DenisKochetov commited on
Commit
1c55a6d
1 Parent(s): 27685ee

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 157.98 +/- 27.95
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
chika.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26cc4dd01ed16a66842ba054239ec0f251469beea92b8b1f2fed6f9d2967905e
3
+ size 144048
chika/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
chika/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff522478c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff52247950>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff522479e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff52247a70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7eff52247b00>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7eff52247b90>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff52247c20>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7eff52247cb0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff52247d40>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff52247dd0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff52247e60>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7eff52284e10>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652896606.8595378,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOGkLwpVDi6iwnZOlzKUzbrhRQ7zQ/+uQAAgD8AAIA/M0Nuu+G8l7ryjCo7bBCONkl5kbgSn201AACAPwAAgD8AQMw6jyZHusO0g7wm80g1uU0ROHEHqrQAAIA/AACAP5ofzDzXLB+7uzCyvNagkjx+4VW8M7Z8PQAAgD8AAIA/jn7bvuxEkL3jBfc6O/mPOVitXj60YhG6AACAPwAAgD+6FkU+1zJnu/gtczsi9qa367KavP78RLoAAIA/AACAP4DqGL64yoG7C6fsucqeCrc2v+08xvILOQAAgD8AAIA/APwpPYZNlT875vc90G6gvj5At7wDYho6AAAAAAAAAACzO6+9r2FxP3ZR2L3hGJa+L/7bve5AXr0AAAAAAAAAAK3mOz5l15w/ODswPz5Hcb6/fGM9+2ViPgAAAAAAAAAAOrA2PqwL2jyUtZ6810hRu0dKdT4icmu8AACAPwAAgD96XXs+9fnGPqpLTr4i+mi+O2wWvaO5Yj0AAAAAAAAAAIC/uD1SYIa5G9Vcu3ISDTf9c8s7pZuEtgAAgD8AAIA/zRyMvP7RcD+qimO9uwdUvluYmDyLcCi+AAAAAAAAAAAAt9m9j0ZmuqOXgzuimBc