Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +3 -0
- .history/.gitignore_20251026142232 +0 -0
- .history/.gitignore_20251026142256 +1 -0
- .history/.gitignore_20251026142259 +1 -0
- .history/.gitignore_20251026142438 +1 -0
- .history/.gitignore_20251026142440 +2 -0
- .history/.gitignore_20251026142441 +2 -0
- .history/.gitignore_20251026142443 +2 -0
- .history/.gitignore_20251026142445 +2 -0
- .history/.gitignore_20251026142503 +3 -0
- .history/.gitignore_20251026142504 +3 -0
- .history/README_20251026141542.md +0 -0
- .history/README_20251026143510.md +0 -0
- .history/README_20251026143515.md +0 -0
- .history/README_20251026143518.md +0 -0
- .history/README_20251026143525.md +0 -0
- .history/README_20251026143535.md +0 -0
- .history/README_20251026143548.md +0 -0
- .history/README_20251026143602.md +0 -0
- .history/README_20251026143605.md +0 -0
- .history/README_20251026143615.md +0 -0
- .history/README_20251026143617.md +0 -0
- .history/README_20251026143620.md +0 -0
- .history/README_20251026143621.md +0 -0
- .history/README_20251026143623.md +0 -0
- .history/README_20251026143627.md +0 -0
- .history/README_20251026143629.md +0 -0
- .history/README_20251026143631.md +0 -0
- .history/README_20251026143636.md +0 -0
- .history/README_20251026143639.md +0 -0
- .history/README_20251026143642.md +0 -0
- .history/README_20251026143646.md +0 -0
- .history/README_20251026143650.md +0 -0
- .history/README_20251026143651.md +0 -0
- .history/README_20251026143703.md +0 -0
- .history/README_20251026143705.md +0 -0
- .history/README_20251026143708.md +0 -0
- .history/README_20251026143817.md +0 -0
- .history/README_20251026143819.md +0 -0
- .history/app_20251026125228.py +0 -0
- .history/app_20251026134547.py +107 -0
- .history/app_20251026141042.py +107 -0
- .history/app_20251026141101.py +107 -0
- .history/app_20251026141102.py +107 -0
- .history/app_20251026141641.py +189 -0
- .history/app_20251026141642.py +189 -0
- .history/app_20251026141819.py +189 -0
- .history/app_20251026141833.py +198 -0
- .history/app_20251026141844.py +198 -0
- .history/app_20251026142055.py +201 -0
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/fine_tuned_bert_ner
|
| 2 |
+
/logs
|
| 3 |
+
/results
|
.history/.gitignore_20251026142232
ADDED
|
File without changes
|
.history/.gitignore_20251026142256
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
/fine_tuned_bert_ner
|
.history/.gitignore_20251026142259
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
/fine_tuned_bert_ner
|
.history/.gitignore_20251026142438
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
/fine_tuned_bert_ner
|
.history/.gitignore_20251026142440
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/fine_tuned_bert_ner
|
| 2 |
+
/l
|
.history/.gitignore_20251026142441
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/fine_tuned_bert_ner
|
| 2 |
+
/
|
.history/.gitignore_20251026142443
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/fine_tuned_bert_ner
|
| 2 |
+
/logs
|
.history/.gitignore_20251026142445
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/fine_tuned_bert_ner
|
| 2 |
+
/logs
|
.history/.gitignore_20251026142503
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/fine_tuned_bert_ner
|
| 2 |
+
/logs
|
| 3 |
+
/result
|
.history/.gitignore_20251026142504
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/fine_tuned_bert_ner
|
| 2 |
+
/logs
|
| 3 |
+
/results
|
.history/README_20251026141542.md
ADDED
|
Binary file (60 Bytes). View file
|
|
|
.history/README_20251026143510.md
ADDED
|
Binary file (2.25 kB). View file
|
|
|
.history/README_20251026143515.md
ADDED
|
Binary file (2.24 kB). View file
|
|
|
.history/README_20251026143518.md
ADDED
|
Binary file (2.24 kB). View file
|
|
|
.history/README_20251026143525.md
ADDED
|
Binary file (2.51 kB). View file
|
|
|
.history/README_20251026143535.md
ADDED
|
Binary file (3.02 kB). View file
|
|
|
.history/README_20251026143548.md
ADDED
|
Binary file (3.56 kB). View file
|
|
|
.history/README_20251026143602.md
ADDED
|
Binary file (3.56 kB). View file
|
|
|
.history/README_20251026143605.md
ADDED
|
Binary file (3.5 kB). View file
|
|
|
.history/README_20251026143615.md
ADDED
|
Binary file (3.5 kB). View file
|
|
|
.history/README_20251026143617.md
ADDED
|
Binary file (3.5 kB). View file
|
|
|
.history/README_20251026143620.md
ADDED
|
Binary file (3.57 kB). View file
|
|
|
.history/README_20251026143621.md
ADDED
|
Binary file (3.5 kB). View file
|
|
|
.history/README_20251026143623.md
ADDED
|
Binary file (3.51 kB). View file
|
|
|
.history/README_20251026143627.md
ADDED
|
Binary file (3.53 kB). View file
|
|
|
.history/README_20251026143629.md
ADDED
|
Binary file (3.6 kB). View file
|
|
|
.history/README_20251026143631.md
ADDED
|
Binary file (3.6 kB). View file
|
|
|
.history/README_20251026143636.md
ADDED
|
Binary file (3.61 kB). View file
|
|
|
.history/README_20251026143639.md
ADDED
|
Binary file (3.62 kB). View file
|
|
|
.history/README_20251026143642.md
ADDED
|
Binary file (3.62 kB). View file
|
|
|
.history/README_20251026143646.md
ADDED
|
Binary file (3.64 kB). View file
|
|
|
.history/README_20251026143650.md
ADDED
|
Binary file (3.64 kB). View file
|
|
|
.history/README_20251026143651.md
ADDED
|
Binary file (3.64 kB). View file
|
|
|
.history/README_20251026143703.md
ADDED
|
Binary file (3.65 kB). View file
|
|
|
.history/README_20251026143705.md
ADDED
|
Binary file (3.64 kB). View file
|
|
|
.history/README_20251026143708.md
ADDED
|
Binary file (3.64 kB). View file
|
|
|
.history/README_20251026143817.md
ADDED
|
Binary file (3.64 kB). View file
|
|
|
.history/README_20251026143819.md
ADDED
|
Binary file (3.64 kB). View file
|
|
|
.history/app_20251026125228.py
ADDED
|
File without changes
|
.history/app_20251026134547.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import BertTokenizer, BertForTokenClassification
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# Tentukan path ke model yang sudah disimpan
|
| 9 |
+
MODEL_DIR = "./ner_bert_model"
|
| 10 |
+
|
| 11 |
+
# --- Fungsi untuk Memuat Model dan Tokenizer ---
|
| 12 |
+
# @st.cache_resource akan menyimpan model di cache agar tidak di-load ulang
|
| 13 |
+
@st.cache_resource
|
| 14 |
+
def load_model_and_tokenizer(model_dir):
|
| 15 |
+
try:
|
| 16 |
+
model = BertForTokenClassification.from_pretrained(model_dir)
|
| 17 |
+
tokenizer = BertTokenizer.from_pretrained(model_dir)
|
| 18 |
+
|
| 19 |
+
# Muat tag_values
|
| 20 |
+
with open(os.path.join(model_dir, 'tag_values.json'), 'r') as f:
|
| 21 |
+
tag_values = json.load(f)
|
| 22 |
+
|
| 23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
+
model.to(device)
|
| 25 |
+
model.eval() # Set model ke mode evaluasi
|
| 26 |
+
|
| 27 |
+
return model, tokenizer, tag_values, device
|
| 28 |
+
except Exception as e:
|
| 29 |
+
st.error(f"Error saat memuat model: {e}")
|
| 30 |
+
return None, None, None, None
|
| 31 |
+
|
| 32 |
+
# --- Fungsi untuk Prediksi ---
|
| 33 |
+
def predict(text, model, tokenizer, tag_values, device):
|
| 34 |
+
tokenized_sentence = tokenizer.encode(text)
|
| 35 |
+
input_ids = torch.tensor([tokenized_sentence]).to(device)
|
| 36 |
+
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
output = model(input_ids)
|
| 39 |
+
|
| 40 |
+
label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2)
|
| 41 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids.to('cpu').numpy()[0])
|
| 42 |
+
|
| 43 |
+
# Logika dari sel 36 (menggabungkan token BPE '##')
|
| 44 |
+
new_tokens, new_labels = [], []
|
| 45 |
+
for token, label_idx in zip(tokens, label_indices[0]):
|
| 46 |
+
if token.startswith("##"):
|
| 47 |
+
new_tokens[-1] = new_tokens[-1] + token[2:]
|
| 48 |
+
else:
|
| 49 |
+
new_labels.append(tag_values[label_idx])
|
| 50 |
+
new_tokens.append(token)
|
| 51 |
+
|
| 52 |
+
# Menggabungkan token dan label
|
| 53 |
+
results = []
|
| 54 |
+
for token, label in zip(new_tokens, new_labels):
|
| 55 |
+
# Abaikan token spesial [CLS] dan [SEP]
|
| 56 |
+
if token not in ['[CLS]', '[SEP]']:
|
| 57 |
+
results.append((token, label))
|
| 58 |
+
return results
|
| 59 |
+
|
| 60 |
+
# --- Setup UI Streamlit ---
|
| 61 |
+
st.set_page_config(layout="wide")
|
| 62 |
+
st.title("🧪 Aplikasi Named Entity Recognition (NER) dengan BERT")
|
| 63 |
+
st.write("Aplikasi ini menggunakan model BERT yang di-fine-tune untuk mengenali entitas dari teks medis.")
|
| 64 |
+
|
| 65 |
+
# Muat model
|
| 66 |
+
model, tokenizer, tag_values, device = load_model_and_tokenizer(MODEL_DIR)
|
| 67 |
+
|
| 68 |
+
if model:
|
| 69 |
+
# Ambil contoh teks dari notebook Anda
|
| 70 |
+
default_text = """
|
| 71 |
+
Pasteurellosis in japanese quail (Coturnix coturnix japonica) caused by Pasteurella multocida multocida A:4.
|
| 72 |
+
Evaluation of transdermal penetration enhancers using a novel skin alternative.
