DeepTranslateAdmin commited on
Commit
adac040
·
verified ·
1 Parent(s): f5a23ce

Upload model

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +19 -0
  3. configuration_comet.py +17 -0
  4. model.safetensors +3 -0
  5. modeling_comet.py +152 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "DeepTranslateAdmin/wmt22-cometkiwi-da",
3
+ "activations": "Tanh",
4
+ "architectures": [
5
+ "CometModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_comet.CometModelConfig",
9
+ "AutoModel": "modeling_comet.CometModel"
10
+ },
11
+ "dropout": 0.1,
12
+ "hidden_sizes": [
13
+ 3072,
14
+ 1024
15
+ ],
16
+ "model_type": "comet",
17
+ "torch_dtype": "float32",
18
+ "transformers_version": "4.47.1"
19
+ }
configuration_comet.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class CometModelConfig(PretrainedConfig):
5
+ model_type = "comet"
6
+
7
+ def __init__(
8
+ self,
9
+ hidden_sizes=[3072, 1024],
10
+ activations="Tanh",
11
+ dropout=0.1,
12
+ **kwargs,
13
+ ):
14
+ super().__init__(**kwargs)
15
+ self.hidden_sizes = hidden_sizes
16
+ self.activations = activations
17
+ self.dropout = dropout
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d84b3af475a5f997e62b24a0bb618633d32fa54785531acd216ac6184b79fd9e
3
+ size 2260603844
modeling_comet.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any
2
+
3
+ import torch
4
+ from torch import nn
5
+ from transformers import (
6
+ PreTrainedModel,
7
+ XLMRobertaConfig,
8
+ XLMRobertaModel,
9
+ )
10
+ from .configuration_comet import CometModelConfig
11
+
12
+
13
+ class Encoder(nn.Module):
14
+ """Encoder module based on XLMRoberta."""
15
+
16
+ def __init__(self):
17
+ super().__init__()
18
+ self.model = XLMRobertaModel(
19
+ config=XLMRobertaConfig.from_pretrained("microsoft/infoxlm-large"),
20
+ add_pooling_layer=False,
21
+ )
22
+ self.model.encoder.output_hidden_states = True
23
+
24
+ def forward(
25
+ self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs: Any
26
+ ) -> dict[str, Any]:
27
+ return self.model(
28
+ input_ids=input_ids,
29
+ attention_mask=attention_mask,
30
+ output_hidden_states=True,
31
+ return_dict=False,
32
+ )[-1]
33
+
34
+ @property
35
+ def num_layers(self) -> int:
36
+ """Number of model layers available."""
37
+ return self.model.config.num_hidden_layers + 1
38
+
39
+ @property
40
+ def output_units(self) -> int:
41
+ """Max number of tokens the encoder handles."""
42
+ return self.model.config.hidden_size
43
+
44
+
45
+ class LayerwiseAttention(nn.Module):
46
+ """Module that applies attention across model layers."""
47
+
48
+ def __init__(
49
+ self,
50
+ num_layers: int,
51
+ layer_weights: list[float] | None = None,
52
+ ) -> None:
53
+ super().__init__()
54
+ layer_weights = layer_weights or [0.0] * num_layers
55
+ self.scalar_parameters = nn.ParameterList(
56
+ [
57
+ nn.Parameter(torch.HalfTensor([layer_weights[i]]), requires_grad=True)
58
+ for i in range(num_layers)
59
+ ]
60
+ )
61
+ self.weight = nn.Parameter(torch.HalfTensor([1.0]), requires_grad=True)
62
+
63
+ def forward(
64
+ self,
65
+ tensors: list[torch.Tensor],
66
+ mask: torch.Tensor,
67
+ ) -> torch.Tensor:
68
+ weights = torch.cat([parameter for parameter in self.scalar_parameters])
69
+ normed_weights = torch.softmax(weights, dim=0)
70
+ normed_weights = torch.split(normed_weights, split_size_or_sections=1)
71
+ return self.weight * sum(
72
+ weight * tensor for weight, tensor in zip(normed_weights, tensors)
73
+ )
74
+
75
+
76
+ class Estimator(nn.Module):
77
+ """Feed-forward estimator module."""
78
+
79
+ def _get_activation(self, activation: str) -> nn.Module:
80
+ """Get activation function by name."""
81
+ if hasattr(nn, activation.title()):
82
+ return getattr(nn, activation.title())()
83
+ raise ValueError(f"{activation} is not a valid activation function!")
84
+
85
+ def __init__(
86
+ self,
87
+ in_dim: int,
88
+ out_dim: int = 1,
89
+ hidden_sizes: list[int] = [3072, 1024],
90
+ activations: str = "Tanh",
91
+ dropout: float = 0.1,
92
+ ) -> None:
93
+ super().__init__()
94
+ modules: list[nn.Module] = []
95
+
96
+ # First layer
97
+ modules.append(nn.Linear(in_dim, hidden_sizes[0]))
98
+ modules.append(self._get_activation(activations))
99
+ modules.append(nn.Dropout(dropout))
100
+
101
+ # Hidden layers
102
+ for i in range(1, len(hidden_sizes)):
103
+ modules.append(nn.Linear(hidden_sizes[i - 1], hidden_sizes[i]))
104
+ modules.append(self._get_activation(activations))
105
+ modules.append(nn.Dropout(dropout))
106
+
107
+ # Output layer
108
+ modules.append(nn.Linear(hidden_sizes[-1], int(out_dim)))
109
+
110
+ self.ff = nn.Sequential(*modules)
111
+
112
+ def forward(self, in_features: torch.Tensor) -> torch.Tensor:
113
+ return self.ff(in_features)
114
+
115
+
116
+ class CometModel(PreTrainedModel):
117
+ config_class = CometModelConfig
118
+ _no_split_modules = ["Encoder", "LayerwiseAttention", "Estimator"]
119
+
120
+ def __init__(self, config: CometModelConfig) -> None:
121
+ super().__init__(config)
122
+
123
+ self.encoder = Encoder()
124
+ self.layerwise_attention = LayerwiseAttention(
125
+ num_layers=self.encoder.num_layers
126
+ )
127
+ self.estimator = Estimator(
128
+ in_dim=self.encoder.output_units,
129
+ hidden_sizes=config.hidden_sizes,
130
+ activations=config.activations,
131
+ dropout=config.dropout,
132
+ )
133
+
134
+ def forward(
135
+ self,
136
+ input_ids: torch.Tensor,
137
+ attention_mask: torch.Tensor,
138
+ token_type_ids: torch.Tensor | None = None,
139
+ **kwargs: Any,
140
+ ) -> torch.Tensor:
141
+ encoder_out = self.encoder(
142
+ input_ids,
143
+ attention_mask,
144
+ token_type_ids=token_type_ids,
145
+ )
146
+ embeddings = self.layerwise_attention(
147
+ encoder_out,
148
+ attention_mask,
149
+ )
150
+ # Use CLS token as sentence embedding
151
+ embedding = embeddings[:, 0, :]
152
+ return self.estimator(embedding).view(-1)