4a2jNOlCPNroAAIA/AACAPxrA3j0YUNU+JHq0vOq+M75QWTC9EvzqvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyLd3DfoUQECUhpRSlIwBbJRNSAGMAXSUR0CCOha11GLDdX2UKGgGaAloD0MIcAorFVTFW0CUhpRSlGgVTegDaBZHQIJL098qnWJ1fZQoaAZoCWgPQwhuisdFtY5aQJSGlFKUaBVN6ANoFkdAgk1emelKsnV9lChoBmgJaA9DCIlFDDuMGFhAlIaUUpRoFU3oA2gWR0CCUBzp5eJIdX2UKGgGaAloD0MIuMt+3enLXkCUhpRSlGgVTegDaBZHQIJW8aAFxGV1fZQoaAZoCWgPQwj9+EuL+gBZQJSGlFKUaBVN6ANoFkdAgl6jrAxi5XV9lChoBmgJaA9DCIwwRbm08mFAlIaUUpRoFU3oA2gWR0CCcvMajvd/dX2UKGgGaAloD0MILdFZZhHRWkCUhpRSlGgVTegDaBZHQIJzhdIGyHF1fZQoaAZoCWgPQwj2YFJ8fCNbQJSGlFKUaBVN6ANoFkdAgnP0Hpr1unV9lChoBmgJaA9DCNDVVuyvo2FAlIaUUpRoFU3oA2gWR0CCdXtIkJKKdX2UKGgGaAloD0MIjXqIRncQ7j+UhpRSlGgVTRoBaBZHQILDSSgXdj51fZQoaAZoCWgPQwhpVOBkG6ldQJSGlFKUaBVN6ANoFkdAgsrykKu0TnV9lChoBmgJaA9DCCpwsg3cg11AlIaUUpRoFU3oA2gWR0CCyvh3JPqLdX2UKGgGaAloD0MIcCU7NgLqWECUhpRSlGgVTegDaBZHQILLdUVBUrF1fZQoaAZoCWgPQwhRgv5CjwtWQJSGlFKUaBVN6ANoFkdAgtP0euFHrnV9lChoBmgJaA9DCG/ZIf5hb2BAlIaUUpRoFU3oA2gWR0CC2pfTCtRvdX2UKGgGaAloD0MIMBNFSF0pY0CUhpRSlGgVTegDaBZHQILawXwb2lF1fZQoaAZoCWgPQwjFjPD2ID9dQJSGlFKUaBVN6ANoFkdAgu3xQaaTfXV9lChoBmgJaA9DCKYLsfqjlWNAlIaUUpRoFU3oA2gWR0CDAR4M4LkTdX2UKGgGaAloD0MIQndJnBVIWkCUhpRSlGgVTegDaBZHQIMDDBInSfF1fZQoaAZoCWgPQwjo3O16aRlbQJSGlFKUaBVN6ANoFkdAgwXugpSaVnV9lChoBmgJaA9DCKw7Ftskm2hAlIaUUpRoFU3VAWgWR0CDCIaOxSpBdX2UKGgGaAloD0MItmeWBKi/YECUhpRSlGgVTegDaBZHQIMMXPzFuNx1fZQoaAZoCWgPQwgnUMQihpNbQJSGlFKUaBVN6ANoFkdAgxK4H5aePXV9lChoBmgJaA9DCBB0tKql02BAlIaUUpRoFU3oA2gWR0CDIiwD/2kBdX2UKGgGaAloD0MIAcEcPX5XW0CUhpRSlGgVTegDaBZHQIMipNdqtYB1fZQoaAZoCWgPQwiGjbJ+MzlZQJSGlFKUaBVN6ANoFkdAgyL4E4ecQXV9lChoBmgJaA9DCC/BqQ8kJyPAlIaUUpRoFU1FAWgWR0CDMJBdD6WPdX2UKGgGaAloD0MIdji6SneHQsCUhpRSlGgVTRgBaBZHQINrMDnvDxd1fZQoaAZoCWgPQwi05VyKq+hYQJSGlFKUaBVN6ANoFkdAg3OW9tdiUnV9lChoBmgJaA9DCIffTbfs5ldAlIaUUpRoFU3oA2gWR0CDc5jDsMRZdX2UKGgGaAloD0MIDmd+NQfESkCUhpRSlGgVTegDaBZHQIN0DE9+w1R1fZQoaAZoCWgPQwgoCvSJvIRkQJSGlFKUaBVN6ANoFkdAg3vi7K7qZHV9lChoBmgJaA9DCAL1ZtR84VxAlIaUUpRoFU3oA2gWR0CDggaEzwc6dX2UKGgGaAloD0MIDtjV5KkIZECUhpRSlGgVTegDaBZHQIOCKsbNr0t1fZQoaAZoCWgPQwj0hvvIra0wQJSGlFKUaBVL9WgWR0CDk9joZAIIdX2UKGgGaAloD0MIJhsPttgbYkCUhpRSlGgVTegDaBZHQIOUIOz6ab51fZQoaAZoCWgPQwigU5CfjRhQQJSGlFKUaBVN6ANoFkdAg6YsB6rvLHV9lChoBmgJaA9DCKMFaFvN+l5AlIaUUpRoFU3oA2gWR0CDp9PM0P6LdX2UKGgGaAloD0MId2SsNv8kV0CUhpRSlGgVTegDaBZHQIOqqmCROlB1fZQoaAZoCWgPQwjJrx9igx9gQJSGlFKUaBVN6ANoFkdAg61r7XQMQXV9lChoBmgJaA9DCNqSVRHuwmFAlIaUUpRoFU3oA2gWR0CDuMoQ4CIUdX2UKGgGaAloD0MIUwPN59xdMUCUhpRSlGgVS/VoFkdAg8bcr7O3UnV9lChoBmgJaA9DCAVsByP2bmFAlIaUUpRoFU3oA2gWR0CDy9IxQBPsdX2UKGgGaAloD0MIixpMw/BOXECUhpRSlGgVTegDaBZHQIPMVXko4Mp1fZQoaAZoCWgPQwgwn6wYLttjQJSGlFKUaBVN6ANoFkdAg9vQl0HQhXV9lChoBmgJaA9DCCFX6lmQgGFAlIaUUpRoFU3oA2gWR0CD8sS5AhStdX2UKGgGaAloD0MIS3ZsBOK6V0CUhpRSlGgVTegDaBZHQIQj4GUwBYF1fZQoaAZoCWgPQwh3ZRcMrlViQJSGlFKUaBVN6ANoFkdAhCRYKYzBRHV9lChoBmgJaA9DCIKLFTWYeF1AlIaUUpRoFU3oA2gWR0CELLH6MzdldX2UKGgGaAloD0MItydIbHcHS0CUhpRSlGgVTegDaBZHQIQy2Zy+6Ah1fZQoaAZoCWgPQwheRxyygftUQJSGlFKUaBVN6ANoFkdAhDL/LcKw6nV9lChoBmgJaA9DCBXI7Cx6elVAlIaUUpRoFU3oA2gWR0CERVgBtDUmdX2UKGgGaAloD0MIXwoPml0gW0CUhpRSlGgVTegDaBZHQIRFnyEtdzJ1fZQoaAZoCWgPQwhgHjLlQygswJSGlFKUaBVNGgFoFkdAhFIOOjqOcXV9lChoBmgJaA9DCDqRYKoZGGVAlIaUUpRoFU3oA2gWR0CEWDQgLZzxdX2UKGgGaAloD0MIih74GKziVUCUhpRSlGgVTegDaBZHQIRbET6BRQ91fZQoaAZoCWgPQwjvxRft8QpSQJSGlFKUaBVN6ANoFkdAhF3G5lOGkHV9lChoBmgJaA9DCMMOY9Lf/F9AlIaUUpRoFU3oA2gWR0CEamOCGvfTdX2UKGgGaAloD0MIO4pz1NH9XECUhpRSlGgVTegDaBZHQIR7Mpqh11Z1fZQoaAZoCWgPQwhstBzooR9gQJSGlFKUaBVN6ANoFkdAhID1bzK9wnV9lChoBmgJaA9DCIDY0qOpF15AlIaUUpRoFU3oA2gWR0CEgYliSaE0dX2UKGgGaAloD0MI2lcepKf7XUCUhpRSlGgVTegDaBZHQISTrdepn6F1fZQoaAZoCWgPQwiasWg6O3kfQJSGlFKUaBVNEAFoFkdAhKsLA57w8XV9lChoBmgJaA9DCHsWhPI++VVAlIaUUpRoFU3oA2gWR0CErXvhqCYkdX2UKGgGaAloD0MIrvAuF/EZWkCUhpRSlGgVTegDaBZHQITbqMkyDZl1fZQoaAZoCWgPQwi4j9yadAhjQJSGlFKUaBVN6ANoFkdAhNwXo9s7+3V9lChoBmgJaA9DCIyBdRw/ulhAlIaUUpRoFU3oA2gWR0CE6z8ZUDMedX2UKGgGaAloD0MIhShf0EIbX0CUhpRSlGgVTegDaBZHQITrjWXkYGd1fZQoaAZoCWgPQwjYvKqzWsxaQJSGlFKUaBVN6ANoFkdAhP45z5oGp3V9lChoBmgJaA9DCM8VpYRgg1hAlIaUUpRoFU3oA2gWR0CE/oHbAUL2dX2UKGgGaAloD0MIxOkkW12cYkCUhpRSlGgVTegDaBZHQIUKmavzOHF1fZQoaAZoCWgPQwifkQiN4AVgQJSGlFKUaBVN6ANoFkdAhRA6QvHtGHV9lChoBmgJaA9DCPsD5bb9NWBAlIaUUpRoFU3oA2gWR0CFEo79Q40edX2UKGgGaAloD0MIlZo90ArOX0CUhpRSlGgVTegDaBZHQIUUyZpi7TV1fZQoaAZoCWgPQwj99nXgnGJZQJSGlFKUaBVN6ANoFkdAhR6c1fmcOXV9lChoBmgJaA9DCOPfZ1w4iFxAlIaUUpRoFU3oA2gWR0CFKqwIt16mdX2UKGgGaAloD0MISOF6FK6mXkCUhpRSlGgVTegDaBZHQIUvclNUOut1fZQoaAZoCWgPQwhJFFrW/RMSQJSGlFKUaBVNZwFoFkdAhTy2zOX3QHV9lChoBmgJaA9DCMx7nGnCSFxAlIaUUpRoFU3oA2gWR0CFPvwrlNlAdX2UKGgGaAloD0MIIa0x6IS7WECUhpRSlGgVTegDaBZHQIVTczKs+3Z1fZQoaAZoCWgPQwiVD0HV6DtgQJSGlFKUaBVN6ANoFkdAhVWRSpBHC3V9lChoBmgJaA9DCP8j06HTSl1AlIaUUpRoFU3oA2gWR0CFXb00WM0hdX2UKGgGaAloD0MIidAINq4JVkCUhpRSlGgVTegDaBZHQIVeMYqG1x91fZQoaAZoCWgPQwgEj2/vGiRWQJSGlFKUaBVN6ANoFkdAhZEJztCzC3V9lChoBmgJaA9DCCjXFMjsr2BAlIaUUpRoFU3oA2gWR0CFkTO2RaHLdX2UKGgGaAloD0MI2jwOg/lcWkCUhpRSlGgVTegDaBZHQIWkMCFK02N1fZQoaAZoCWgPQwiFevoI/MxbQJSGlFKUaBVN6ANoFkdAhaR/ixVyWHV9lChoBmgJaA9DCHxGIjSCEmBAlIaUUpRoFU3oA2gWR0CFsnz06HTJdX2UKGgGaAloD0MIN8e5Tbj1YUCUhpRSlGgVTegDaBZHQIW4vqFAVwh1fZQoaAZoCWgPQwhy+nq+Zm5RQJSGlFKUaBVN6ANoFkdAhb5xoRIz33V9lChoBmgJaA9DCCbl7nN8q1lAlIaUUpRoFU3oA2gWR0CFyshfShJzdX2UKGgGaAloD0MIxy3m54ZBXkCUhpRSlGgVTegDaBZHQIXY8ImgJ1J1fZQoaAZoCWgPQwjw2xDjNd9ZQJSGlFKUaBVN6ANoFkdAhd5H3lCCz3V9lChoBmgJaA9DCEvLSL2nIF1AlIaUUpRoFU3oA2gWR0CF7QiNbTttdX2UKGgGaAloD0MItcagE0LKX0CUhpRSlGgVTegDaBZHQIXvgMrmQsB1fZQoaAZoCWgPQwhLy0i9p2dXQJSGlFKUaBVN6ANoFkdAhgOVrRBu43V9lChoBmgJaA9DCCsxz0paAVxAlIaUUpRoFU3oA2gWR0CGBZwVCXyBdX2UKGgGaAloD0MIN/xuumWZY0CUhpRSlGgVTegDaBZHQIYNT0Dlo111fZQoaAZoCWgPQwhPzlDccbFhQJSGlFKUaBVN6ANoFkdAhg2xgAp8W3VlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
chika/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b88f6c4085f3e8109a0522a2e64d241c9c4304562666ff78a0b23510d57277b9