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
# Buat Text Area untuk input pengguna
|
| 76 |
+
user_input = st.text_area("Masukkan teks untuk dianalisis:", default_text, height=150)
|
| 77 |
+
|
| 78 |
+
if st.button("🚀 Analisis Teks"):
|
| 79 |
+
if user_input:
|
| 80 |
+
with st.spinner("Menganalisis..."):
|
| 81 |
+
results = predict(user_input, model, tokenizer, tag_values, device)
|
| 82 |
+
|
| 83 |
+
st.subheader("Hasil Analisis:")
|
| 84 |
+
|
| 85 |
+
# Menampilkan hasil dengan styling
|
| 86 |
+
# (Ini adalah cara sederhana, bisa juga pakai st.dataframe)
|
| 87 |
+
|
| 88 |
+
# Kita buat 2 kolom agar lebih rapi
|
| 89 |
+
col1, col2 = st.columns(2)
|
| 90 |
+
|
| 91 |
+
with col1:
|
| 92 |
+
st.markdown("**Token**")
|
| 93 |
+
for token, label in results:
|
| 94 |
+
st.write(token)
|
| 95 |
+
|
| 96 |
+
with col2:
|
| 97 |
+
st.markdown("**Tag (Entitas)**")
|
| 98 |
+
for token, label in results:
|
| 99 |
+
if label == "O":
|
| 100 |
+
st.write(label)
|
| 101 |
+
else:
|
| 102 |
+
# Beri tanda jika bukan 'O'
|
| 103 |
+
st.success(f"**{label}**")
|
| 104 |
+
else:
|
| 105 |
+
st.warning("Silakan masukkan teks terlebih dahulu.")
|
| 106 |
+
else:
|
| 107 |
+
st.error("Model tidak dapat dimuat. Pastikan folder `ner_bert_model` ada di direktori yang sama dengan `app.py`.")
|
.history/app_20251026141042.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import BertTokenizer, BertForTokenClassification
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# Tentukan path ke model yang sudah disimpan
|
| 9 |
+
MODEL_DIR = "./fine_tuned_bert_ner"
|
| 10 |
+
|
| 11 |
+
# --- Fungsi untuk Memuat Model dan Tokenizer ---
|
| 12 |
+
# @st.cache_resource akan menyimpan model di cache agar tidak di-load ulang
|
| 13 |
+
@st.cache_resource
|
| 14 |
+
def load_model_and_tokenizer(model_dir):
|
| 15 |
+
try:
|
| 16 |
+
model = BertForTokenClassification.from_pretrained(model_dir)
|
| 17 |
+
tokenizer = BertTokenizer.from_pretrained(model_dir)
|
| 18 |
+
|
| 19 |
+
# Muat tag_values
|
| 20 |
+
with open(os.path.join(model_dir, 'tag_values.json'), 'r') as f:
|
| 21 |
+
tag_values = json.load(f)
|
| 22 |
+
|
| 23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
+
model.to(device)
|
| 25 |
+
model.eval() # Set model ke mode evaluasi
|
| 26 |
+
|
| 27 |
+
return model, tokenizer, tag_values, device
|
| 28 |
+
except Exception as e:
|
| 29 |
+
st.error(f"Error saat memuat model: {e}")
|
| 30 |
+
return None, None, None, None
|
| 31 |
+
|
| 32 |
+
# --- Fungsi untuk Prediksi ---
|
| 33 |
+
def predict(text, model, tokenizer, tag_values, device):
|
| 34 |
+
tokenized_sentence = tokenizer.encode(text)
|
| 35 |
+
input_ids = torch.tensor([tokenized_sentence]).to(device)
|
| 36 |
+
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
output = model(input_ids)
|
| 39 |
+
|
| 40 |
+
label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2)
|
| 41 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids.to('cpu').numpy()[0])
|
| 42 |
+
|
| 43 |
+
# Logika dari sel 36 (menggabungkan token BPE '##')
|
| 44 |
+
new_tokens, new_labels = [], []
|
| 45 |
+
for token, label_idx in zip(tokens, label_indices[0]):
|
| 46 |
+
if token.startswith("##"):
|
| 47 |
+
new_tokens[-1] = new_tokens[-1] + token[2:]
|
| 48 |
+
else:
|
| 49 |
+
new_labels.append(tag_values[label_idx])
|
| 50 |
+
new_tokens.append(token)
|
| 51 |
+
|
| 52 |
+
# Menggabungkan token dan label
|
| 53 |
+
results = []
|
| 54 |
+
for token, label in zip(new_tokens, new_labels):
|
| 55 |
+
# Abaikan token spesial [CLS] dan [SEP]
|
| 56 |
+
if token not in ['[CLS]', '[SEP]']:
|
| 57 |
+
results.append((token, label))
|
| 58 |
+
return results
|
| 59 |
+
|
| 60 |
+
# --- Setup UI Streamlit ---
|
| 61 |
+
st.set_page_config(layout="wide")
|
| 62 |
+
st.title("🧪 Aplikasi Named Entity Recognition (NER) dengan BERT")
|
| 63 |
+
st.write("Aplikasi ini menggunakan model BERT yang di-fine-tune untuk mengenali entitas dari teks medis.")
|
| 64 |
+
|
| 65 |
+
# Muat model
|
| 66 |
+
model, tokenizer, tag_values, device = load_model_and_tokenizer(MODEL_DIR)
|
| 67 |
+
|
| 68 |
+
if model:
|
| 69 |
+
# Ambil contoh teks dari notebook Anda
|
| 70 |
+
default_text = """
|
| 71 |
+
Pasteurellosis in japanese quail (Coturnix coturnix japonica) caused by Pasteurella multocida multocida A:4.
|
| 72 |
+
Evaluation of transdermal penetration enhancers using a novel skin alternative.
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
# Buat Text Area untuk input pengguna
|
| 76 |
+
user_input = st.text_area("Masukkan teks untuk dianalisis:", default_text, height=150)
|
| 77 |
+
|
| 78 |
+
if st.button("🚀 Analisis Teks"):
|
| 79 |
+
if user_input:
|
| 80 |
+
with st.spinner("Menganalisis..."):
|
| 81 |
+
results = predict(user_input, model, tokenizer, tag_values, device)
|
| 82 |
+
|
| 83 |
+
st.subheader("Hasil Analisis:")
|
| 84 |
+
|
| 85 |
+
# Menampilkan hasil dengan styling
|
| 86 |
+
# (Ini adalah cara sederhana, bisa juga pakai st.dataframe)
|
| 87 |
+
|
| 88 |
+
# Kita buat 2 kolom agar lebih rapi
|
| 89 |
+
col1, col2 = st.columns(2)
|
| 90 |
+
|
| 91 |
+
with col1:
|
| 92 |
+
st.markdown("**Token**")
|
| 93 |
+
for token, label in results:
|
| 94 |
+
st.write(token)
|
| 95 |
+
|
| 96 |
+
with col2:
|
| 97 |
+
st.markdown("**Tag (Entitas)**")
|
| 98 |
+
for token, label in results:
|
| 99 |
+
if label == "O":
|
| 100 |
+
st.write(label)
|
| 101 |
+
else:
|
| 102 |
+
# Beri tanda jika bukan 'O'
|
| 103 |
+
st.success(f"**{label}**")
|
| 104 |
+
else:
|
| 105 |
+
st.warning("Silakan masukkan teks terlebih dahulu.")
|
| 106 |
+
else:
|
| 107 |
+
st.error("Model tidak dapat dimuat. Pastikan folder `ner_bert_model` ada di direktori yang sama dengan `app.py`.")
|
.history/app_20251026141101.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import BertTokenizer, BertForTokenClassification
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# Tentukan path ke model yang sudah disimpan
|
| 9 |
+
MODEL_DIR = "./fine_tuned_bert_ner"
|
| 10 |
+
|
| 11 |
+
# --- Fungsi untuk Memuat Model dan Tokenizer ---
|
| 12 |
+
# @st.cache_resource akan menyimpan model di cache agar tidak di-load ulang
|
| 13 |
+
@st.cache_resource
|
| 14 |
+
def load_model_and_tokenizer(model_dir):
|
| 15 |
+
try:
|
| 16 |
+
model = BertForTokenClassification.from_pretrained(model_dir)
|
| 17 |
+
tokenizer = BertTokenizer.from_pretrained(model_dir)
|
| 18 |
+
|
| 19 |
+
# Muat tag_values
|
| 20 |
+
with open(os.path.join(model_dir, 'tag_values.json'), 'r') as f:
|
| 21 |
+
tag_values = json.load(f)
|
| 22 |
+
|
| 23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
+
model.to(device)
|
| 25 |
+
model.eval() # Set model ke mode evaluasi
|
| 26 |
+
|
| 27 |
+
return model, tokenizer, tag_values, device
|
| 28 |
+
except Exception as e:
|
| 29 |
+
st.error(f"Error saat memuat model: {e}")
|
| 30 |
+
return None, None, None, None
|
| 31 |
+
|
| 32 |
+
# --- Fungsi untuk Prediksi ---
|
| 33 |
+
def predict(text, model, tokenizer, tag_values, device):
|
| 34 |
+
tokenized_sentence = tokenizer.encode(text)
|
| 35 |
+
input_ids = torch.tensor([tokenized_sentence]).to(device)
|
| 36 |
+
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
output = model(input_ids)
|
| 39 |
+
|
| 40 |
+
label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2)
|
| 41 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids.to('cpu').numpy()[0])
|
| 42 |
+
|
| 43 |
+
# Logika dari sel 36 (menggabungkan token BPE '##')
|
| 44 |
+
new_tokens, new_labels = [], []
|
| 45 |
+
for token, label_idx in zip(tokens, label_indices[0]):
|
| 46 |
+
if token.startswith("##"):
|
| 47 |
+
new_tokens[-1] = new_tokens[-1] + token[2:]
|
| 48 |
+
else:
|
| 49 |
+
new_labels.append(tag_values[label_idx])
|
| 50 |
+
new_tokens.append(token)
|
| 51 |
+
|
| 52 |
+
# Menggabungkan token dan label
|
| 53 |
+
results = []
|
| 54 |
+
for token, label in zip(new_tokens, new_labels):
|
| 55 |
+
# Abaikan token spesial [CLS] dan [SEP]
|
| 56 |
+
if token not in ['[CLS]', '[SEP]']:
|
| 57 |
+
results.append((token, label))
|
| 58 |
+
return results
|
| 59 |
+
|
| 60 |
+
# --- Setup UI Streamlit ---
|
| 61 |
+
st.set_page_config(layout="wide")
|
| 62 |
+
st.title("🧪 Aplikasi Named Entity Recognition (NER) dengan BERT")
|
| 63 |
+
st.write("Aplikasi ini menggunakan model BERT yang di-fine-tune untuk mengenali entitas dari teks medis.")
|
| 64 |
+
|
| 65 |
+
# Muat model
|
| 66 |
+
model, tokenizer, tag_values, device = load_model_and_tokenizer(MODEL_DIR)
|
| 67 |
+
|
| 68 |
+
if model:
|
| 69 |
+
# Ambil contoh teks dari notebook Anda
|
| 70 |
+
default_text = """
|
| 71 |
+
Pasteurellosis in japanese quail (Coturnix coturnix japonica) caused by Pasteurella multocida multocida A:4.
|
| 72 |
+
Evaluation of transdermal penetration enhancers using a novel skin alternative.
