DenCT commited on
Commit
ccaee04
1 Parent(s): 8941f11

Initial commit for unit 1

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 265.30 +/- 16.01
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b098b3ce830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b098b3ce8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b098b3ce950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b098b3ce9e0>", "_build": "<function ActorCriticPolicy._build at 0x7b098b3cea70>", "forward": "<function ActorCriticPolicy.forward at 0x7b098b3ceb00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b098b3ceb90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b098b3cec20>", "_predict": "<function ActorCriticPolicy._predict at 0x7b098b3cecb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b098b3ced40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b098b3cedd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b098b3cee60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b098b3c8c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700234636786281876, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2pPb47Pc28BhfqOuqvcznJxDw+/SwkugAAgD8AAIA/K+uivvxPfT79CvA9os2jvojqY71UGo28AAAAAAAAAADWQok+NrW6PtiVzTy72OO++qQ0PmgCe70AAAAAAAAAAAYJID7lGJE/faoMPyEUGb+hulE+lqU9PgAAAAAAAAAABi06PkP7dLxqyze7x7iMOcVh0L2Svl86AACAPwAAgD8amge+e1qYO/1UOj1Gt7i7bFUivVA6pzwAAIA/AACAP3p6Lj4s2LQ8epAQvCf1ubrKrUU+mxXFuwAAgD8AAIA/M9RCvjb+K7xKRdg2use8NEItmz2PBAW2AACAPwAAgD+mC4w9j8V8PZsz8L3+AiW+wN9HvGZi0jsAAAAAAAAAAI0iPL5Os8m8S4Mgu03Pf7npODk+pI6BOgAAgD8AAIA/QLmyPUdNKD8xtJU9eYXjvkDBID2DKDo9AAAAAAAAAADa4lw+K+tLP6P9Yz4UUgy/YXsrPn5ugbwAAAAAAAAAADPeOj6eJrw9PXDTvfPaN74TpWQ9YsEKvAAAAAAAAAAAswYvPi6uJT+q1Rg9NmcIvxer6z0NBmG8AAAAAAAAAACaAha+w1ITvEXqKjsU1ho5JZFvPRpiYLoAAIA/AAAAAE3OHD2bR5E/FiL2PVRwD7/4V4Y9DX6PPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFQoRywOe+MAWyUTUYBjAF0lEdAm4BoHkcS5HV9lChoBkdAGWHiFTNt7GgHS8VoCEdAm4K7TlT3qXV9lChoBkdAcWrWqLjxTmgHS+9oCEdAm4LHZXdTHnV9lChoBkdAcVmLsa86FWgHTVMBaAhHQJuDsikfs/p1fZQoaAZHQGJ0c5sCT2ZoB03oA2gIR0Cbg+GCZnctdX2UKGgGR0BkNyfe1rqMaAdN6ANoCEdAm4QlN1yNoHV9lChoBkdAch0X3xnWa2gHTRABaAhHQJuEydf9gnd1fZQoaAZHQHA0RuCPIXFoB0vSaAhHQJuGR7ojfN11fZQoaAZHQHBAwKSgXdloB0vPaAhHQJuG9QyhzvJ1fZQoaAZHQG6VdzOoo/loB0v9aAhHQJuH9SYPXkJ1fZQoaAZHQGLo+mFajetoB03oA2gIR0CbiJRmK64EdX2UKGgGR0BxLDzBhx5taAdN7wFoCEdAm4itWEK3NXV9lChoBkdAcS3k8ifQKWgHTRIBaAhHQJuJCPYFqzt1fZQoaAZHQENF5ooNNJxoB0uzaAhHQJuJq8Empl11fZQoaAZHQGW4gyuZCv5oB03oA2gIR0CbirSuhbnpdX2UKGgGR0ByK43BHkLhaAdNDAFoCEdAm4sEGiYb83V9lChoBkdAcdxrbxmTT2gHTTYBaAhHQJuLgDQqqfh1fZQoaAZHQHB6vAoG6f9oB0vYaAhHQJuL08xKxs51fZQoaAZHQGx7FpXZGrloB0v3aAhHQJuL0yKvV3F1fZQoaAZHQHA09V7x/d9oB0vqaAhHQJuMCWLP2PF1fZQoaAZHQHFY6Skj5bhoB0vRaAhHQJuMGh9LHuJ1fZQoaAZHQHMBbIPsiStoB0v7aAhHQJuPKrlvIfd1fZQoaAZHQG8xB7u2JBRoB0vUaAhHQJuPSJemelN1fZQoaAZHQHEcB0+1SfloB0v8aAhHQJuQGd3B55Z1fZQoaAZHQG9bJFspG4JoB0vdaAhHQJuQGLrHEMt1fZQoaAZHQHHO9pRGc4JoB0v0aAhHQJuQfzGxUvR1fZQoaAZHQG5xfdqL0jFoB0vfaAhHQJuQzYODrZ91fZQoaAZHQGHZfJ/5LytoB03oA2gIR0CbkWj9GZuydX2UKGgGR0BwgYH4XXRPaAdL42gIR0CbkjdVNpM6dX2UKGgGR0Bv3iJ0nw5OaAdL1GgIR0Cbkklz2exwdX2UKGgGR0BwAyQuEmICaAdL3GgIR0CbkzOVgQYldX2UKGgGR0BurGHxjJ+2aAdL4WgIR0Cbk0Vlf7aadX2UKGgGR0BwuVDneSB9aAdL62gIR0Cbk1i83++/dX2UKGgGR0BwnVFy7wrlaAdL8mgIR0Cbk4j94u9OdX2UKGgGR0BxkSYhMajvaAdLxGgIR0CblXFTvRZ2dX2UKGgGR0BuzKnJkoWpaAdL0GgIR0Cblbt03fhudX2UKGgGR0Bxe4mAskIHaAdLx2gIR0CblvgkC3gDdX2UKGgGR0BwE2x3V09yaAdL42gIR0Cbly2nKnvVdX2UKGgGR0BuVklVtGd7aAdL3mgIR0Cbl2V5rxiHdX2UKGgGR0BxTAsnRb8naAdL+2gIR0Cbl+p4rz5HdX2UKGgGR0ByJqbrkbPyaAdL62gIR0CbmKKOktVadX2UKGgGR0Bx6x0o0ALiaAdLxmgIR0CbmUXj2i+MdX2UKGgGR0Bwm6xHG0eEaAdL+mgIR0CbmhCtihFmdX2UKGgGR0Bv1KOWBz3iaAdL4WgIR0CbmlzC1qnFdX2UKGgGR0BwuhMGorFwaAdL6WgIR0Cbmok2P1cudX2UKGgGR0Bx5Qmw7kn1aAdNDQFoCEdAm5qby+YdAHV9lChoBkdAcdU2qkuYhWgHTQ8BaAhHQJub9dLQHA11fZQoaAZHQEyS/SpiqhloB0u0aAhHQJudG+AVfu11fZQoaAZHQEUxPdEb5uZoB0vEaAhHQJudMBU70Wd1fZQoaAZHQHDuZSvTw2FoB0vzaAhHQJudeearmyR1fZQoaAZHQHMsPDLr5ZdoB00CAWgIR0Cbn4XiR4hVdX2UKGgGR0BxePkhib2EaAdLz2gIR0CboCJ7LMcIdX2UKGgGR0BspZIWgvlEaAdL62gIR0CboHQxesxPdX2UKGgGR0BwYAsQNCqqaAdL1WgIR0CboTGc4HX3dX2UKGgGR0BCTWM0gr6MaAdLxGgIR0CboTJOFg2IdX2UKGgGR0Bx6w5n13+uaAdL0mgIR