3
+ size 84829
chika/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccceb7d63afada29a3b1dcd6e2164882c7ad8f486f48e639a28985a4d80cc42a
3
+ size 43201
chika/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
chika/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff522478c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff52247950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff522479e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff52247a70>", "_build": "<function ActorCriticPolicy._build at 0x7eff52247b00>", "forward": "<function ActorCriticPolicy.forward at 0x7eff52247b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff52247c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff52247cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff52247d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff52247dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff52247e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff52284e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652896606.8595378, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOGkLwpVDi6iwnZOlzKUzbrhRQ7zQ/+uQAAgD8AAIA/M0Nuu+G8l7ryjCo7bBCONkl5kbgSn201AACAPwAAgD8AQMw6jyZHusO0g7wm80g1uU0ROHEHqrQAAIA/AACAP5ofzDzXLB+7uzCyvNagkjx+4VW8M7Z8PQAAgD8AAIA/jn7bvuxEkL3jBfc6O/mPOVitXj60YhG6AACAPwAAgD+6FkU+1zJnu/gtczsi9qa367KavP78RLoAAIA/AACAP4DqGL64yoG7C6fsucqeCrc2v+08xvILOQAAgD8AAIA/APwpPYZNlT875vc90G6gvj5At7wDYho6AAAAAAAAAACzO6+9r2FxP3ZR2L3hGJa+L/7bve5AXr0AAAAAAAAAAK3mOz5l15w/ODswPz5Hcb6/fGM9+2ViPgAAAAAAAAAAOrA2PqwL2jyUtZ6810hRu0dKdT4icmu8AACAPwAAgD96XXs+9fnGPqpLTr4i+mi+O2wWvaO5Yj0AAAAAAAAAAIC/uD1SYIa5G9Vcu3ISDTf9c8s7pZuEtgAAgD8AAIA/zRyMvP7RcD+qimO9uwdUvluYmDyLcCi+AAAAAAAAAAAAt9m9j0ZmuqOXgzuimBc4a2jNOlCPNroAAIA/AACAPxrA3j0YUNU+JHq0vOq+M75QWTC9EvzqvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyLd3DfoUQECUhpRSlIwBbJRNSAGMAXSUR0CCOha11GLDdX2UKGgGaAloD0MIcAorFVTFW0CUhpRSlGgVTegDaBZHQIJL098qnWJ1fZQoaAZoCWgPQwhuisdFtY5aQJSGlFKUaBVN6ANoFkdAgk1emelKsnV9lChoBmgJaA9DCIlFDDuMGFhAlIaUUpRoFU3oA2gWR0CCUBzp5eJIdX2UKGgGaAloD0MIuMt+3enLXkCUhpRSlGgVTegDaBZHQIJW8aAFxGV1fZQoaAZoCWgPQwj9+EuL+gBZQJSGlFKUaBVN6ANoFkdAgl6jrAxi5XV9lChoBmgJaA9DCIwwRbm08mFAlIaUUpRoFU3oA2gWR0CCcvMajvd/dX2UKGgGaAloD0MILdFZZhHRWkCUhpRSlGgVTegDaBZHQIJzhdIGyHF1fZQoaAZoCWgPQwj2YFJ8fCNbQJSGlFKUaBVN6ANoFkdAgnP0Hpr1unV9lChoBmgJaA9DCNDVVuyvo2FAlIaUUpRoFU3oA2gWR0CCdXtIkJKKdX2UKGgGaAloD0MIjXqIRncQ7j+UhpRSlGgVTRoBaBZHQILDSSgXdj51fZQoaAZoCWgPQwhpVOBkG6ldQJSGlFKUaBVN6ANoFkdAgsrykKu0TnV9lChoBmgJaA9DCCpwsg3cg11AlIaUUpRoFU3oA2gWR0CCyvh3JPqLdX2UKGgGaAloD0MIcCU7NgLqWECUhpRSlGgVTegDaBZHQILLdUVBUrF1fZQoaAZoCWgPQwhRgv5CjwtWQJSGlFKUaBVN6ANoFkdAgtP0euFHrnV9lChoBmgJaA9DCG/ZIf5hb2BAlIaUUpRoFU3oA2gWR0CC2pfTCtRvdX2UKGgGaAloD0MIMBNFSF0pY0CUhpRSlGgVTegDaBZHQILawXwb2lF1fZQoaAZoCWgPQwjFjPD2ID9dQJSGlFKUaBVN6ANoFkdAgu3xQaaTfXV9lChoBmgJaA9DCKYLsfqjlWNAlIaUUpRoFU3oA2gWR0CDAR4M4LkTdX2UKGgGaAloD0MIQndJnBVIWkCUhpRSlGgVTegDaBZHQIMDDBInSfF1fZQoaAZoCWgPQwjo3O16aRlbQJSGlFKUaBVN6ANoFkdAgwXugpSaVnV9lChoBmgJaA9DCKw7Ftskm2hAlIaUUpRoFU3VAWgWR0CDCIaOxSpBdX2UKGgGaAloD0MItmeWBKi/YECUhpRSlGgVTegDaBZHQIMMXPzFuNx1fZQoaAZoCWgPQwgnUMQihpNbQJSGlFKUaBVN6ANoFkdAgxK4H5aePXV9lChoBmgJaA9DCBB0tKql02BAlIaUUpRoFU3oA2gWR0CDIiwD/2kBdX2UKGgGaAloD0MIAcEcPX5XW0CUhpRSlGgVTegDaBZHQIMipNdqtYB1fZQoaAZoCWgPQwiGjbJ+MzlZQJSGlFKUaBVN6ANoFkdAgyL4E4ecQXV9lChoBmgJaA9DCC/BqQ8kJyPAlIaUUpRoFU1FAWgWR0CDMJBdD6WPdX2UKGgGaAloD0MIdji6SneHQsCUhpRSlGgVTRgBaBZHQINrMDnvDxd1fZQoaAZoCWgPQwi05VyKq+hYQJSGlFKUaBVN6ANoFkdAg3OW9tdiUnV9lChoBmgJaA9DCIffTbfs5ldAlIaUUpRoFU3oA2gWR0CDc5jDsMRZdX2UKGgGaAloD0MIDmd+NQfESkCUhpRSlGgVTegDaBZHQIN0DE9+w1R1fZQoaAZoCWgPQwgoCvSJvIRkQJSGlFKUaBVN6ANoFkdAg3vi7K7qZHV9lChoBmgJaA9DCAL1ZtR84VxAlIaUUpRoFU3oA2gWR0CDggaEzwc6dX2UKGgGaAloD0MIDtjV5KkIZECUhpRSlGgVTegDaBZHQIOCKsbNr0t1fZQoaAZoCWgPQwj0hvvIra0wQJSGlFKUaBVL9WgWR0CDk9joZAIIdX2UKGgGaAloD0MIJhsPttgbYkCUhpRSlGgVTegDaBZHQIOUIOz6ab51fZQoaAZoCWgPQwigU5CfjRhQQJSGlFKUaBVN6ANoFkdAg6YsB6rvLHV9lChoBmgJaA9DCKMFaFvN+l5AlIaUUpRoFU3oA2gWR0CDp9PM0P6LdX2UKGgGaAloD0MId2SsNv8kV0CUhpRSlGgVTegDaBZHQIOqqmCROlB1fZQoaAZoCWgPQwjJrx9igx9gQJSGlFKUaBVN6ANoFkdAg61r7XQMQXV9lChoBmgJaA9DCNqSVRHuwmFAlIaUUpRoFU3oA2gWR0CDuMoQ4CIUdX2UKGgGaAloD0MIUwPN59xdMUCUhpRSlGgVS/VoFkdAg8bcr7O3UnV9lChoBmgJaA9DCAVsByP2bmFAlIaUUpRoFU3oA2gWR0CDy9IxQBPsdX2UKGgGaAloD0MIixpMw/BOXECUhpRSlGgVTegDaBZHQIPMVXko4Mp1fZQoaAZoCWgPQwgwn6wYLttjQJSGlFKUaBVN6ANoFkdAg9vQl0HQhXV9lChoBmgJaA9DCCFX6lmQgGFAlIaUUpRoFU3oA2gWR0CD8sS5AhStdX2UKGgGaAloD0MIS3ZsBOK6V0CUhpRSlGgVTegDaBZHQIQj4GUwBYF1fZQoaAZoCWgPQwh3ZRcMrlViQJSGlFKUaBVN6ANoFkdAhCRYKYzBRHV9lChoBmgJaA9DCIKLFTWYeF1AlIaUUpRoFU3oA2gWR0CELLH6MzdldX2UKGgGaAloD0MItydIbHcHS0CUhpRSlGgVTegDaBZHQIQy2Zy+6Ah1fZQoaAZoCWgPQwheRxyygftUQJSGlFKUaBVN6ANoFkdAhDL/LcKw6nV9lChoBmgJaA9DCBXI7Cx6elVAlIaUUpRoFU3oA2gWR0CERVgBtDUmdX2UKGgGaAloD0MIXwoPml0gW0CUhpRSlGgVTegDaBZHQIRFnyEtdzJ1fZQoaAZoCWgPQwhgHjLlQygswJSGlFKUaBVNGgFoFkdAhFIOOjqOcXV9lChoBmgJaA9DCDqRYKoZGGVAlIaUUpRoFU3oA2gWR0CEWDQgLZzxdX2UKGgGaAloD0MIih74GKziVUCUhpRSlGgVTegDaBZHQIRbET6BRQ91fZQoaAZoCWgPQwjvxRft8QpSQJSGlFKUaBVN6ANoFkdAhF3G5lOGkHV9lChoBmgJaA9DCMMOY9Lf/F9AlIaUUpRoFU3oA2gWR0CEamOCGvfTdX2UKGgGaAloD0MIO4pz1NH9XECUhpRSlGgVTegDaBZHQIR7Mpqh11Z1fZQoaAZoCWgPQwhstBzooR9gQJSGlFKUaBVN6ANoFkdAhID1bzK9wnV9lChoBmgJaA9DCIDY0qOpF15AlIaUUpRoFU3oA2gWR0CEgYliSaE0dX2UKGgGaAloD0MI2lcepKf7XUCUhpRSlGgVTegDaBZHQISTrdepn6F1fZQoaAZoCWgPQwiasWg6O3kfQJSGlFKUaBVNEAFoFkdAhKsLA57w8XV9lChoBmgJaA9DCHsWhPI++VVAlIaUUpRoFU3oA2gWR0CErXvhqCYkdX2UKGgGaAloD0MIrvAuF/EZWkCUhpRSlGgVTegDaBZHQITbqMkyDZl1fZQoaAZoCWgPQwi4j9yadAhjQJSGlFKUaBVN6ANoFkdAhNwXo9s7+3V9lChoBmgJaA9DCIyBdRw/ulhAlIaUUpRoFU3oA2gWR0CE6z8ZUDMedX2UKGgGaAloD0MIhShf0EIbX0CUhpRSlGgVTegDaBZHQITrjWXkYGd1fZQoaAZoCWgPQwjYvKqzWsxaQJSGlFKUaBVN6ANoFkdAhP45z5oGp3V9lChoBmgJaA9DCM8VpYRgg1hAlIaUUpRoFU3oA2gWR0CE/oHbAUL2dX2UKGgGaAloD0MIxOkkW12cYkCUhpRSlGgVTegDaBZHQIUKmavzOHF1fZQoaAZoCWgPQwifkQiN4AVgQJSGlFKUaBVN6ANoFkdAhRA6QvHtGHV9lChoBmgJaA9DCPsD5bb9NWBAlIaUUpRoFU3oA2gWR0CFEo79Q40edX2UKGgGaAloD0MIlZo90ArOX0CUhpRSlGgVTegDaBZHQIUUyZpi7TV1fZQoaAZoCWgPQwj99nXgnGJZQJSGlFKUaBVN6ANoFkdAhR6c1fmcOXV9lChoBmgJaA9DCOPfZ1w4iFxAlIaUUpRoFU3oA2gWR0CFKqwIt16mdX2UKGgGaAloD0MISOF6FK6mXkCUhpRSlGgVTegDaBZHQIUvclNUOut1fZQoaAZoCWgPQwhJFFrW/RMSQJSGlFKUaBVNZwFoFkdAhTy2zOX3QHV9lChoBmgJaA9DCMx7nGnCSFxAlIaUUpRoFU3oA2gWR0CFPvwrlNlAdX2UKGgGaAloD0MIIa0x6IS7WECUhpRSlGgVTegDaBZHQIVTczKs+3Z1fZQoaAZoCWgPQwiVD0HV6DtgQJSGlFKUaBVN6ANoFkdAhVWRSpBHC3V9lChoBmgJaA9DCP8j06HTSl1AlIaUUpRoFU3oA2gWR0CFXb00WM0hdX2UKGgGaAloD0MIidAINq4JVkCUhpRSlGgVTegDaBZHQIVeMYqG1x91fZQoaAZoCWgPQwgEj2/vGiRWQJSGlFKUaBVN6ANoFkdAhZEJztCzC3V9lChoBmgJaA9DCCjXFMjsr2BAlIaUUpRoFU3oA2gWR0CFkTO2RaHLdX2UKGgGaAloD0MI2jwOg/lcWkCUhpRSlGgVTegDaBZHQIWkMCFK02N1fZQoaAZoCWgPQwiFevoI/MxbQJSGlFKUaBVN6ANoFkdAhaR/ixVyWHV9lChoBmgJaA9DCHxGIjSCEmBAlIaUUpRoFU3oA2gWR0CFsnz06HTJdX2UKGgGaAloD0MIN8e5Tbj1YUCUhpRSlGgVTegDaBZHQIW4vqFAVwh1fZQoaAZoCWgPQwhy+nq+Zm5RQJSGlFKUaBVN6ANoFkdAhb5xoRIz33V9lChoBmgJaA9DCCbl7nN8q1lAlIaUUpRoFU3oA2gWR0CFyshfShJzdX2UKGgGaAloD0MIxy3m54ZBXkCUhpRSlGgVTegDaBZHQIXY8ImgJ1J1fZQoaAZoCWgPQwjw2xDjNd9ZQJSGlFKUaBVN6ANoFkdAhd5H3lCCz3V9lChoBmgJaA9DCEvLSL2nIF1AlIaUUpRoFU3oA2gWR0CF7QiNbTttdX2UKGgGaAloD0MItcagE0LKX0CUhpRSlGgVTegDaBZHQIXvgMrmQsB1fZQoaAZoCWgPQwhLy0i9p2dXQJSGlFKUaBVN6ANoFkdAhgOVrRBu43V9lChoBmgJaA9DCCsxz0paAVxAlIaUUpRoFU3oA2gWR0CGBZwVCXyBdX2UKGgGaAloD0MIN/xuumWZY0CUhpRSlGgVTegDaBZHQIYNT0Dlo111fZQoaAZoCWgPQwhPzlDccbFhQJSGlFKUaBVN6ANoFkdAhg2xgAp8W3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa34395b2acfdba91cc2bde75428e69fcfc3e5aa952f6743ac654f29c1393b9d
3
+ size 249468
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 157.98049578921314, "std_reward": 27.953613909756328, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-18T18:08:18.799585"}