Upload model
Browse files- README.md +199 -0
- config.json +19 -0
- configuration_comet.py +17 -0
- model.safetensors +3 -0
- modeling_comet.py +152 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "DeepTranslateAdmin/wmt22-cometkiwi-da",
|
| 3 |
+
"activations": "Tanh",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"CometModel"
|
| 6 |
+
],
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_comet.CometModelConfig",
|
| 9 |
+
"AutoModel": "modeling_comet.CometModel"
|
| 10 |
+
},
|
| 11 |
+
"dropout": 0.1,
|
| 12 |
+
"hidden_sizes": [
|
| 13 |
+
3072,
|
| 14 |
+
1024
|
| 15 |
+
],
|
| 16 |
+
"model_type": "comet",
|
| 17 |
+
"torch_dtype": "float32",
|
| 18 |
+
"transformers_version": "4.47.1"
|
| 19 |
+
}
|
configuration_comet.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class CometModelConfig(PretrainedConfig):
|
| 5 |
+
model_type = "comet"
|
| 6 |
+
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
hidden_sizes=[3072, 1024],
|
| 10 |
+
activations="Tanh",
|
| 11 |
+
dropout=0.1,
|
| 12 |
+
**kwargs,
|
| 13 |
+
):
|
| 14 |
+
super().__init__(**kwargs)
|
| 15 |
+
self.hidden_sizes = hidden_sizes
|
| 16 |
+
self.activations = activations
|
| 17 |
+
self.dropout = dropout
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d84b3af475a5f997e62b24a0bb618633d32fa54785531acd216ac6184b79fd9e
|
| 3 |
+
size 2260603844
|
modeling_comet.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from transformers import (
|
| 6 |
+
PreTrainedModel,
|
| 7 |
+
XLMRobertaConfig,
|
| 8 |
+
XLMRobertaModel,
|
| 9 |
+
)
|
| 10 |
+
from .configuration_comet import CometModelConfig
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class Encoder(nn.Module):
|
| 14 |
+
"""Encoder module based on XLMRoberta."""
|
| 15 |
+
|
| 16 |
+
def __init__(self):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.model = XLMRobertaModel(
|
| 19 |
+
config=XLMRobertaConfig.from_pretrained("microsoft/infoxlm-large"),
|
| 20 |
+
add_pooling_layer=False,
|
| 21 |
+
)
|
| 22 |
+
self.model.encoder.output_hidden_states = True
|
| 23 |
+
|
| 24 |
+
def forward(
|
| 25 |
+
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs: Any
|
| 26 |
+
) -> dict[str, Any]:
|
| 27 |
+
return self.model(
|
| 28 |
+
input_ids=input_ids,
|
| 29 |
+
attention_mask=attention_mask,
|
| 30 |
+
output_hidden_states=True,
|
| 31 |
+
return_dict=False,
|
| 32 |
+
)[-1]
|
| 33 |
+
|
| 34 |
+
@property
|
| 35 |
+
def num_layers(self) -> int:
|
| 36 |
+
"""Number of model layers available."""
|
| 37 |
+
return self.model.config.num_hidden_layers + 1
|
| 38 |
+
|
| 39 |
+
@property
|
| 40 |
+
def output_units(self) -> int:
|
| 41 |
+
"""Max number of tokens the encoder handles."""
|
| 42 |
+
return self.model.config.hidden_size
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class LayerwiseAttention(nn.Module):
|
| 46 |
+
"""Module that applies attention across model layers."""
|
| 47 |
+
|
| 48 |
+
def __init__(
|
| 49 |
+
self,
|
| 50 |
+
num_layers: int,
|
| 51 |
+
layer_weights: list[float] | None = None,
|
| 52 |
+
) -> None:
|
| 53 |
+
super().__init__()
|
| 54 |
+
layer_weights = layer_weights or [0.0] * num_layers
|
| 55 |
+
self.scalar_parameters = nn.ParameterList(
|
| 56 |
+
[
|
| 57 |
+
nn.Parameter(torch.HalfTensor([layer_weights[i]]), requires_grad=True)
|
| 58 |
+
for i in range(num_layers)
|
| 59 |
+
]
|
| 60 |
+
)
|
| 61 |
+
self.weight = nn.Parameter(torch.HalfTensor([1.0]), requires_grad=True)
|
| 62 |
+
|
| 63 |
+
def forward(
|
| 64 |
+
self,
|
| 65 |
+
tensors: list[torch.Tensor],
|
| 66 |
+
mask: torch.Tensor,
|
| 67 |
+
) -> torch.Tensor:
|
| 68 |
+
weights = torch.cat([parameter for parameter in self.scalar_parameters])
|
| 69 |
+
normed_weights = torch.softmax(weights, dim=0)
|
| 70 |
+
normed_weights = torch.split(normed_weights, split_size_or_sections=1)
|
| 71 |
+
return self.weight * sum(
|
| 72 |
+
weight * tensor for weight, tensor in zip(normed_weights, tensors)
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class Estimator(nn.Module):
|
| 77 |
+
"""Feed-forward estimator module."""