0CboZfzSThYdX2UKGgGR0BxXvacqe9SaAdL8GgIR0CbonN/OMVDdX2UKGgGR0BxPxEH+qBFaAdLymgIR0CbowZbpu/DdX2UKGgGR0BjYMug6EJ0aAdN6ANoCEdAm6WRisny/nV9lChoBkdAcLGN2C/XXmgHS+9oCEdAm6a6vA44qHV9lChoBkdAcK1rEcbR4WgHS/poCEdAm6bXmig00nV9lChoBkdAcCJGbCrLhmgHS9ZoCEdAm6iVjy4FzXV9lChoBkdAYoKuqWC2+mgHTegDaAhHQJuo93B55Z91fZQoaAZHQHEZ+PRzBARoB0vQaAhHQJupGnm7rcF1fZQoaAZHQHAdok/r0J5oB0vUaAhHQJupqtT1kDp1fZQoaAZHQG9OlVT72tdoB0vWaAhHQJuqt1GLDQ91fZQoaAZHQG5q1nuiN85oB0vgaAhHQJurvP0I1Lt1fZQoaAZHQG/qsEzO5axoB0vYaAhHQJushyo4uK51fZQoaAZHQHFwj5j6N2loB0v+aAhHQJusncUM5Ot1fZQoaAZHQHJBFMmF8G9oB00lAmgIR0CbrVRDkU9IdX2UKGgGR0Bkc5Z8rqdIaAdN6ANoCEdAm6584HX2/XV9lChoBkdAcJPasp5NXmgHS9poCEdAm6/htk4FR3V9lChoBke/8X7TDwYtQWgHS7hoCEdAm7DGFBY3enV9lChoBkdAcoY0NSZSemgHS9loCEdAm7KGfkFOf3V9lChoBkdAcuSLDAJswmgHS/doCEdAm7Qij+Jgs3V9lChoBkdAcXiDZUT+N2gHTZUBaAhHQJu1t+uvECN1fZQoaAZHQG8AJ3os7MhoB0vNaAhHQJu140HhS+B1fZQoaAZHQHFbkPQOWjZoB01ZAWgIR0CbtxzvJA+qdX2UKGgGR0BwlGHP/rB1aAdNNAFoCEdAm7lp1q33H3V9lChoBkdAcqlvuPV/c2gHTSIBaAhHQJu6hbu+h5B1fZQoaAZHQHFunE61b7loB0vMaAhHQJu7dS88La51fZQoaAZHQHBW+tbLU1BoB0vtaAhHQJu/1V7x/d91fZQoaAZHQF9uVgx8D0VoB03oA2gIR0CbwK17pmmMdX2UKGgGR0BvFAKhL5ARaAdNYAFoCEdAm8L3HWBjF3V9lChoBkdAcKjY+0PYnWgHTQ4BaAhHQJvDeX8fmtB1fZQoaAZHQHNDiE6DGtJoB00vA2gIR0Cbw5yOJcgRdX2UKGgGR0BvurHlwLmZaAdL32gIR0CbxV3W4EwGdX2UKGgGR0By4HMTviLmaAdNJgFoCEdAm8WPmgam43V9lChoBkdAbjgsUZeiSWgHS9loCEdAm8Xn7UG3WnV9lChoBkdAcGtqlxffGmgHS+JoCEdAm8bSlSCOFXV9lChoBkdAcbthhpg1FmgHS/JoCEdAm8pJeeFtbnV9lChoBkdAcTCqv/zasmgHS/hoCEdAm8sVII4VAXV9lChoBkdAcDf1XNke62gHS8VoCEdAm8sgGwA2h3V9lChoBkdAbl9S0BwMpmgHS+NoCEdAm8vRk3CKrXV9lChoBkdAck+ob4rSVmgHTQIBaAhHQJvN5H5Jsft1fZQoaAZHQHJtb5RCQcRoB034AWgIR0CbziMRpUPydX2UKGgGR0BwKITewcHXaAdL32gIR0CbzlXFcY65dX2UKGgGR0BwF8omXw9aaAdL42gIR0CbzwtTDO1OdX2UKGgGR0BurGgSOBDpaAdNAQFoCEdAm8/cvysjmnV9lChoBkdAcOwCl7+kxmgHS+toCEdAm9BQEZBLPHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74e96c1815cb52430c0c140a874e28aa76a71b608433fb587e83283fc2af5073
3
+ size 147965