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
# Buat Text Area untuk input pengguna
|
| 76 |
+
user_input = st.text_area("Masukkan teks untuk dianalisis:", default_text, height=150)
|
| 77 |
+
|
| 78 |
+
if st.button("🚀 Analisis Teks"):
|
| 79 |
+
if user_input:
|
| 80 |
+
with st.spinner("Menganalisis..."):
|
| 81 |
+
results = predict(user_input, model, tokenizer, tag_values, device)
|
| 82 |
+
|
| 83 |
+
st.subheader("Hasil Analisis:")
|
| 84 |
+
|
| 85 |
+
# Menampilkan hasil dengan styling
|
| 86 |
+
# (Ini adalah cara sederhana, bisa juga pakai st.dataframe)
|
| 87 |
+
|
| 88 |
+
# Kita buat 2 kolom agar lebih rapi
|
| 89 |
+
col1, col2 = st.columns(2)
|
| 90 |
+
|
| 91 |
+
with col1:
|
| 92 |
+
st.markdown("**Token**")
|
| 93 |
+
for token, label in results:
|
| 94 |
+
st.write(token)
|
| 95 |
+
|
| 96 |
+
with col2:
|
| 97 |
+
st.markdown("**Tag (Entitas)**")
|
| 98 |
+
for token, label in results:
|
| 99 |
+
if label == "O":
|
| 100 |
+
st.write(label)
|
| 101 |
+
else:
|
| 102 |
+
# Beri tanda jika bukan 'O'
|
| 103 |
+
st.success(f"**{label}**")
|
| 104 |
+
else:
|
| 105 |
+
st.warning("Silakan masukkan teks terlebih dahulu.")
|
| 106 |
+
else:
|
| 107 |
+
st.error("Model tidak dapat dimuat. Pastikan folder `ner_bert_model` ada di direktori yang sama dengan `app.py`.")
|
.history/app_20251026141102.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import BertTokenizer, BertForTokenClassification
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# Tentukan path ke model yang sudah disimpan
|
| 9 |
+
MODEL_DIR = "./fine_tuned_bert_ner"
|
| 10 |
+
|
| 11 |
+
# --- Fungsi untuk Memuat Model dan Tokenizer ---
|
| 12 |
+
# @st.cache_resource akan menyimpan model di cache agar tidak di-load ulang
|
| 13 |
+
@st.cache_resource
|
| 14 |
+
def load_model_and_tokenizer(model_dir):
|
| 15 |
+
try:
|
| 16 |
+
model = BertForTokenClassification.from_pretrained(model_dir)
|
| 17 |
+
tokenizer = BertTokenizer.from_pretrained(model_dir)
|
| 18 |
+
|
| 19 |
+
# Muat tag_values
|
| 20 |
+
with open(os.path.join(model_dir, 'tag_values.json'), 'r') as f:
|
| 21 |
+
tag_values = json.load(f)
|
| 22 |
+
|
| 23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
+
model.to(device)
|
| 25 |
+
model.eval() # Set model ke mode evaluasi
|
| 26 |
+
|
| 27 |
+
return model, tokenizer, tag_values, device
|
| 28 |
+
except Exception as e:
|
| 29 |
+
st.error(f"Error saat memuat model: {e}")
|
| 30 |
+
return None, None, None, None
|
| 31 |
+
|
| 32 |
+
# --- Fungsi untuk Prediksi ---
|
| 33 |
+
def predict(text, model, tokenizer, tag_values, device):
|
| 34 |
+
tokenized_sentence = tokenizer.encode(text)
|
| 35 |
+
input_ids = torch.tensor([tokenized_sentence]).to(device)
|
| 36 |
+
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
output = model(input_ids)
|
| 39 |
+
|
| 40 |
+
label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2)
|
| 41 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids.to('cpu').numpy()[0])
|
| 42 |
+
|
| 43 |
+
# Logika dari sel 36 (menggabungkan token BPE '##')
|
| 44 |
+
new_tokens, new_labels = [], []
|
| 45 |
+
for token, label_idx in zip(tokens, label_indices[0]):
|
| 46 |
+
if token.startswith("##"):
|
| 47 |
+
new_tokens[-1] = new_tokens[-1] + token[2:]
|
| 48 |
+
else:
|
| 49 |
+
new_labels.append(tag_values[label_idx])
|
| 50 |
+
new_tokens.append(token)
|
| 51 |
+
|
| 52 |
+
# Menggabungkan token dan label
|
| 53 |
+
results = []
|
| 54 |
+
for token, label in zip(new_tokens, new_labels):
|
| 55 |
+
# Abaikan token spesial [CLS] dan [SEP]
|
| 56 |
+
if token not in ['[CLS]', '[SEP]']:
|
| 57 |
+
results.append((token, label))
|
| 58 |
+
return results
|
| 59 |
+
|
| 60 |
+
# --- Setup UI Streamlit ---
|
| 61 |
+
st.set_page_config(layout="wide")
|
| 62 |
+
st.title("🧪 Aplikasi Named Entity Recognition (NER) dengan BERT")
|
| 63 |
+
st.write("Aplikasi ini menggunakan model BERT yang di-fine-tune untuk mengenali entitas dari teks medis.")
|
| 64 |
+
|
| 65 |
+
# Muat model
|
| 66 |
+
model, tokenizer, tag_values, device = load_model_and_tokenizer(MODEL_DIR)
|
| 67 |
+
|
| 68 |
+
if model:
|
| 69 |
+
# Ambil contoh teks dari notebook Anda
|
| 70 |
+
default_text = """
|
| 71 |
+
Pasteurellosis in japanese quail (Coturnix coturnix japonica) caused by Pasteurella multocida multocida A:4.
|
| 72 |
+
Evaluation of transdermal penetration enhancers using a novel skin alternative.
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
# Buat Text Area untuk input pengguna
|
| 76 |
+
user_input = st.text_area("Masukkan teks untuk dianalisis:", default_text, height=150)
|
| 77 |
+
|
| 78 |
+
if st.button("🚀 Analisis Teks"):
|
| 79 |
+
if user_input:
|
| 80 |
+
with st.spinner("Menganalisis..."):
|
| 81 |
+
results = predict(user_input, model, tokenizer, tag_values, device)
|
| 82 |
+
|
| 83 |
+
st.subheader("Hasil Analisis:")
|
| 84 |
+
|
| 85 |
+
# Menampilkan hasil dengan styling
|
| 86 |
+
# (Ini adalah cara sederhana, bisa juga pakai st.dataframe)
|
| 87 |
+
|
| 88 |
+
# Kita buat 2 kolom agar lebih rapi
|
| 89 |
+
col1, col2 = st.columns(2)
|
| 90 |
+
|
| 91 |
+
with col1:
|
| 92 |
+
st.markdown("**Token**")
|
| 93 |
+
for token, label in results:
|
| 94 |
+
st.write(token)
|
| 95 |
+
|
| 96 |
+
with col2:
|
| 97 |
+
st.markdown("**Tag (Entitas)**")
|
| 98 |
+
for token, label in results:
|
| 99 |
+
if label == "O":
|
| 100 |
+
st.write(label)
|
| 101 |
+
else:
|
| 102 |
+
# Beri tanda jika bukan 'O'
|
| 103 |
+
st.success(f"**{label}**")
|
| 104 |
+
else:
|
| 105 |
+
st.warning("Silakan masukkan teks terlebih dahulu.")
|
| 106 |
+
else:
|
| 107 |
+
st.error("Model tidak dapat dimuat. Pastikan folder `ner_bert_model` ada di direktori yang sama dengan `app.py`.")
|
.history/app_20251026141641.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import BertTokenizer, BertForTokenClassification
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
import pandas as pd # Kita tambahkan pandas untuk menampilkan tabel
|
| 8 |
+
|
| 9 |
+
# --- KONFIGURASI ---
|
| 10 |
+
# Pastikan nama folder ini SAMA PERSIS dengan folder model Anda
|
| 11 |
+
MODEL_DIR = "./fine_tuned_bert_ner"
|
| 12 |
+
|
| 13 |
+
# --- FUNGSI UNTUK MEMUAT MODEL (VERSI PERBAIKAN) ---
|
| 14 |
+
# @st.cache_resource akan menyimpan model di cache agar tidak di-load ulang
|
| 15 |
+
# Ini adalah fungsi yang sudah diperbaiki untuk membaca 'id2label' dari config
|
| 16 |
+
@st.cache_resource
|
| 17 |
+
def load_model_and_tokenizer(model_dir):
|
| 18 |
+
"""
|
| 19 |
+
Memuat model, tokenizer, dan daftar tag dari direktori yang disimpan.
|
| 20 |
+
"""
|
| 21 |
+
try:
|
| 22 |
+
# Muat model dan tokenizer
|
| 23 |
+
model = BertForTokenClassification.from_pretrained(model_dir)
|
| 24 |
+
tokenizer = BertTokenizer.from_pretrained(model_dir)
|
| 25 |
+
|
| 26 |
+
# --- PERBAIKAN DARI ERROR SEBELUMNYA ---
|
| 27 |
+
# Kita tidak lagi mencari 'tag_values.json'.
|
| 28 |
+
# Sebagai gantinya, kita membaca 'id2label' dari file config.json model.
|
| 29 |
+
# Ini dimuat secara otomatis ke dalam 'model.config'
|
| 30 |
+
|
| 31 |
+
if not hasattr(model.config, 'id2label'):
|
| 32 |
+
st.error("Error: 'id2label' tidak ditemukan di dalam config.json model.")
|
| 33 |
+
return None, None, None, None
|
| 34 |
+
|
| 35 |
+
# model.config.id2label adalah dictionary: {"0": "O", "1": "B-indications", ...}
|
| 36 |
+
# Kita ubah menjadi list: ["O", "B-indications", ...]
|
| 37 |
+
# Ini penting agar kita bisa mapping output (angka) kembali ke label (teks)
|
| 38 |
+
tag_values = [model.config.id2label[str(i)] for i in range(len(model.config.id2label))]
|
| 39 |
+
|
| 40 |
+
# Tentukan device (GPU jika ada, jika tidak CPU)
|
| 41 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 42 |
+
model.to(device)
|
| 43 |
+
model.eval() # Set model ke mode evaluasi (penting untuk prediksi)
|
| 44 |
+
|
| 45 |
+
return model, tokenizer, tag_values, device
|
| 46 |
+
|
| 47 |
+
except Exception as e:
|
| 48 |
+
# Tangani error jika folder model tidak ditemukan
|
| 49 |
+
st.error(f"Error saat memuat model: {e}")
|
| 50 |
+
st.error(f"Pastikan folder '{model_dir}' ada di direktori yang sama dengan app.py")
|
| 51 |
+
return None, None, None, None
|
| 52 |
+
|
| 53 |
+
# --- FUNGSI UNTUK PREDIKSI ---
|
| 54 |
+
def predict(text, model, tokenizer, tag_values, device):
|
| 55 |
+
"""
|
| 56 |
+
Melakukan prediksi NER pada teks input.
|
| 57 |
+
"""
|
| 58 |
+
# Tokenisasi teks input
|
| 59 |
+
tokenized_sentence = tokenizer.encode(text, truncation=True, max_length=512)
|
| 60 |
+
input_ids = torch.tensor([tokenized_sentence]).to(device)
|
| 61 |
+
|
| 62 |
+
# Lakukan prediksi
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
output = model(input_ids)
|
| 65 |
+
|
| 66 |
+
# Ambil label dengan skor tertinggi (argmax)
|
| 67 |
+
label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2)
|
| 68 |
+
|
| 69 |
+
# Ubah ID token kembali menjadi token (kata)
|
| 70 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids.to('cpu').numpy()[0])
|
| 71 |
+
|
| 72 |
+
# --- Logika dari Notebook (menggabungkan token '##') ---
|
| 73 |
+
new_tokens, new_labels = [], []
|
| 74 |
+
for token, label_idx in zip(tokens, label_indices[0]):
|
| 75 |
+
# Abaikan token spesial [CLS] dan [SEP]
|
| 76 |
+
if token in ['[CLS]', '[SEP]']:
|
| 77 |
+
continue
|
| 78 |
+
|
| 79 |
+
if token.startswith("##"):
|
| 80 |
+
# Jika token adalah BPE (sub-word), gabungkan dengan token sebelumnya
|
| 81 |
+
if new_tokens:
|
| 82 |
+
new_tokens[-1] = new_tokens[-1] + token[2:]
|
| 83 |
+
else:
|
| 84 |
+
# Jika token utuh, tambahkan token dan labelnya
|
| 85 |
+
new_labels.append(tag_values[label_idx])
|
| 86 |
+
new_tokens.append(token)
|
| 87 |
+
|
| 88 |
+
return list(zip(new_tokens, new_labels))
|
| 89 |
+
|
| 90 |
+
# --- FUNGSI UNTUK TAMPILAN UI ---
|
| 91 |
+
def display_highlighted_text(results):
|
| 92 |
+
"""
|
| 93 |
+
Menampilkan hasil sebagai teks yang di-highlight (UI Menarik)
|
| 94 |
+
"""