|
| 78 |
+
|
| 79 |
+
def _get_activation(self, activation: str) -> nn.Module:
|
| 80 |
+
"""Get activation function by name."""
|
| 81 |
+
if hasattr(nn, activation.title()):
|
| 82 |
+
return getattr(nn, activation.title())()
|
| 83 |
+
raise ValueError(f"{activation} is not a valid activation function!")
|
| 84 |
+
|
| 85 |
+
def __init__(
|
| 86 |
+
self,
|
| 87 |
+
in_dim: int,
|
| 88 |
+
out_dim: int = 1,
|
| 89 |
+
hidden_sizes: list[int] = [3072, 1024],
|
| 90 |
+
activations: str = "Tanh",
|
| 91 |
+
dropout: float = 0.1,
|
| 92 |
+
) -> None:
|
| 93 |
+
super().__init__()
|
| 94 |
+
modules: list[nn.Module] = []
|
| 95 |
+
|
| 96 |
+
# First layer
|
| 97 |
+
modules.append(nn.Linear(in_dim, hidden_sizes[0]))
|
| 98 |
+
modules.append(self._get_activation(activations))
|
| 99 |
+
modules.append(nn.Dropout(dropout))
|
| 100 |
+
|
| 101 |
+
# Hidden layers
|
| 102 |
+
for i in range(1, len(hidden_sizes)):
|
| 103 |
+
modules.append(nn.Linear(hidden_sizes[i - 1], hidden_sizes[i]))
|
| 104 |
+
modules.append(self._get_activation(activations))
|
| 105 |
+
modules.append(nn.Dropout(dropout))
|
| 106 |
+
|
| 107 |
+
# Output layer
|
| 108 |
+
modules.append(nn.Linear(hidden_sizes[-1], int(out_dim)))
|
| 109 |
+
|
| 110 |
+
self.ff = nn.Sequential(*modules)
|
| 111 |
+
|
| 112 |
+
def forward(self, in_features: torch.Tensor) -> torch.Tensor:
|
| 113 |
+
return self.ff(in_features)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class CometModel(PreTrainedModel):
|
| 117 |
+
config_class = CometModelConfig
|
| 118 |
+
_no_split_modules = ["Encoder", "LayerwiseAttention", "Estimator"]
|
| 119 |
+
|
| 120 |
+
def __init__(self, config: CometModelConfig) -> None:
|
| 121 |
+
super().__init__(config)
|
| 122 |
+
|
| 123 |
+
self.encoder = Encoder()
|
| 124 |
+
self.layerwise_attention = LayerwiseAttention(
|
| 125 |
+
num_layers=self.encoder.num_layers
|
| 126 |
+
)
|
| 127 |
+
self.estimator = Estimator(
|
| 128 |
+
in_dim=self.encoder.output_units,
|
| 129 |
+
hidden_sizes=config.hidden_sizes,
|
| 130 |
+
activations=config.activations,
|
| 131 |
+
dropout=config.dropout,
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
def forward(
|
| 135 |
+
self,
|
| 136 |
+
input_ids: torch.Tensor,
|
| 137 |
+
attention_mask: torch.Tensor,
|
| 138 |
+
token_type_ids: torch.Tensor | None = None,
|
| 139 |
+
**kwargs: Any,
|
| 140 |
+
) -> torch.Tensor:
|
| 141 |
+
encoder_out = self.encoder(
|
| 142 |
+
input_ids,
|
| 143 |
+
attention_mask,
|
| 144 |
+
token_type_ids=token_type_ids,
|
| 145 |
+
)
|
| 146 |
+
embeddings = self.layerwise_attention(
|
| 147 |
+
encoder_out,
|
| 148 |
+
attention_mask,
|
| 149 |
+
)
|
| 150 |
+
# Use CLS token as sentence embedding
|
| 151 |
+
embedding = embeddings[:, 0, :]
|
| 152 |
+
return self.estimator(embedding).view(-1)
|