZQoaAZoCWgPQwiVD0HV6DtgQJSGlFKUaBVN6ANoFkdAhVWRSpBHC3V9lChoBmgJaA9DCP8j06HTSl1AlIaUUpRoFU3oA2gWR0CFXb00WM0hdX2UKGgGaAloD0MIidAINq4JVkCUhpRSlGgVTegDaBZHQIVeMYqG1x91fZQoaAZoCWgPQwgEj2/vGiRWQJSGlFKUaBVN6ANoFkdAhZEJztCzC3V9lChoBmgJaA9DCCjXFMjsr2BAlIaUUpRoFU3oA2gWR0CFkTO2RaHLdX2UKGgGaAloD0MI2jwOg/lcWkCUhpRSlGgVTegDaBZHQIWkMCFK02N1fZQoaAZoCWgPQwiFevoI/MxbQJSGlFKUaBVN6ANoFkdAhaR/ixVyWHV9lChoBmgJaA9DCHxGIjSCEmBAlIaUUpRoFU3oA2gWR0CFsnz06HTJdX2UKGgGaAloD0MIN8e5Tbj1YUCUhpRSlGgVTegDaBZHQIW4vqFAVwh1fZQoaAZoCWgPQwhy+nq+Zm5RQJSGlFKUaBVN6ANoFkdAhb5xoRIz33V9lChoBmgJaA9DCCbl7nN8q1lAlIaUUpRoFU3oA2gWR0CFyshfShJzdX2UKGgGaAloD0MIxy3m54ZBXkCUhpRSlGgVTegDaBZHQIXY8ImgJ1J1fZQoaAZoCWgPQwjw2xDjNd9ZQJSGlFKUaBVN6ANoFkdAhd5H3lCCz3V9lChoBmgJaA9DCEvLSL2nIF1AlIaUUpRoFU3oA2gWR0CF7QiNbTttdX2UKGgGaAloD0MItcagE0LKX0CUhpRSlGgVTegDaBZHQIXvgMrmQsB1fZQoaAZoCWgPQwhLy0i9p2dXQJSGlFKUaBVN6ANoFkdAhgOVrRBu43V9lChoBmgJaA9DCCsxz0paAVxAlIaUUpRoFU3oA2gWR0CGBZwVCXyBdX2UKGgGaAloD0MIN/xuumWZY0CUhpRSlGgVTegDaBZHQIYNT0Dlo111fZQoaAZoCWgPQwhPzlDccbFhQJSGlFKUaBVN6ANoFkdAhg2xgAp8W3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
chika/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b88f6c4085f3e8109a0522a2e64d241c9c4304562666ff78a0b23510d57277b9
|
3 |
+
size 84829
|
chika/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccceb7d63afada29a3b1dcd6e2164882c7ad8f486f48e639a28985a4d80cc42a
|
3 |
+
size 43201
|
chika/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
chika/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff522478c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff52247950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff522479e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff52247a70>", "_build": "<function ActorCriticPolicy._build at 0x7eff52247b00>", "forward": "<function ActorCriticPolicy.forward at 0x7eff52247b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff52247c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff52247cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff52247d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff52247dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff52247e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff52284e