|
| 95 |
+
# Definisikan warna untuk entitas.
|
| 96 |
+
# Anda bisa tambahkan jika punya banyak tipe entitas.
|
| 97 |
+
# Di sini kita buat simpel: semua entitas akan berwarna biru muda.
|
| 98 |
+
STYLE = """
|
| 99 |
+
<mark style="
|
| 100 |
+
background-color: #89CFF0;
|
| 101 |
+
padding: 2px 5px;
|
| 102 |
+
margin: 0px 3px;
|
| 103 |
+
border-radius: 5px;
|
| 104 |
+
border: 1px solid #008ECC;
|
| 105 |
+
">
|
| 106 |
+
{token}
|
| 107 |
+
<sub style="
|
| 108 |
+
font-size: 0.7em;
|
| 109 |
+
opacity: 0.7;
|
| 110 |
+
margin-left: 3px;
|
| 111 |
+
vertical-align: sub;
|
| 112 |
+
">
|
| 113 |
+
{label}
|
| 114 |
+
</sub>
|
| 115 |
+
</mark>
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
html_output = '<div style="font-size: 1.1em; line-height: 2.0;">'
|
| 119 |
+
|
| 120 |
+
for token, label in results:
|
| 121 |
+
if label == "O":
|
| 122 |
+
# Jika 'O' (Outside), tampilkan sebagai teks biasa
|
| 123 |
+
html_output += f" {token}"
|
| 124 |
+
else:
|
| 125 |
+
# Jika entitas, tampilkan dengan highlight
|
| 126 |
+
html_output += STYLE.format(token=token, label=label)
|
| 127 |
+
|
| 128 |
+
html_output += "</div>"
|
| 129 |
+
st.markdown(html_output, unsafe_allow_html=True)
|
| 130 |
+
|
| 131 |
+
# --- FUNGSI UTAMA APLIKASI ---
|
| 132 |
+
def main():
|
| 133 |
+
# Konfigurasi halaman
|
| 134 |
+
st.set_page_config(
|
| 135 |
+
page_title="Aplikasi NER Medis",
|
| 136 |
+
page_icon="🧪",
|
| 137 |
+
layout="wide"
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# --- Header ---
|
| 141 |
+
st.title("🧪 Aplikasi Named Entity Recognition (NER) dengan BERT")
|
| 142 |
+
st.markdown("Aplikasi ini menggunakan model BERT yang di-fine-tune untuk mengenali entitas dari teks medis (berdasarkan notebook Anda).")
|
| 143 |
+
|
| 144 |
+
# --- Memuat Model ---
|
| 145 |
+
# Gunakan st.spinner agar terlihat loading saat model dimuat
|
| 146 |
+
with st.spinner("Memuat model... Ini mungkin perlu beberapa saat..."):
|
| 147 |
+
model, tokenizer, tag_values, device = load_model_and_tokenizer(MODEL_DIR)
|
| 148 |
+
|
| 149 |
+
# Hanya lanjutkan jika model berhasil dimuat
|
| 150 |
+
if model and tokenizer and tag_values and device:
|
| 151 |
+
|
| 152 |
+
st.success("Model berhasil dimuat!")
|
| 153 |
+
|
| 154 |
+
# --- Area Input ---
|
| 155 |
+
st.header("Analisis Teks Anda")
|
| 156 |
+
|
| 157 |
+
# Contoh teks diambil dari notebook Anda
|
| 158 |
+
default_text = (
|
| 159 |
+
"Pasteurellosis in japanese quail (Coturnix coturnix japonica) caused by Pasteurella multocida multocida A:4. \n\n"
|
| 160 |
+
"Evaluation of transdermal penetration enhancers using a novel skin alternative. \n\n"
|
| 161 |
+
"A novel alternative to animal skin models was developed in order to aid in the screening of transdermal penetration enhancer."
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
user_input = st.text_area("Masukkan teks untuk dianalisis di sini:", default_text, height=150)
|
| 165 |
+
|
| 166 |
+
if st.button("🚀 Analisis Teks", type="primary"):
|
| 167 |
+
if user_input:
|
| 168 |
+
# Tampilkan spinner saat proses analisis
|
| 169 |
+
with st.spinner("Menganalisis teks..."):
|
| 170 |
+
results = predict(user_input, model, tokenizer, tag_values, device)
|
| 171 |
+
|
| 172 |
+
st.subheader("Hasil Analisis (Teks dengan Highlight)")
|
| 173 |
+
display_highlighted_text(results)
|
| 174 |
+
|
| 175 |
+
# --- Tampilkan Data Mentah di dalam Expander ---
|
| 176 |
+
with st.expander("Lihat Data Mentah (Token & Tag)"):
|
| 177 |
+
# Filter hanya token yang BUKAN 'O' untuk data mentah
|
| 178 |
+
entities_only = [res for res in results if res[1] != 'O']
|
| 179 |
+
if entities_only:
|
| 180 |
+
df = pd.DataFrame(entities_only, columns=["Token", "Tag"])
|
| 181 |
+
st.dataframe(df, use_container_width=True)
|
| 182 |
+
else:
|
| 183 |
+
st.info("Tidak ada entitas yang ditemukan.")
|
| 184 |
+
else:
|
| 185 |
+
st.warning("Silakan masukkan teks terlebih dahulu.")
|
| 186 |
+
|
| 187 |
+
# Menjalankan aplikasi
|
| 188 |
+
if __name__ == "__main__":
|
| 189 |
+
main()
|
.history/app_20251026141642.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import BertTokenizer, BertForTokenClassification
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
import pandas as pd # Kita tambahkan pandas untuk menampilkan tabel
|
| 8 |
+
|
| 9 |
+
# --- KONFIGURASI ---
|
| 10 |
+
# Pastikan nama folder ini SAMA PERSIS dengan folder model Anda
|
| 11 |
+
MODEL_DIR = "./fine_tuned_bert_ner"
|
| 12 |
+
|
| 13 |
+
# --- FUNGSI UNTUK MEMUAT MODEL (VERSI PERBAIKAN) ---
|
| 14 |
+
# @st.cache_resource akan menyimpan model di cache agar tidak di-load ulang
|
| 15 |
+
# Ini adalah fungsi yang sudah diperbaiki untuk membaca 'id2label' dari config
|
| 16 |
+
@st.cache_resource
|
| 17 |
+
def load_model_and_tokenizer(model_dir):
|
| 18 |
+
"""
|
| 19 |
+
Memuat model, tokenizer, dan daftar tag dari direktori yang disimpan.
|
| 20 |
+
"""
|
| 21 |
+
try:
|
| 22 |
+
# Muat model dan tokenizer
|
| 23 |
+
model = BertForTokenClassification.from_pretrained(model_dir)
|
| 24 |
+
tokenizer = BertTokenizer.from_pretrained(model_dir)
|
| 25 |
+
|
| 26 |
+
# --- PERBAIKAN DARI ERROR SEBELUMNYA ---
|
| 27 |
+
# Kita tidak lagi mencari 'tag_values.json'.
|
| 28 |
+
# Sebagai gantinya, kita membaca 'id2label' dari file config.json model.
|
| 29 |
+
# Ini dimuat secara otomatis ke dalam 'model.config'
|
| 30 |
+
|
| 31 |
+
if not hasattr(model.config, 'id2label'):
|
| 32 |
+
st.error("Error: 'id2label' tidak ditemukan di dalam config.json model.")
|
| 33 |
+
return None, None, None, None
|
| 34 |
+
|
| 35 |
+
# model.config.id2label adalah dictionary: {"0": "O", "1": "B-indications", ...}
|
| 36 |
+
# Kita ubah menjadi list: ["O", "B-indications", ...]
|
| 37 |
+
# Ini penting agar kita bisa mapping output (angka) kembali ke label (teks)
|
| 38 |
+
tag_values = [model.config.id2label[str(i)] for i in range(len(model.config.id2label))]
|
| 39 |
+
|
| 40 |
+
# Tentukan device (GPU jika ada, jika tidak CPU)
|
| 41 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 42 |
+
model.to(device)
|
| 43 |
+
model.eval() # Set model ke mode evaluasi (penting untuk prediksi)
|
| 44 |
+
|
| 45 |
+
return model, tokenizer, tag_values, device
|
| 46 |
+
|
| 47 |
+
except Exception as e:
|
| 48 |
+
# Tangani error jika folder model tidak ditemukan
|
| 49 |
+
st.error(f"Error saat memuat model: {e}")
|
| 50 |
+
st.error(f"Pastikan folder '{model_dir}' ada di direktori yang sama dengan app.py")
|
| 51 |
+
return None, None, None, None
|
| 52 |
+
|
| 53 |
+
# --- FUNGSI UNTUK PREDIKSI ---
|
| 54 |
+
def predict(text, model, tokenizer, tag_values, device):
|
| 55 |
+
"""
|
| 56 |
+
Melakukan prediksi NER pada teks input.
|
| 57 |
+
"""
|
| 58 |
+
# Tokenisasi teks input
|
| 59 |
+
tokenized_sentence = tokenizer.encode(text, truncation=True, max_length=512)
|
| 60 |
+
input_ids = torch.tensor([tokenized_sentence]).to(device)
|
| 61 |
+
|
| 62 |
+
# Lakukan prediksi
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
output = model(input_ids)
|
| 65 |
+
|
| 66 |
+
# Ambil label dengan skor tertinggi (argmax)
|
| 67 |
+
label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2)
|
| 68 |
+
|
| 69 |
+
# Ubah ID token kembali menjadi token (kata)
|
| 70 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids.to('cpu').numpy()[0])
|
| 71 |
+
|
| 72 |
+
# --- Logika dari Notebook (menggabungkan token '##') ---
|
| 73 |
+
new_tokens, new_labels = [], []
|
| 74 |
+
for token, label_idx in zip(tokens, label_indices[0]):
|
| 75 |
+
# Abaikan token spesial [CLS] dan [SEP]
|
| 76 |
+
if token in ['[CLS]', '[SEP]']:
|
| 77 |
+
continue
|
| 78 |
+
|
| 79 |
+
if token.startswith("##"):
|
| 80 |
+
# Jika token adalah BPE (sub-word), gabungkan dengan token sebelumnya
|
| 81 |
+
if new_tokens:
|
| 82 |
+
new_tokens[-1] = new_tokens[-1] + token[2:]
|
| 83 |
+
else:
|
| 84 |
+
# Jika token utuh, tambahkan token dan labelnya
|
| 85 |
+
new_labels.append(tag_values[label_idx])
|
| 86 |
+
new_tokens.append(token)
|
| 87 |
+
|
| 88 |
+
return list(zip(new_tokens, new_labels))
|
| 89 |
+
|
| 90 |
+
# --- FUNGSI UNTUK TAMPILAN UI ---
|
| 91 |
+
def display_highlighted_text(results):
|
| 92 |
+
"""
|
| 93 |
+
Menampilkan hasil sebagai teks yang di-highlight (UI Menarik)
|
| 94 |
+
"""