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b098b3ce830>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b098b3ce8c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b098b3ce950>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b098b3ce9e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b098b3cea70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b098b3ceb00>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b098b3ceb90>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b098b3cec20>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b098b3cecb0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b098b3ced40>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b098b3cedd0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b098b3cee60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b098b3c8c40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1700234636786281876,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2pPb47Pc28BhfqOuqvcznJxDw+/SwkugAAgD8AAIA/K+uivvxPfT79CvA9os2jvojqY71UGo28AAAAAAAAAADWQok+NrW6PtiVzTy72OO++qQ0PmgCe70AAAAAAAAAAAYJID7lGJE/faoMPyEUGb+hulE+lqU9PgAAAAAAAAAABi06PkP7dLxqyze7x7iMOcVh0L2Svl86AACAPwAAgD8amge+e1qYO/1UOj1Gt7i7bFUivVA6pzwAAIA/AACAP3p6Lj4s2LQ8epAQvCf1ubrKrUU+mxXFuwAAgD8AAIA/M9RCvjb+K7xKRdg2use8NEItmz2PBAW2AACAPwAAgD+mC4w9j8V8PZsz8L3+AiW+wN9HvGZi0jsAAAAAAAAAAI0iPL5Os8m8S4Mgu03Pf7npODk+pI6BOgAAgD8AAIA/QLmyPUdNKD8xtJU9eYXjvkDBID2DKDo9AAAAAAAAAADa4lw+K+tLP6P9Yz4UUgy/YXsrPn5ugbwAAAAAAAAAADPeOj6eJrw9PXDTvfPaN74TpWQ9YsEKvAAAAAAAAAAAswYvPi6uJT+q1Rg9NmcIvxer6z0NBmG8AAAAAAAAAACaAha+w1ITvEXqKjsU1ho5JZFvPRpiYLoAAIA/AAAAAE3OHD2bR5E/FiL2PVRwD7/4V4Y9DX6PPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV/wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFQoRywOe+MAWyUTUYBjAF0lEdAm4BoHkcS5HV9lChoBkdAGWHiFTNt7GgHS8VoCEdAm4K7TlT3qXV9lChoBkdAcWrWqLjxTmgHS+9oCEdAm4LHZXdTHnV9lChoBkdAcVmLsa86FWgHTVMBaAhHQJuDsikfs/p1fZQoaAZHQGJ0c5sCT2ZoB03oA2gIR0Cbg+GCZnctdX2UKGgGR0BkNyfe1rqMaAdN6ANoCEdAm4QlN1yNoHV9lChoBkdAch0X3xnWa2gHTRABaAhHQJuEydf9gnd1fZQoaAZHQHA0RuCPIXFoB0vSaAhHQJuGR7ojfN11fZQoaAZHQHBAwKSgXdloB0vPaAhHQJuG9QyhzvJ1fZQoaAZHQG6VdzOoo/loB0v9aAhHQJuH9SYPXkJ1fZQoaAZHQGLo+mFajetoB03oA2gIR0CbiJRmK64EdX2UKGgGR0BxLDzBhx5taAdN7wFoCEdAm4itWEK3NXV9lChoBkdAcS3k8ifQKWgHTRIBaAhHQJuJCPYFqzt1fZQoaAZHQENF5ooNNJxoB0uzaAhHQJuJq8Empl11fZQoaAZHQGW4gyuZCv5oB03oA2gIR0CbirSuhbnpdX2UKGgGR0ByK43BHkLhaAdNDAFoCEdAm4sEGiYb83V9lChoBkdAcdxrbxmTT2gHTTYBaAhHQJuLgDQqqfh1fZQoaAZHQHB6vAoG6f9oB0vYaAhHQJuL08xKxs51fZQoaAZHQGx7FpXZGrloB0v3aAhHQJuL0yKvV3F1fZQoaAZHQHA09V7x/d9oB0vqaAhHQJuMCWLP2PF1fZQoaAZHQHFY6Skj5bhoB0vRaAhHQJuMGh9LHuJ1fZQoaAZHQHMBbIPsiStoB0v7aAhHQJuPKrlvIfd1fZQoaAZHQG8xB7u2JBRoB0vUaAhHQJuPSJemelN1fZQoaAZHQHEcB0+1SfloB0v8aAhHQJuQGd3B55Z1fZQoaAZHQG9bJFspG4JoB0vdaAhHQJuQGLrHEMt1fZQoaAZHQHHO9pRGc4JoB0v0aAhHQJuQfzGxUvR1fZQoaAZHQG5xfdqL0jFoB0vfaAhHQJuQzYODrZ91fZQoaAZHQGHZfJ/5LytoB03oA2gIR0CbkWj9GZuydX2UKGgGR0BwgYH4XXRPaAdL42gIR0CbkjdVNpM6dX2UKGgGR0Bv3iJ0nw5OaAdL1GgIR0Cbkklz2exwdX2UKGgGR0BwAyQuEmICaAdL3GgIR0CbkzOVgQYldX2UKGgGR0BurGHxjJ+2aAdL4WgIR0Cbk0Vlf7aadX2UKGgGR0BwuVDneSB9aAdL62gIR0Cbk1i83++/dX2UKGgGR0BwnVFy7wrlaAdL8mgIR0Cbk4j94u9OdX2UKGgGR0BxkSYhMajvaAdLxGgIR0CblXFTvRZ2dX2UKGgGR0BuzKnJkoWpaAdL0GgIR0Cblbt03fhudX2UKGgGR0Bxe4mAskIHaAdLx2gIR0CblvgkC3gDdX2UKGgGR0BwE2x3V09yaAdL42gIR0Cbly2nKnvVdX2UKGgGR0BuVklVtGd7aAdL3mgIR0Cbl2V5rxiHdX2UKGgGR0BxTAsnRb8naAdL+2gIR0Cbl+p4rz5HdX2UKGgGR0ByJqbrkbPyaAdL62gIR0CbmKKOktVadX2UKGgGR0Bx6x0o0ALiaAdLxmgIR0CbmUXj2i+MdX2UKGgGR0Bwm6xHG0eEaAdL+mgIR0CbmhCtihFmdX2UKGgGR0Bv1KOWBz3iaAdL4WgIR0CbmlzC1qnFdX2UKGgGR0BwuhMGorFwaAdL6WgIR0Cbmok2P1cudX2UKGgGR0Bx5Qmw7kn1aAdNDQFoCEdAm5qby+YdAHV9lChoBkdAcdU2qkuYhWgHTQ8BaAhHQJub9dLQHA11fZQoaAZHQEyS/SpiqhloB0u0aAhHQJudG+AVfu11fZQoaAZHQEUxPdEb5uZoB0vEaAhHQJudMBU70Wd1fZQoaAZHQHDuZSvTw2FoB0vzaAhHQJudeearmyR1fZQoaAZHQHMsPDLr5ZdoB00CAWgIR0Cbn4XiR4hVdX2UKGgGR0BxePkhib2EaAdLz2gIR0CboCJ7LMcIdX2UKGgGR0BspZIWgvlEaAdL62gIR0CboHQxesxPdX2UKGgGR0BwYAsQNCqqaAdL1WgIR0CboTGc4HX3dX2UKGgGR0BCTWM0gr6MaAdLxGgIR0CboTJOFg2IdX2UKGgGR0Bx6w5n13+uaAdL0mgIR0CboZfzSThYdX2UKGgGR0BxXvacqe9SaAdL8GgIR0CbonN/OMVDdX2UKGgGR0BxPxEH+qBFaAdLymgIR0CbowZbpu/DdX2UKGgGR0BjYMug6EJ0aAdN6ANoCEdAm6WRisny/nV9lChoBkdAcLGN2C/XXmgHS+9oCEdAm6a6vA44qHV9lChoBkdAcK1rEcbR4WgHS/poCEdAm6bXmig00nV9lChoBkdAcCJGbCrLhmgHS9ZoCEdAm6iVjy4FzXV9lChoBkdAYoKuqWC2+mgHTegDaAhHQJuo93B55Z91fZQoaAZHQHEZ+PRzBARoB0vQaAhHQJupGnm7rcF1fZQoaAZHQHAdok/r0J5oB0vUaAhHQJupqtT1kDp1fZQoaAZHQG9OlVT72tdoB0vWaAhHQJuqt1GLDQ91fZQoaAZHQG5q1nuiN85oB0vgaAhHQJurvP0I1Lt1fZQoaAZHQG/qsEzO5axoB0vYaAhHQJushyo4uK51fZQoaAZHQHFwj5j6N2loB0v+aAhHQJusncUM5Ot1fZQoaAZHQHJBFMmF8G9oB00lAmgIR0CbrVRDkU9IdX2UKGgGR0Bkc5Z8rqdIaAdN6ANoCEdAm6584HX2/XV9lChoBkdAcJPasp5NXmgHS9poCEdAm6/htk4FR3V9lChoBke/8X7TDwYtQWgHS7hoCEdAm7DGFBY3enV9lChoBkdAcoY0NSZSemgHS9loCEdAm7KGfkFOf3V9lChoBkdAcuSLDAJswmgHS/doCEdAm7Qij+Jgs3V9lChoBkdAcXiDZUT+N2gHTZUBaAhHQJu1t+uvECN1fZQoaAZHQG8AJ3os7MhoB0vNaAhHQJu140HhS+B1fZQoaAZHQHFbkPQOWjZoB01ZAWgIR0CbtxzvJA+qdX2UKGgGR0BwlGHP/rB1aAdNNAFoCEdAm7lp1q33H3V9lChoBkdAcqlvuPV/c2gHTSIBaAhHQJu6hbu+h5B1fZQoaAZHQHFunE61b7loB0vMaAhHQJu7dS88La51fZQoaAZHQHBW+tbLU1BoB0vtaAhHQJu/1V7x/d91fZQoaAZHQF9uVgx8D0VoB03oA2gIR0CbwK17pmmMdX2UKGgGR0BvFAKhL5ARaAdNYAFoCEdAm8L3HWBjF3V9lChoBkdAcKjY+0PYnWgHTQ4BaAhHQJvDeX8fmtB1fZQoaAZHQHNDiE6DGtJoB00vA2gIR0Cbw5yOJcgRdX2UKGgGR0BvurHlwLmZaAdL32gIR0CbxV3W4EwGdX2UKGgGR0By4HMTviLmaAdNJgFoCEdAm8WPmgam43V9lChoBkdAbjgsUZeiSWgHS9loCEdAm8Xn7UG3WnV9lChoBkdAcGtqlxffGmgHS+JoCEdAm8bSlSCOFXV9lChoBkdAcbthhpg1FmgHS/JoCEdAm8pJeeFtbnV9lChoBkdAcTCqv/zasmgHS/hoCEdAm8sVII4VAXV9lChoBkdAcDf1XNke62gHS8VoCEdAm8sgGwA2h3V9lChoBkdAbl9S0BwMpmgHS+NoCEdAm8vRk3CKrXV9lChoBkdAck+ob4rSVmgHTQIBaAhHQJvN5H5Jsft1fZQoaAZHQHJtb5RCQcRoB034AWgIR0CbziMRpUPydX2UKGgGR0BwKITewcHXaAdL32gIR0CbzlXFcY65dX2UKGgGR0BwF8omXw9aaAdL42gIR0CbzwtTDO1OdX2UKGgGR0BurGgSOBDpaAdNAQFoCEdAm8/cvysjmnV9lChoBkdAcOwCl7+kxmgHS+toCEdAm9BQEZBLPHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d58e839755a0bab743ff9a8c29e498483aafc0f1e9d05f85633e57b03f1e526c
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b207e1969b014db6b0622ca489f45470d1eb2acc59b5075c2a5083036e21aa23
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (145 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 265.2962594, "std_reward": 16.013213984492253, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-17T16:05:39.415196"}