Model save
Browse files- README.md +68 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: prajjwal1/bert-mini
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: bert-mini-url
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# bert-mini-url
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [prajjwal1/bert-mini](https://huggingface.co/prajjwal1/bert-mini) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0565
|
23 |
+
- Accuracy: 0.9873
|
24 |
+
- Precision: 0.9848
|
25 |
+
- Recall: 0.9912
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 4
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall |
|
56 |
+
|:-------------:|:-----:|:------:|:---------------:|:--------:|:---------:|:------:|
|
57 |
+
| 0.0644 | 1.0 | 32322 | 0.0633 | 0.9815 | 0.9832 | 0.9818 |
|
58 |
+
| 0.0579 | 2.0 | 64644 | 0.0572 | 0.9853 | 0.9818 | 0.9906 |
|
59 |
+
| 0.0485 | 3.0 | 96966 | 0.0564 | 0.9867 | 0.9859 | 0.9892 |
|
60 |
+
| 0.0439 | 4.0 | 129288 | 0.0565 | 0.9873 | 0.9848 | 0.9912 |
|
61 |
+
|
62 |
+
|
63 |
+
### Framework versions
|
64 |
+
|
65 |
+
- Transformers 4.40.2
|
66 |
+
- Pytorch 2.3.0+cu121
|
67 |
+
- Datasets 2.19.1
|
68 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44692608
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10e6a5d985e339a8e33fbd4e0f018d19d74e5a657d53eb5bb6cc2163c9737cb1
|
3 |
size 44692608
|