|
| 95 |
+
# Definisikan warna untuk entitas.
|
| 96 |
+
# Anda bisa tambahkan jika punya banyak tipe entitas.
|
| 97 |
+
# Di sini kita buat simpel: semua entitas akan berwarna biru muda.
|
| 98 |
+
STYLE = """
|
| 99 |
+
<mark style="
|
| 100 |
+
background-color: #89CFF0;
|
| 101 |
+
padding: 2px 5px;
|
| 102 |
+
margin: 0px 3px;
|
| 103 |
+
border-radius: 5px;
|
| 104 |
+
border: 1px solid #008ECC;
|
| 105 |
+
">
|
| 106 |
+
{token}
|
| 107 |
+
<sub style="
|
| 108 |
+
font-size: 0.7em;
|
| 109 |
+
opacity: 0.7;
|
| 110 |
+
margin-left: 3px;
|
| 111 |
+
vertical-align: sub;
|
| 112 |
+
">
|
| 113 |
+
{label}
|
| 114 |
+
</sub>
|
| 115 |
+
</mark>
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
html_output = '<div style="font-size: 1.1em; line-height: 2.0;">'
|
| 119 |
+
|
| 120 |
+
for token, label in results:
|
| 121 |
+
if label == "O":
|
| 122 |
+
# Jika 'O' (Outside), tampilkan sebagai teks biasa
|
| 123 |
+
html_output += f" {token}"
|
| 124 |
+
else:
|
| 125 |
+
# Jika entitas, tampilkan dengan highlight
|
| 126 |
+
html_output += STYLE.format(token=token, label=label)
|
| 127 |
+
|
| 128 |
+
html_output += "</div>"
|
| 129 |
+
st.markdown(html_output, unsafe_allow_html=True)
|
| 130 |
+
|
| 131 |
+
# --- FUNGSI UTAMA APLIKASI ---
|
| 132 |
+
def main():
|
| 133 |
+
# Konfigurasi halaman
|
| 134 |
+
st.set_page_config(
|
| 135 |
+
page_title="Aplikasi NER Medis",
|
| 136 |
+
page_icon="🧪",
|
| 137 |
+
layout="wide"
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# --- Header ---
|
| 141 |
+
st.title("🧪 Aplikasi Named Entity Recognition (NER) dengan BERT")
|
| 142 |
+
st.markdown("Aplikasi ini menggunakan model BERT yang di-fine-tune untuk mengenali entitas dari teks medis (berdasarkan notebook Anda).")
|
| 143 |
+
|
| 144 |
+
# --- Memuat Model ---
|
| 145 |
+
# Gunakan st.spinner agar terlihat loading saat model dimuat
|
| 146 |
+
with st.spinner("Memuat model... Ini mungkin perlu beberapa saat..."):
|
| 147 |
+
model, tokenizer, tag_values, device = load_model_and_tokenizer(MODEL_DIR)
|
| 148 |
+
|
| 149 |
+
# Hanya lanjutkan jika model berhasil dimuat
|
| 150 |
+
if model and tokenizer and tag_values and device:
|
| 151 |
+
|
| 152 |
+
st.success("Model berhasil dimuat!")
|
| 153 |
+
|
| 154 |
+
# --- Area Input ---
|
| 155 |
+
st.header("Analisis Teks Anda")
|
| 156 |
+
|
| 157 |
+
# Contoh teks diambil dari notebook Anda
|
| 158 |
+
default_text = (
|
| 159 |
+
"Pasteurellosis in japanese quail (Coturnix coturnix japonica) caused by Pasteurella multocida multocida A:4. \n\n"
|
| 160 |
+
"Evaluation of transdermal penetration enhancers using a novel skin alternative. \n\n"
|
| 161 |
+
"A novel alternative to animal skin models was developed in order to aid in the screening of transdermal penetration enhancer."
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
user_input = st.text_area("Masukkan teks untuk dianalisis di sini:", default_text, height=150)
|
| 165 |
+
|
| 166 |
+
if st.button("🚀 Analisis Teks", type="primary"):
|
| 167 |
+
if user_input:
|
| 168 |
+
# Tampilkan spinner saat proses analisis
|
| 169 |
+
with st.spinner("Menganalisis teks..."):
|
| 170 |
+
results = predict(user_input, model, tokenizer, tag_values, device)
|
| 171 |
+
|
| 172 |
+
st.subheader("Hasil Analisis (Teks dengan Highlight)")
|
| 173 |
+
display_highlighted_text(results)
|
| 174 |
+
|
| 175 |
+
# --- Tampilkan Data Mentah di dalam Expander ---
|
| 176 |
+
with st.expander("Lihat Data Mentah (Token & Tag)"):
|
| 177 |
+
# Filter hanya token yang BUKAN 'O' untuk data mentah
|
| 178 |
+
entities_only = [res for res in results if res[1] != 'O']
|
| 179 |
+
if entities_only:
|
| 180 |
+
df = pd.DataFrame(entities_only, columns=["Token", "Tag"])
|
| 181 |
+
st.dataframe(df, use_container_width=True)
|
| 182 |
+
else:
|
| 183 |
+
st.info("Tidak ada entitas yang ditemukan.")
|
| 184 |
+
else:
|
| 185 |
+
st.warning("Silakan masukkan teks terlebih dahulu.")
|
| 186 |
+
|
| 187 |
+
# Menjalankan aplikasi
|
| 188 |
+
if __name__ == "__main__":
|
| 189 |
+
main()
|
.history/app_20251026141819.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import BertTokenizer, BertForTokenClassification
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
import pandas as pd # Kita tambahkan pandas untuk menampilkan tabel
|
| 8 |
+
|
| 9 |
+
# --- KONFIGURASI ---
|
| 10 |
+
# Pastikan nama folder ini SAMA PERSIS dengan folder model Anda
|
| 11 |
+
MODEL_DIR = "./fine_tuned_bert_ner"
|
| 12 |
+
|
| 13 |
+
# --- FUNGSI UNTUK MEMUAT MODEL (VERSI PERBAIKAN) ---
|
| 14 |
+
# @st.cache_resource akan menyimpan model di cache agar tidak di-load ulang
|
| 15 |
+
# Ini adalah fungsi yang sudah diperbaiki untuk membaca 'id2label' dari config
|
| 16 |
+
@st.cache_resource
|
| 17 |
+
def load_model_and_tokenizer(model_dir):
|
| 18 |
+
"""
|
| 19 |
+
Memuat model, tokenizer, dan daftar tag dari direktori yang disimpan.
|
| 20 |
+
"""
|
| 21 |
+
try:
|
| 22 |
+
# Muat model dan tokenizer
|
| 23 |
+
model = BertForTokenClassification.from_pretrained(model_dir)
|
| 24 |
+
tokenizer = BertTokenizer.from_pretrained(model_dir)
|
| 25 |
+
|
| 26 |
+
# --- PERBAIKAN DARI ERROR SEBELUMNYA ---
|
| 27 |
+
# Kita tidak lagi mencari 'tag_values.json'.
|
| 28 |
+
# Sebagai gantinya, kita membaca 'id2label' dari file config.json model.
|
| 29 |
+
# Ini dimuat secara otomatis ke dalam 'model.config'
|
| 30 |
+
|
| 31 |
+
if not hasattr(model.config, 'id2label'):
|
| 32 |
+
st.error("Error: 'id2label' tidak ditemukan di dalam config.json model.")
|
| 33 |
+
return None, None, None, None
|
| 34 |
+
|
| 35 |
+
# model.config.id2label adalah dictionary: {"0": "O", "1": "B-indications", ...}
|
| 36 |
+
# Kita ubah menjadi list: ["O", "B-indications", ...]
|
| 37 |
+
# Ini penting agar kita bisa mapping output (angka) kembali ke label (teks)
|
| 38 |
+
tag_values = [model.config.id2label[str(i)] for i in range(len(model.config.id2label))]
|
| 39 |
+
|
| 40 |
+
# Tentukan device (GPU jika ada, jika tidak CPU)
|
| 41 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 42 |
+
model.to(device)
|
| 43 |
+
model.eval() # Set model ke mode evaluasi (penting untuk prediksi)
|
| 44 |
+
|
| 45 |
+
return model, tokenizer, tag_values, device
|
| 46 |
+
|
| 47 |
+
except Exception as e:
|
| 48 |
+
# Tangani error jika folder model tidak ditemukan
|
| 49 |
+
st.error(f"Error saat memuat model: {e}")
|
| 50 |
+
st.error(f"Pastikan folder '{model_dir}' ada di direktori yang sama dengan app.py")
|
| 51 |
+
return None, None, None, None
|
| 52 |
+
|
| 53 |
+
# --- FUNGSI UNTUK PREDIKSI ---
|
| 54 |
+
def predict(text, model, tokenizer, tag_values, device):
|
| 55 |
+
"""
|
| 56 |
+
Melakukan prediksi NER pada teks input.
|
| 57 |
+
"""
|
| 58 |
+
# Tokenisasi teks input
|
| 59 |
+
tokenized_sentence = tokenizer.encode(text, truncation=True, max_length=512)
|
| 60 |
+
input_ids = torch.tensor([tokenized_sentence]).to(device)
|
| 61 |
+
|
| 62 |
+
# Lakukan prediksi
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
output = model(input_ids)
|
| 65 |
+
|
| 66 |
+
# Ambil label dengan skor tertinggi (argmax)
|
| 67 |
+
label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2)
|
| 68 |
+
|
| 69 |
+
# Ubah ID token kembali menjadi token (kata)
|
| 70 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids.to('cpu').numpy()[0])
|
| 71 |
+
|
| 72 |
+
# --- Logika dari Notebook (menggabungkan token '##') ---
|
| 73 |
+
new_tokens, new_labels = [], []
|
| 74 |
+
for token, label_idx in zip(tokens, label_indices[0]):
|
| 75 |
+
# Abaikan token spesial [CLS] dan [SEP]
|
| 76 |
+
if token in ['[CLS]', '[SEP]']:
|
| 77 |
+
continue
|
| 78 |
+
|
| 79 |
+
if token.startswith("##"):
|
| 80 |
+
# Jika token adalah BPE (sub-word), gabungkan dengan token sebelumnya
|
| 81 |
+
if new_tokens:
|
| 82 |
+
new_tokens[-1] = new_tokens[-1] + token[2:]
|
| 83 |
+
else:
|
| 84 |
+
# Jika token utuh, tambahkan token dan labelnya
|
| 85 |
+
new_labels.append(tag_values[label_idx])
|
| 86 |
+
new_tokens.append(token)
|
| 87 |
+
|
| 88 |
+
return list(zip(new_tokens, new_labels))
|
| 89 |
+
|
| 90 |
+
# --- FUNGSI UNTUK TAMPILAN UI ---
|
| 91 |
+
def display_highlighted_text(results):
|
| 92 |
+
"""
|
| 93 |
+
Menampilkan hasil sebagai teks yang di-highlight (UI Menarik)
|
| 94 |
+
"""
|
| 95 |
+
# Definisikan warna untuk entitas.
|
| 96 |
+
# Anda bisa tambahkan jika punya banyak tipe entitas.
|
| 97 |
+
# Di sini kita buat simpel: semua entitas akan berwarna biru muda.
|
| 98 |
+
STYLE = """
|
| 99 |
+
<mark style="
|
| 100 |
+
background-color: #89CFF0;
|
| 101 |
+
padding: 2px 5px;
|
| 102 |
+
margin: 0px 3px;
|
| 103 |
+
border-radius: 5px;
|
| 104 |
+
border: 1px solid #008ECC;
|
| 105 |
+
">
|
| 106 |
+
{token}
|
| 107 |
+
<sub style="
|
| 108 |
+
font-size: 0.7em;
|
| 109 |
+
opacity: 0.7;
|
| 110 |
+
margin-left: 3px;
|
| 111 |
+
vertical-align: sub;
|
| 112 |
+
">
|
| 113 |
+
{label}
|
| 114 |
+
</sub>
|
| 115 |
+
</mark>
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
html_output = '<div style="font-size: 1.1em; line-height: 2.0;">'
|
| 119 |
+
|
| 120 |
+
for token, label in results:
|
| 121 |
+
if label == "O":
|
| 122 |
+
# Jika 'O' (Outside), tampilkan sebagai teks biasa
|
| 123 |
+
html_output += f" {token}"
|
| 124 |
+
else:
|
| 125 |
+
# Jika entitas, tampilkan dengan highlight
|
| 126 |
+
html_output += STYLE.format(token=token, label=label)
|
| 127 |
+
|
| 128 |
+
html_output += "</div>"
|
| 129 |
+
st.markdown(html_output, unsafe_allow_html=True)
|
| 130 |
+
|
| 131 |
+
# --- FUNGSI UTAMA APLIKASI ---
|
| 132 |
+
def main():
|
| 133 |
+
# Konfigurasi halaman
|
| 134 |
+
st.set_page_config(
|
| 135 |
+
page_title="Aplikasi NER Medis",
|
| 136 |
+
page_icon="🧪",
|
| 137 |
+
layout="wide"
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# --- Header ---
|
| 141 |
+
st.title("🧪 Aplikasi Named Entity Recognition (NER) dengan BERT")
|
| 142 |
+
st.markdown("Aplikasi ini menggunakan model BERT yang di-fine-tune untuk mengenali entitas dari teks medis.")