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652896606.8595378, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOGkLwpVDi6iwnZOlzKUzbrhRQ7zQ/+uQAAgD8AAIA/M0Nuu+G8l7ryjCo7bBCONkl5kbgSn201AACAPwAAgD8AQMw6jyZHusO0g7wm80g1uU0ROHEHqrQAAIA/AACAP5ofzDzXLB+7uzCyvNagkjx+4VW8M7Z8PQAAgD8AAIA/jn7bvuxEkL3jBfc6O/mPOVitXj60YhG6AACAPwAAgD+6FkU+1zJnu/gtczsi9qa367KavP78RLoAAIA/AACAP4DqGL64yoG7C6fsucqeCrc2v+08xvILOQAAgD8AAIA/APwpPYZNlT875vc90G6gvj5At7wDYho6AAAAAAAAAACzO6+9r2FxP3ZR2L3hGJa+L/7bve5AXr0AAAAAAAAAAK3mOz5l15w/ODswPz5Hcb6/fGM9+2ViPgAAAAAAAAAAOrA2PqwL2jyUtZ6810hRu0dKdT4icmu8AACAPwAAgD96XXs+9fnGPqpLTr4i+mi+O2wWvaO5Yj0AAAAAAAAAAIC/uD1SYIa5G9Vcu3ISDTf9c8s7pZuEtgAAgD8AAIA/zRyMvP7RcD+qimO9uwdUvluYmDyLcCi+AAAAAAAAAAAAt9m9j0ZmuqOXgzuimBc4a2jNOlCPNroAAIA/AACAPxrA3j0YUNU+JHq0vOq+M75QWTC9EvzqvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyLd3DfoUQECUhpRSlIwBbJRNSAGMAXSUR0CCOha11GLDdX2UKGgGaAloD0MIcAorFVTFW0CUhpRSlGgVTegDaBZHQIJL098qnWJ1fZQoaAZoCWgPQwhuisdFtY5aQJSGlFKUaBVN6ANoFkdAgk1emelKsnV9lChoBmgJaA9DCIlFDDuMGFhAlIaUUpRoFU3oA2gWR0CCUBzp5eJIdX2UKGgGaAloD0MIuMt+3enLXkCUhpRSlGgVTegDaBZHQIJW8aAFxGV1fZQoaAZoCWgPQwj9+EuL+gBZQJSGlFKUaBVN6ANoFkdAgl6jrAxi5XV9lChoBmgJaA9DCIwwRbm08mFAlIaUUpRoFU3oA2gWR0CCcvMajvd/dX2UKGgGaAloD0MILdFZZhHRWkCUhpRSlGgVTegDaBZHQIJzhdIGyHF1fZQoaAZoCWgPQwj2YFJ8fCNbQJSGlFKUaBVN6ANoFkdAgnP0Hpr1unV9lChoBmgJaA9DCNDVVuyvo2FAlIaUUpRoFU3oA2gWR0CCdXtIkJKKdX2UKGgGaAloD0MIjXqIRncQ7j+UhpRSlGgVTRoBaBZHQILDSSgXdj51fZQoaAZoCWgPQwhpVOBkG6ldQJSGlFKUaBVN6ANoFkdAgsrykKu0TnV9lChoBmgJaA9DCCpwsg3cg11AlIaUUpRoFU3oA2gWR0CCyvh3JPqLdX2UKGgGaAloD0MIcCU7NgLqWECUhpRSlGgVTegDaBZHQILLdUVBUrF1fZQoaAZoCWgPQwhRgv5CjwtWQJSGlFKUaBVN6ANoFkdAgtP0euFHrnV9lChoBmgJaA9DCG/ZIf5hb2BAlIaUUpRoFU3oA2gWR0CC2pfTCtRvdX2UKGgGaAloD0MIMBNFSF0pY0CUhpRSlGgVTegDaBZHQILawXwb2lF1fZQoaAZoCWgPQwjFjPD2ID9dQJSGlFKUaBVN6ANoFkdAgu3xQaaTfXV9lChoBmgJaA9DCKYLsfqjlWNAlIaUUpRoFU3oA2gWR0CDAR4M4LkTdX2UKGgGaAloD0MIQndJnBVIWkCUhpRSlGgVTegDaBZHQIMDDBInSfF1fZQoaAZoCWgPQwjo3O16aRlbQJSGlFKUaBVN6ANoFkdAgwXugpSaVnV9lChoBmgJaA9DCKw7Ftskm2hAlIaUUpRoFU3VAWgWR0CDCIaOxSpBdX2UKGgGaAloD0MItmeWBKi/YECUhpRSlGgVTegDaBZHQIMMXPzFuNx1fZQoaAZoCWgPQwgnUMQihpNbQJSGlFKUaBVN6ANoFkdAgxK4H5aePXV9lChoBmgJaA9DCBB0tKql02BAlIaUUpRoFU3oA2gWR0CDIiwD/2kBdX2UKGgGaAloD0MIAcEcPX5XW0CUhpRSlGgVTegDaBZHQIMipNdqtYB1fZQoaAZoCWgPQwiGjbJ+MzlZQJSGlFKUaBVN6ANoFkdAgyL4E4ecQXV9lChoBmgJaA9DCC/BqQ8kJyPAlIaUUpRoFU1FAWgWR0CDMJBdD6WPdX2UKGgGaAloD0MIdji6SneHQsCUhpRSlGgVTRgBaBZHQINrMDnvDxd1fZQoaAZoCWgPQwi05VyKq+hYQJSGlFKUaBVN6ANoFkdAg3OW9tdiUnV9lChoBmgJaA9DCIffTbfs5ldAlIaUUpRoFU3oA2gWR0CDc5jDsMRZdX2UKGgGaAloD0MIDmd+NQfESkCUhpRSlGgVTegDaBZHQIN0DE9+w1R1fZQoaAZoCWgPQwgoCvSJvIRkQJSGlFKUaBVN6ANoFkdAg3vi7K7qZHV9lChoBmgJaA9DCAL1ZtR84VxAlIaUUpRoFU3oA2gWR0CDggaEzwc6dX2UKGgGaAloD0MIDtjV5KkIZECUhpRSlGgVTegDaBZHQIOCKsbNr0t1fZQoaAZoCWgPQwj0hvvIra0wQJSGlFKUaBVL9WgWR0CDk9joZAIIdX2UKGgGaAloD0MIJhsPttgbYkCUhpRSlGgVTegDaBZHQIOUIOz6ab51fZQoaAZoCWgPQwigU5CfjRhQQJSGlFKUaBVN6ANoFkdAg6YsB6rvLHV9lChoBmgJaA9DCKMFaFvN+l5AlIaUUpRoFU3oA2gWR0CDp9PM0P6LdX2UKGgGaAloD0MId2SsNv8kV0CUhpRSlGgVTegDaBZHQIOqqmCROlB1fZQoaAZoCWgPQwjJrx9igx9gQJSGlFKUaBVN6ANoFkdAg61r7XQMQXV9lChoBmgJaA9DCNqSVRHuwmFAlIaUUpRoFU3oA2gWR0CDuMoQ4CIUdX2UKGgGaAloD0MIUwPN59xdMUCUhpRSlGgVS/VoFkdAg8bcr7O3UnV9lChoBmgJaA9DCAVsByP2bmFAlIaUUpRoFU3oA2gWR0CDy9IxQBPsdX2UKGgGaAloD0MIixpMw/BOXECUhpRSlGgVTegDaBZHQIPMVXko4Mp1fZQoaAZoCWgPQwgwn6wYLttjQJSGlFKUaBVN6ANoFkdAg9vQl0HQhXV9lChoBmgJaA9DCCFX6lmQgGFAlIaUUpRoFU3oA2gWR0CD8sS5AhStdX2UKGgGaAloD0MIS3ZsBOK6V0CUhpRSlGgVTegDaBZHQIQj4GUwBYF1fZQoaAZoCWgPQwh3ZRcMrlViQJSGlFKUaBVN6ANoFkdAhCRYKYzBRHV9lChoBmgJaA9DCIKLFTWYeF1AlIaUUpRoFU3oA2gWR0CELLH6MzdldX2UKGgGaAloD0MItydIbHcHS0CUhpRSlGgVTegDaBZHQIQy2Zy+6Ah1fZQoaAZoCWgPQwheRxyygftUQJSGlFKUaBVN6ANoFkdAhDL/LcKw6nV9lChoBmgJaA9DCBXI7Cx6elVAlIaUUpRoFU3oA2gWR0CERVgBtDUmdX2UKGgGaAloD0MIXwoPml0gW0CUhpRSlGgVTegDaBZHQIRFnyEtdzJ1fZQoaAZoCWgPQwhgHjLlQygswJSGlFKUaBVNGgFoFkdAhFIOOjqOcXV9lChoBmgJaA9DCDqRYKoZGGVAlIaUUpRoFU3oA2gWR0CEWDQgLZzxdX2UKGgGaAloD0MIih74GKziVUCUhpRSlGgVTegDaBZHQIRbET6BRQ91fZQoaAZoCWgPQwjvxRft8QpSQJSGlFKUaBVN6ANoFkdAhF3G5lOGkHV9lChoBmgJaA9DCMMOY9Lf/F9AlIaUUpRoFU3oA2gWR0CEamOCGvfTdX2UKGgGaAloD0MIO4pz1NH9XECUhpRSlGgVTegDaBZHQIR7Mpqh11Z1fZQoaAZoCWgPQwhstBzooR9gQJSGlFKUaBVN6ANoFkdAhID1bzK9wnV9lChoBmgJaA9DCIDY0qOpF15AlIaUUpRoFU3oA2gWR0CEgYliSaE0dX2UKGgGaAloD0MI2lcepKf7XUCUhpRSlGgVTegDaBZHQISTrdepn6F1fZQoaAZoCWgPQwiasWg6O3kfQJSGlFKUaBVNEAFoFkdAhKsLA57w8XV9lChoBmgJaA9DCHsWhPI++VVAlIaUUpRoFU3oA2gWR0CErXvhqCYkdX2UKGgGaAloD0MIrvAuF/EZWkCUhpRSlGgVTegDaBZHQITbqMkyDZl1fZQoaAZoCWgPQwi4j9yadAhjQJSGlFKUaBVN6ANoFkdAhNwXo9s7+3V9lChoBmgJaA9DCIyBdRw/ulhAlIaUUpRoFU3oA2gWR0CE6z8ZUDMedX2UKGgGaAloD0MIhShf0EIbX0CUhpRSlGgVTegDaBZHQITrjWXkYGd1fZQoaAZoCWgPQwjYvKqzWsxaQJSGlFKUaBVN6ANoFkdAhP45z5oGp3V9lChoBmgJaA9DCM8VpYRgg1hAlIaUUpRoFU3oA2gWR0CE/oHbAUL2dX2UKGgGaAloD0MIxOkkW12cYkCUhpRSlGgVTegDaBZHQIUKmavzOHF1fZQoaAZoCWgPQwifkQiN4AVgQJSGlFKUaBVN6ANoFkdAhRA6QvHtGHV9lChoBmgJaA9DCPsD5bb9NWBAlIaUUpRoFU3oA2gWR0CFEo79Q40edX2UKGgGaAloD0MIlZo90ArOX0CUhpRSlGgVTegDaBZHQIUUyZpi7TV1fZQoaAZoCWgPQwj99nXgnGJZQJSGlFKUaBVN6ANoFkdAhR6c1fmcOXV9lChoBmgJaA9DCOPfZ1w4iFxAlIaUUpRoFU3oA2gWR0CFKqwIt16mdX2UKGgGaAloD0MISOF6FK6mXkCUhpRSlGgVTegDaBZHQIUvclNUOut1fZQoaAZoCWgPQwhJFFrW/RMSQJSGlFKUaBVNZwFoFkdAhTy2zOX3QHV9lChoBmgJaA9DCMx7nGnCSFxAlIaUUpRoFU3oA2gWR0CFPvwrlNlAdX2UKGgGaAloD0MIIa0x6IS7WECUhpRSlGgVTegDaBZHQIVTczKs+3Z1fZQoaAZoCWgPQwiVD0HV6DtgQJSGlFKUaBVN6ANoFkdAhVWRSpBHC3V9lChoBmgJaA9DCP8j06HTSl1AlIaUUpRoFU3oA2gWR0CFXb00WM0hdX2UKGgGaAloD0MIidAINq4JVkCUhpRSlGgVTegDaBZHQIVeMYqG1x91fZQoaAZoCWgPQwgEj2/vGiRWQJSGlFKUaBVN6ANoFkdAhZEJztCzC3V9lChoBmgJaA9DCCjXFMjsr2BAlIaUUpRoFU3oA2gWR0CFkTO2RaHLdX2UKGgGaAloD0MI2jwOg/lcWkCUhpRSlGgVTegDaBZHQIWkMCFK02N1fZQoaAZoCWgPQwiFevoI/MxbQJSGlFKUaBVN6ANoFkdAhaR/ixVyWHV9lChoBmgJaA9DCHxGIjSCEmBAlIaUUpRoFU3oA2gWR0CFsnz06HTJdX2UKGgGaAloD0MIN8e5Tbj1YUCUhpRSlGgVTegDaBZHQIW4vqFAVwh1fZQoaAZoCWgPQwhy+nq+Zm5RQJSGlFKUaBVN6ANoFkdAhb5xoRIz33V9lChoBmgJaA9DCCbl7nN8q1lAlIaUUpRoFU3oA2gWR0CFyshfShJzdX2UKGgGaAloD0MIxy3m54ZBXkCUhpRSlGgVTegDaBZHQIXY8ImgJ1J1fZQoaAZoCWgPQwjw2xDjNd9ZQJSGlFKUaBVN6ANoFkdAhd5H3lCCz3V9lChoBmgJaA9DCEvLSL2nIF1AlIaUUpRoFU3oA2gWR0CF7QiNbTttdX2UKGgGaAloD0MItcagE0LKX0CUhpRSlGgVTegDaBZHQIXvgMrmQsB1fZQoaAZoCWgPQwhLy0i9p2dXQJSGlFKUaBVN6ANoFkdAhgOVrRBu43V9lChoBmgJaA9DCCsxz0paAVxAlIaUUpRoFU3oA2gWR0CGBZwVCXyBdX2UKGgGaAloD0MIN/xuumWZY0CUhpRSlGgVTegDaBZHQIYNT0Dlo111fZQoaAZoCWgPQwhPzlDccbFhQJSGlFKUaBVN6ANoFkdAhg2xgAp8W3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa34395b2acfdba91cc2bde75428e69fcfc3e5aa952f6743ac654f29c1393b9d
|
3 |
+
size 249468
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 157.98049578921314, "std_reward": 27.953613909756328, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-18T18:08:18.799585"}
|