|
| 143 |
+
|
| 144 |
+
# --- Memuat Model ---
|
| 145 |
+
# Gunakan st.spinner agar terlihat loading saat model dimuat
|
| 146 |
+
with st.spinner("Memuat model... Ini mungkin perlu beberapa saat..."):
|
| 147 |
+
model, tokenizer, tag_values, device = load_model_and_tokenizer(MODEL_DIR)
|
| 148 |
+
|
| 149 |
+
# Hanya lanjutkan jika model berhasil dimuat
|
| 150 |
+
if model and tokenizer and tag_values and device:
|
| 151 |
+
|
| 152 |
+
st.success("Model berhasil dimuat!")
|
| 153 |
+
|
| 154 |
+
# --- Area Input ---
|
| 155 |
+
st.header("Analisis Teks Anda")
|
| 156 |
+
|
| 157 |
+
# Contoh teks diambil dari notebook Anda
|
| 158 |
+
default_text = (
|
| 159 |
+
"Pasteurellosis in japanese quail (Coturnix coturnix japonica) caused by Pasteurella multocida multocida A:4. \n\n"
|
| 160 |
+
"Evaluation of transdermal penetration enhancers using a novel skin alternative. \n\n"
|
| 161 |
+
"A novel alternative to animal skin models was developed in order to aid in the screening of transdermal penetration enhancer."
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
user_input = st.text_area("Masukkan teks untuk dianalisis di sini:", default_text, height=150)
|
| 165 |
+
|
| 166 |
+
if st.button("🚀 Analisis Teks", type="primary"):
|
| 167 |
+
if user_input:
|
| 168 |
+
# Tampilkan spinner saat proses analisis
|
| 169 |
+
with st.spinner("Menganalisis teks..."):
|
| 170 |
+
results = predict(user_input, model, tokenizer, tag_values, device)
|
| 171 |
+
|
| 172 |
+
st.subheader("Hasil Analisis (Teks dengan Highlight)")
|
| 173 |
+
display_highlighted_text(results)
|
| 174 |
+
|
| 175 |
+
# --- Tampilkan Data Mentah di dalam Expander ---
|
| 176 |
+
with st.expander("Lihat Data Mentah (Token & Tag)"):
|
| 177 |
+
# Filter hanya token yang BUKAN 'O' untuk data mentah
|
| 178 |
+
entities_only = [res for res in results if res[1] != 'O']
|
| 179 |
+
if entities_only:
|
| 180 |
+
df = pd.DataFrame(entities_only, columns=["Token", "Tag"])
|
| 181 |
+
st.dataframe(df, use_container_width=True)
|
| 182 |
+
else:
|
| 183 |
+
st.info("Tidak ada entitas yang ditemukan.")
|
| 184 |
+
else:
|
| 185 |
+
st.warning("Silakan masukkan teks terlebih dahulu.")
|
| 186 |
+
|
| 187 |
+
# Menjalankan aplikasi
|
| 188 |
+
if __name__ == "__main__":
|
| 189 |
+
main()
|
.history/app_20251026141833.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import BertTokenizer, BertForTokenClassification
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
import pandas as pd # Kita tambahkan pandas untuk menampilkan tabel
|
| 8 |
+
|
| 9 |
+
# --- KONFIGURASI ---
|
| 10 |
+
# Pastikan nama folder ini SAMA PERSIS dengan folder model Anda
|
| 11 |
+
MODEL_DIR = "./fine_tuned_bert_ner"
|
| 12 |
+
|
| 13 |
+
# --- FUNGSI UNTUK MEMUAT MODEL (VERSI PERBAIKAN) ---
|
| 14 |
+
# @st.cache_resource akan menyimpan model di cache agar tidak di-load ulang
|
| 15 |
+
# Ini adalah fungsi yang sudah diperbaiki untuk membaca 'id2label' dari config
|
| 16 |
+
@st.cache_resource
|
| 17 |
+
def load_model_and_tokenizer(model_dir):
|
| 18 |
+
"""
|
| 19 |
+
Memuat model, tokenizer, dan daftar tag dari direktori yang disimpan.
|
| 20 |
+
"""
|
| 21 |
+
try:
|
| 22 |
+
# Muat model dan tokenizer
|
| 23 |
+
model = BertForTokenClassification.from_pretrained(model_dir)
|
| 24 |
+
tokenizer = BertTokenizer.from_pretrained(model_dir)
|
| 25 |
+
|
| 26 |
+
# --- PERBAIKAN DARI ERROR SEBELUMNYA ---
|
| 27 |
+
# Kita tidak lagi mencari 'tag_values.json'.
|
| 28 |
+
# Sebagai gantinya, kita membaca 'id2label' dari file config.json model.
|
| 29 |
+
# Ini dimuat secara otomatis ke dalam 'model.config'
|
| 30 |
+
|
| 31 |
+
if not hasattr(model.config, 'id2label'):
|
| 32 |
+
st.error("Error: 'id2label' tidak ditemukan di dalam config.json model.")
|
| 33 |
+
return None, None, None, None
|
| 34 |
+
|
| 35 |
+
# model.config.id2label adalah dictionary: {0: "O", 1: "B-indications", ...}
|
| 36 |
+
# Kita ubah menjadi list: ["O", "B-indications", ...]
|
| 37 |
+
# Ini penting agar kita bisa mapping output (angka) kembali ke label (teks)
|
| 38 |
+
|
| 39 |
+
# --- INI ADALAH PERBAIKAN UNTUK KeyError: '0' ---
|
| 40 |
+
# Mengubah str(i) menjadi i, karena keys-nya adalah integer
|
| 41 |
+
tag_values = [model.config.id2label[i] for i in range(len(model.config.id2label))]
|
| 42 |
+
|
| 43 |
+
# Tentukan device (GPU jika ada, jika tidak CPU)
|
| 44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 45 |
+
model.to(device)
|
| 46 |
+
model.eval() # Set model ke mode evaluasi (penting untuk prediksi)
|
| 47 |
+
|
| 48 |
+
return model, tokenizer, tag_values, device
|
| 49 |
+
|
| 50 |
+
except KeyError as e:
|
| 51 |
+
# Tangani KeyError secara spesifik
|
| 52 |
+
st.error(f"Error saat memuat model (KeyError): {e}")
|
| 53 |
+
st.error("Ini biasanya terjadi jika 'id2label' di config.json tidak dimulai dari 0 atau key-nya bukan integer.")
|
| 54 |
+
return None, None, None, None
|
| 55 |
+
except Exception as e:
|
| 56 |
+
# Tangani error umum lainnya
|
| 57 |
+
st.error(f"Error saat memuat model: {e}")
|
| 58 |
+
st.error(f"Pastikan folder '{model_dir}' ada di direktori yang sama dengan app.py")
|
| 59 |
+
return None, None, None, None
|
| 60 |
+
|
| 61 |
+
# --- FUNGSI UNTUK PREDIKSI ---
|
| 62 |
+
def predict(text, model, tokenizer, tag_values, device):
|
| 63 |
+
"""
|
| 64 |
+
Melakukan prediksi NER pada teks input.
|
| 65 |
+
"""
|
| 66 |
+
# Tokenisasi teks input
|
| 67 |
+
tokenized_sentence = tokenizer.encode(text, truncation=True, max_length=512)
|
| 68 |
+
input_ids = torch.tensor([tokenized_sentence]).to(device)
|
| 69 |
+
|
| 70 |
+
# Lakukan prediksi
|
| 71 |
+
with torch.no_grad():
|
| 72 |
+
output = model(input_ids)
|
| 73 |
+
|
| 74 |
+
# Ambil label dengan skor tertinggi (argmax)
|
| 75 |
+
label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2)
|
| 76 |
+
|
| 77 |
+
# Ubah ID token kembali menjadi token (kata)
|
| 78 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids.to('cpu').numpy()[0])
|
| 79 |
+
|
| 80 |
+
# --- Logika dari Notebook (menggabungkan token '##') ---
|
| 81 |
+
new_tokens, new_labels = [], []
|
| 82 |
+
for token, label_idx in zip(tokens, label_indices[0]):
|
| 83 |
+
# Abaikan token spesial [CLS] dan [SEP]
|
| 84 |
+
if token in ['[CLS]', '[SEP]']:
|
| 85 |
+
continue
|
| 86 |
+
|
| 87 |
+
if token.startswith("##"):
|
| 88 |
+
# Jika token adalah BPE (sub-word), gabungkan dengan token sebelumnya
|
| 89 |
+
if new_tokens:
|
| 90 |
+
new_tokens[-1] = new_tokens[-1] + token[2:]
|
| 91 |
+
else:
|
| 92 |
+
# Jika token utuh, tambahkan token dan labelnya
|
| 93 |
+
new_labels.append(tag_values[label_idx])
|
| 94 |
+
new_tokens.append(token)
|
| 95 |
+
|
| 96 |
+
return list(zip(new_tokens, new_labels))
|
| 97 |
+
|
| 98 |
+
# --- FUNGSI UNTUK TAMPILAN UI ---
|
| 99 |
+
def display_highlighted_text(results):
|
| 100 |
+
"""
|
| 101 |
+
Menampilkan hasil sebagai teks yang di-highlight (UI Menarik)
|
| 102 |
+
"""
|
| 103 |
+
# Definisikan warna untuk entitas.
|
| 104 |
+
# Anda bisa tambahkan jika punya banyak tipe entitas.
|
| 105 |
+
# Di sini kita buat simpel: semua entitas akan berwarna biru muda.
|
| 106 |
+
STYLE = """
|
| 107 |
+
<mark style="
|
| 108 |
+
background-color: #89CFF0;
|
| 109 |
+
padding: 2px 5px;
|
| 110 |
+
margin: 0px 3px;
|
| 111 |
+
border-radius: 5px;
|
| 112 |
+
border: 1px solid #008ECC;
|
| 113 |
+
">
|
| 114 |
+
{token}
|
| 115 |
+
<sub style="
|
| 116 |
+
font-size: 0.7em;
|
| 117 |
+
opacity: 0.7;
|
| 118 |
+
margin-left: 3px;
|
| 119 |
+
vertical-align: sub;
|
| 120 |
+
">
|
| 121 |
+
{label}
|
| 122 |
+
</sub>
|
| 123 |
+
</mark>
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
html_output = '<div style="font-size: 1.1em; line-height: 2.0;">'
|
| 127 |
+
|
| 128 |
+
for token, label in results:
|
| 129 |
+
if label == "O":
|
| 130 |
+
# Jika 'O' (Outside), tampilkan sebagai teks biasa
|
| 131 |
+
html_output += f" {token}"
|
| 132 |
+
else:
|
| 133 |
+
# Jika entitas, tampilkan dengan highlight
|
| 134 |
+
html_output += STYLE.format(token=token, label=label)
|
| 135 |
+
|
| 136 |
+
html_output += "</div>"
|
| 137 |
+
st.markdown(html_output, unsafe_allow_html=True)
|
| 138 |
+
|
| 139 |
+
# --- FUNGSI UTAMA APLIKASI ---
|
| 140 |
+
def main():
|
| 141 |
+
# Konfigurasi halaman
|
| 142 |
+
st.set_page_config(
|
| 143 |
+
page_title="Aplikasi NER Medis",
|
| 144 |
+
page_icon="🧪",
|
| 145 |
+
layout="wide"
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# --- Header ---
|
| 149 |
+
st.title("🧪 Aplikasi Named Entity Recognition (NER) dengan BERT")
|
| 150 |
+
st.markdown("Aplikasi ini menggunakan model BERT yang di-fine-tune untuk mengenali entitas dari teks medis (berdasarkan notebook Anda).")
|
| 151 |
+
|
| 152 |
+
# --- Memuat Model ---
|
| 153 |
+
# Gunakan st.spinner agar terlihat loading saat model dimuat
|
| 154 |
+
with st.spinner("Memuat model... Ini mungkin perlu beberapa saat..."):
|
| 155 |
+
model, tokenizer, tag_values, device = load_model_and_tokenizer(MODEL_DIR)
|
| 156 |
+
|
| 157 |
+
# Hanya lanjutkan jika model berhasil dimuat
|
| 158 |
+
if model and tokenizer and tag_values and device:
|
| 159 |
+
|
| 160 |
+
st.success("Model berhasil dimuat!")
|
| 161 |
+
|
| 162 |
+
# --- Area Input ---
|
| 163 |
+
st.header("Analisis Teks Anda")
|
| 164 |
+
|
| 165 |
+
# Contoh teks diambil dari notebook Anda
|
| 166 |
+
default_text = (
|
| 167 |
+
"Pasteurellosis in japanese quail (Coturnix coturnix japonica) caused by Pasteurella multocida multocida A:4. \n\n"
|
| 168 |
+
"Evaluation of transdermal penetration enhancers using a novel skin alternative. \n\n"
|
| 169 |
+
"A novel alternative to animal skin models was developed in order to aid in the screening of transdermal penetration enhancer."
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
user_input = st.text_area("Masukkan teks untuk dianalisis di sini:", default_text, height=150)
|
| 173 |
+
|
| 174 |
+
if st.button("🚀 Analisis Teks", type="primary"):
|
| 175 |
+
if user_input:
|
| 176 |
+
# Tampilkan spinner saat proses analisis
|
| 177 |
+
with st.spinner("Menganalisis teks..."):
|
| 178 |
+
results = predict(user_input, model, tokenizer, tag_values, device)
|
| 179 |
+
|
| 180 |
+
st.subheader("Hasil Analisis (Teks dengan Highlight)")
|
| 181 |
+
display_highlighted_text(results)
|
| 182 |
+
|
| 183 |
+
# --- Tampilkan Data Mentah di dalam Expander ---
|
| 184 |
+
with st.expander("Lihat Data Mentah (Token & Tag)"):
|
| 185 |
+
# Filter hanya token yang BUKAN 'O' untuk data mentah
|
| 186 |
+
entities_only = [res for res in results if res[1] != 'O']
|
| 187 |
+
if entities_only:
|
| 188 |
+
df = pd.DataFrame(entities_only, columns=["Token", "Tag"])
|
| 189 |
+
st.dataframe(df, use_container_width=True)
|
| 190 |
+
else:
|
| 191 |
+
st.info("Tidak ada entitas yang ditemukan.")
|
| 192 |
+
else:
|
| 193 |
+
st.warning("Silakan masukkan teks terlebih dahulu.")
|
| 194 |
+
|
| 195 |
+
# Menjalankan aplikasi
|
| 196 |
+
if __name__ == "__main__":
|
| 197 |
+
main()
|
| 198 |
+
|
.history/app_20251026141844.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import BertTokenizer, BertForTokenClassification
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
import pandas as pd # Kita tambahkan pandas untuk menampilkan tabel
|
| 8 |
+
|
| 9 |
+
# --- KONFIGURASI ---
|
| 10 |
+
# Pastikan nama folder ini SAMA PERSIS dengan folder model Anda
|
| 11 |
+
MODEL_DIR = "./fine_tuned_bert_ner"
|
| 12 |
+
|
| 13 |
+
# --- FUNGSI UNTUK MEMUAT MODEL (VERSI PERBAIKAN) ---
|
| 14 |
+
# @st.cache_resource akan menyimpan model di cache agar tidak di-load ulang
|
| 15 |
+
# Ini adalah fungsi yang sudah diperbaiki untuk membaca 'id2label' dari config
|
| 16 |
+
@st.cache_resource
|
| 17 |
+
def load_model_and_tokenizer(model_dir):
|
| 18 |
+
"""
|
| 19 |
+
Memuat model, tokenizer, dan daftar tag dari direktori yang disimpan.
|
| 20 |
+
"""
|
| 21 |
+
try:
|
| 22 |
+
# Muat model dan tokenizer
|
| 23 |
+
model = BertForTokenClassification.from_pretrained(model_dir)
|
| 24 |
+
tokenizer = BertTokenizer.from_pretrained(model_dir)
|
| 25 |
+
|
| 26 |
+
# --- PERBAIKAN DARI ERROR SEBELUMNYA ---
|
| 27 |
+
# Kita tidak lagi mencari 'tag_values.json'.
|
| 28 |
+
# Sebagai gantinya, kita membaca 'id2label' dari file config.json model.
|
| 29 |
+
# Ini dimuat secara otomatis ke dalam 'model.config'
|
| 30 |
+
|
| 31 |
+
if not hasattr(model.config, 'id2label'):
|
| 32 |
+
st.error("Error: 'id2label' tidak ditemukan di dalam config.json model.")
|
| 33 |
+
return None, None, None, None
|
| 34 |
+
|
| 35 |
+
# model.config.id2label adalah dictionary: {0: "O", 1: "B-indications", ...}
|
| 36 |
+
# Kita ubah menjadi list: ["O", "B-indications", ...]
|
| 37 |
+
# Ini penting agar kita bisa mapping output (angka) kembali ke label (teks)
|
| 38 |
+
|
| 39 |
+
# --- INI ADALAH PERBAIKAN UNTUK KeyError: '0' ---
|
| 40 |
+
# Mengubah str(i) menjadi i, karena keys-nya adalah integer
|
| 41 |
+
tag_values = [model.config.id2label[i] for i in range(len(model.config.id2label))]
|
| 42 |
+
|
| 43 |
+
# Tentukan device (GPU jika ada, jika tidak CPU)
|
| 44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 45 |
+
model.to(device)
|
| 46 |
+
model.eval() # Set model ke mode evaluasi (penting untuk prediksi)
|
| 47 |
+
|
| 48 |
+
return model, tokenizer, tag_values, device
|
| 49 |
+
|
| 50 |
+
except KeyError as e:
|
| 51 |
+
# Tangani KeyError secara spesifik
|
| 52 |
+
st.error(f"Error saat memuat model (KeyError): {e}")
|
| 53 |
+
st.error("Ini biasanya terjadi jika 'id2label' di config.json tidak dimulai dari 0 atau key-nya bukan integer.")
|
| 54 |
+
return None, None, None, None
|
| 55 |
+
except Exception as e:
|
| 56 |
+
# Tangani error umum lainnya
|
| 57 |
+
st.error(f"Error saat memuat model: {e}")
|
| 58 |
+
st.error(f"Pastikan folder '{model_dir}' ada di direktori yang sama dengan app.py")
|
| 59 |
+
return None, None, None, None
|
| 60 |
+
|
| 61 |
+
# --- FUNGSI UNTUK PREDIKSI ---
|
| 62 |
+
def predict(text, model, tokenizer, tag_values, device):
|
| 63 |
+
"""
|
| 64 |
+
Melakukan prediksi NER pada teks input.
|
| 65 |
+
"""
|
| 66 |
+
# Tokenisasi teks input
|
| 67 |
+
tokenized_sentence = tokenizer.encode(text, truncation=True, max_length=512)
|
| 68 |
+
input_ids = torch.tensor([tokenized_sentence]).to(device)
|
| 69 |
+
|
| 70 |
+
# Lakukan prediksi
|
| 71 |
+
with torch.no_grad():
|
| 72 |
+
output = model(input_ids)
|
| 73 |
+
|
| 74 |
+
# Ambil label dengan skor tertinggi (argmax)
|
| 75 |
+
label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2)
|
| 76 |
+
|
| 77 |
+
# Ubah ID token kembali menjadi token (kata)
|
| 78 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids.to('cpu').numpy()[0])
|
| 79 |
+
|
| 80 |
+
# --- Logika dari Notebook (menggabungkan token '##') ---
|
| 81 |
+
new_tokens, new_labels = [], []
|
| 82 |
+
for token, label_idx in zip(tokens, label_indices[0]):
|
| 83 |
+
# Abaikan token spesial [CLS] dan [SEP]
|
| 84 |
+
if token in ['[CLS]', '[SEP]']:
|
| 85 |
+
continue
|
| 86 |
+
|
| 87 |
+
if token.startswith("##"):
|
| 88 |
+
# Jika token adalah BPE (sub-word), gabungkan dengan token sebelumnya
|
| 89 |
+
if new_tokens:
|
| 90 |
+
new_tokens[-1] = new_tokens[-1] + token[2:]
|
| 91 |
+
else:
|
| 92 |
+
# Jika token utuh, tambahkan token dan labelnya
|
| 93 |
+
new_labels.append(tag_values[label_idx])
|
| 94 |
+
new_tokens.append(token)
|
| 95 |
+
|
| 96 |
+
return list(zip(new_tokens, new_labels))
|
| 97 |
+
|
| 98 |
+
# --- FUNGSI UNTUK TAMPILAN UI ---
|
| 99 |
+
def display_highlighted_text(results):
|
| 100 |
+
"""
|
| 101 |
+
Menampilkan hasil sebagai teks yang di-highlight (UI Menarik)
|
| 102 |
+
"""
|
| 103 |
+
# Definisikan warna untuk entitas.
|
| 104 |
+
# Anda bisa tambahkan jika punya banyak tipe entitas.
|
| 105 |
+
# Di sini kita buat simpel: semua entitas akan berwarna biru muda.
|
| 106 |
+
STYLE = """
|
| 107 |
+
<mark style="
|
| 108 |
+
background-color: #89CFF0;
|
| 109 |
+
padding: 2px 5px;
|
| 110 |
+
margin: 0px 3px;
|
| 111 |
+
border-radius: 5px;
|
| 112 |
+
border: 1px solid #008ECC;
|
| 113 |
+
">
|
| 114 |
+
{token}
|
| 115 |
+
<sub style="
|
| 116 |
+
font-size: 0.7em;
|
| 117 |
+
opacity: 0.7;
|
| 118 |
+
margin-left: 3px;
|
| 119 |
+
vertical-align: sub;
|
| 120 |
+
">
|
| 121 |
+
{label}
|
| 122 |
+
</sub>
|
| 123 |
+
</mark>
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
html_output = '<div style="font-size: 1.1em; line-height: 2.0;">'
|
| 127 |
+
|
| 128 |
+
for token, label in results:
|
| 129 |
+
if label == "O":
|
| 130 |
+
# Jika 'O' (Outside), tampilkan sebagai teks biasa
|
| 131 |
+
html_output += f" {token}"
|
| 132 |
+
else:
|
| 133 |
+
# Jika entitas, tampilkan dengan highlight
|
| 134 |
+
html_output += STYLE.format(token=token, label=label)
|
| 135 |
+
|
| 136 |
+
html_output += "</div>"
|
| 137 |
+
st.markdown(html_output, unsafe_allow_html=True)
|
| 138 |
+
|
| 139 |
+
# --- FUNGSI UTAMA APLIKASI ---
|
| 140 |
+
def main():
|
| 141 |
+
# Konfigurasi halaman
|
| 142 |
+
st.set_page_config(
|
| 143 |
+
page_title="Aplikasi NER Medis",
|
| 144 |
+
page_icon="🧪",
|
| 145 |
+
layout="wide"
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# --- Header ---
|
| 149 |
+
st.title("🧪 Aplikasi Named Entity Recognition (NER) dengan BERT")
|
| 150 |
+
st.markdown("Aplikasi ini menggunakan model BERT yang di-fine-tune untuk mengenali entitas dari teks medis.")
|
| 151 |
+
|
| 152 |
+
# --- Memuat Model ---
|
| 153 |
+
# Gunakan st.spinner agar terlihat loading saat model dimuat
|
| 154 |
+
with st.spinner("Memuat model... Ini mungkin perlu beberapa saat..."):
|
| 155 |
+
model, tokenizer, tag_values, device = load_model_and_tokenizer(MODEL_DIR)
|
| 156 |
+
|
| 157 |
+
# Hanya lanjutkan jika model berhasil dimuat
|
| 158 |
+
if model and tokenizer and tag_values and device:
|
| 159 |
+
|
| 160 |
+
st.success("Model berhasil dimuat!")
|
| 161 |
+
|
| 162 |
+
# --- Area Input ---
|
| 163 |
+
st.header("Analisis Teks Anda")
|
| 164 |
+
|
| 165 |
+
# Contoh teks diambil dari notebook Anda
|
| 166 |
+
default_text = (
|
| 167 |
+
"Pasteurellosis in japanese quail (Coturnix coturnix japonica) caused by Pasteurella multocida multocida A:4. \n\n"
|
| 168 |
+
"Evaluation of transdermal penetration enhancers using a novel skin alternative. \n\n"
|
| 169 |
+
"A novel alternative to animal skin models was developed in order to aid in the screening of transdermal penetration enhancer."
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
user_input = st.text_area("Masukkan teks untuk dianalisis di sini:", default_text, height=150)
|
| 173 |
+
|
| 174 |
+
if st.button("🚀 Analisis Teks", type="primary"):
|
| 175 |
+
if user_input:
|
| 176 |
+
# Tampilkan spinner saat proses analisis
|
| 177 |
+
with st.spinner("Menganalisis teks..."):
|
| 178 |
+
results = predict(user_input, model, tokenizer, tag_values, device)
|
| 179 |
+
|
| 180 |
+
st.subheader("Hasil Analisis (Teks dengan Highlight)")
|
| 181 |
+
display_highlighted_text(results)
|
| 182 |
+
|
| 183 |
+
# --- Tampilkan Data Mentah di dalam Expander ---
|
| 184 |
+
with st.expander("Lihat Data Mentah (Token & Tag)"):
|
| 185 |
+
# Filter hanya token yang BUKAN 'O' untuk data mentah
|
| 186 |
+
entities_only = [res for res in results if res[1] != 'O']
|
| 187 |
+
if entities_only:
|
| 188 |
+
df = pd.DataFrame(entities_only, columns=["Token", "Tag"])
|
| 189 |
+
st.dataframe(df, use_container_width=True)
|
| 190 |
+
else:
|
| 191 |
+
st.info("Tidak ada entitas yang ditemukan.")
|
| 192 |
+
else:
|
| 193 |
+
st.warning("Silakan masukkan teks terlebih dahulu.")
|
| 194 |
+
|
| 195 |
+
# Menjalankan aplikasi
|
| 196 |
+
if __name__ == "__main__":
|
| 197 |
+
main()
|
| 198 |
+
|
.history/app_20251026142055.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import BertTokenizer, BertForTokenClassification
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
import pandas as pd # Kita tambahkan pandas untuk menampilkan tabel
|
| 8 |
+
|
| 9 |
+
# --- KONFIGURASI ---
|
| 10 |
+
# Pastikan nama folder ini SAMA PERSIS dengan folder model Anda
|
| 11 |
+
MODEL_DIR = "./fine_tuned_bert_ner"
|
| 12 |
+
|
| 13 |
+
# --- FUNGSI UNTUK MEMUAT MODEL (VERSI PERBAIKAN) ---
|
| 14 |
+
# @st.cache_resource akan menyimpan model di cache agar tidak di-load ulang
|
| 15 |
+
# Ini adalah fungsi yang sudah diperbaiki untuk membaca 'id2label' dari config
|
| 16 |
+
@st.cache_resource
|
| 17 |
+
def load_model_and_tokenizer(model_dir):
|
| 18 |
+
"""
|
| 19 |
+
Memuat model, tokenizer, dan daftar tag dari direktori yang disimpan.
|
| 20 |
+
"""
|
| 21 |
+
try:
|
| 22 |
+
# Muat model dan tokenizer
|
| 23 |
+
model = BertForTokenClassification.from_pretrained(model_dir)
|
| 24 |
+
tokenizer = BertTokenizer.from_pretrained(model_dir)
|
| 25 |
+
|
| 26 |
+
# --- PERBAIKAN DARI ERROR SEBELUMNYA ---
|
| 27 |
+
# Kita tidak lagi mencari 'tag_values.json'.
|
| 28 |
+
# Sebagai gantinya, kita membaca 'id2label' dari file config.json model.
|
| 29 |
+
# Ini dimuat secara otomatis ke dalam 'model.config'
|
| 30 |
+
|
| 31 |
+
if not hasattr(model.config, 'id2label'):
|
| 32 |
+
st.error("Error: 'id2label' tidak ditemukan di dalam config.json model.")
|
| 33 |
+
return None, None, None, None
|
| 34 |
+
|
| 35 |
+
# model.config.id2label adalah dictionary: {0: "O", 1: "B-indications", ...}
|
| 36 |
+
# Kita ubah menjadi list: ["O", "B-indications", ...]
|
| 37 |
+
# Ini penting agar kita bisa mapping output (angka) kembali ke label (teks)
|
| 38 |
+
|
| 39 |
+
# --- INI ADALAH PERBAIKAN UNTUK KeyError: '0' ---
|
| 40 |
+
# Mengubah str(i) menjadi i, karena keys-nya adalah integer
|
| 41 |
+
tag_values = [model.config.id2label[i] for i in range(len(model.config.id2label))]
|
| 42 |
+
|
| 43 |
+
# Tentukan device (GPU jika ada, jika tidak CPU)
|
| 44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 45 |
+
model.to(device)
|
| 46 |
+
model.eval() # Set model ke mode evaluasi (penting untuk prediksi)
|
| 47 |
+
|
| 48 |
+
return model, tokenizer, tag_values, device
|
| 49 |
+
|
| 50 |
+
except KeyError as e:
|
| 51 |
+
# Tangani KeyError secara spesifik
|
| 52 |
+
st.error(f"Error saat memuat model (KeyError): {e}")
|
| 53 |
+
st.error("Ini biasanya terjadi jika 'id2label' di config.json tidak dimulai dari 0 atau key-nya bukan integer.")
|
| 54 |
+
return None, None, None, None
|
| 55 |
+
except Exception as e:
|
| 56 |
+
# Tangani error umum lainnya
|
| 57 |
+
st.error(f"Error saat memuat model: {e}")
|
| 58 |
+
st.error(f"Pastikan folder '{model_dir}' ada di direktori yang sama dengan app.py")
|
| 59 |
+
return None, None, None, None
|
| 60 |
+
|
| 61 |
+
# --- FUNGSI UNTUK PREDIKSI ---
|
| 62 |
+
def predict(text, model, tokenizer, tag_values, device):
|
| 63 |
+
"""
|
| 64 |
+
Melakukan prediksi NER pada teks input.
|
| 65 |
+
"""
|
| 66 |
+
# Tokenisasi teks input
|
| 67 |
+
tokenized_sentence = tokenizer.encode(text, truncation=True, max_length=512)
|
| 68 |
+
input_ids = torch.tensor([tokenized_sentence]).to(device)
|
| 69 |
+
|
| 70 |
+
# Lakukan prediksi
|
| 71 |
+
with torch.no_grad():
|
| 72 |
+
output = model(input_ids)
|
| 73 |
+
|
| 74 |
+
# Ambil label dengan skor tertinggi (argmax)
|
| 75 |
+
label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2)
|
| 76 |
+
|
| 77 |
+
# Ubah ID token kembali menjadi token (kata)
|
| 78 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids.to('cpu').numpy()[0])
|
| 79 |
+
|
| 80 |
+
# --- Logika dari Notebook (menggabungkan token '##') ---
|
| 81 |
+
new_tokens, new_labels = [], []
|
| 82 |
+
for token, label_idx in zip(tokens, label_indices[0]):
|
| 83 |
+
# Abaikan token spesial [CLS] dan [SEP]
|
| 84 |
+
if token in ['[CLS]', '[SEP]']:
|
| 85 |
+
continue
|
| 86 |
+
|
| 87 |
+
if token.startswith("##"):
|
| 88 |
+
# Jika token adalah BPE (sub-word), gabungkan dengan token sebelumnya
|
| 89 |
+
if new_tokens:
|
| 90 |
+
new_tokens[-1] = new_tokens[-1] + token[2:]
|
| 91 |
+
else:
|
| 92 |
+
# Jika token utuh, tambahkan token dan labelnya
|
| 93 |
+
new_labels.append(tag_values[label_idx])
|
| 94 |
+
new_tokens.append(token)
|
| 95 |
+
|
| 96 |
+
return list(zip(new_tokens, new_labels))
|
| 97 |
+
|
| 98 |
+
# --- FUNGSI UNTUK TAMPILAN UI ---
|
| 99 |
+
def display_highlighted_text(results):
|
| 100 |
+
"""
|
| 101 |
+
Menampilkan hasil sebagai teks yang di-highlight (UI Menarik)
|
| 102 |
+
"""
|
| 103 |
+
# Definisikan warna untuk entitas.
|
| 104 |
+
# Anda bisa tambahkan jika punya banyak tipe entitas.
|
| 105 |
+
# Di sini kita buat simpel: semua entitas akan berwarna biru muda.
|
| 106 |
+
STYLE = """
|
| 107 |
+
<mark style="
|
| 108 |
+
background-color: #89CFF0;
|
| 109 |
+
padding: 2px 5px;
|
| 110 |
+
margin: 0px 3px;
|
| 111 |
+
border-radius: 5px;
|
| 112 |
+
border: 1px solid #008ECC;
|
| 113 |
+
">
|
| 114 |
+
{token}
|
| 115 |
+
<sub style="
|
| 116 |
+
font-size: 0.7em;
|
| 117 |
+
opacity: 0.7;
|
| 118 |
+
margin-left: 3px;
|
| 119 |
+
vertical-align: sub;
|
| 120 |
+
">
|
| 121 |
+
{label}
|
| 122 |
+
</sub>
|
| 123 |
+
</mark>
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
html_output = '<div style="font-size: 1.1em; line-height: 2.0;">'
|
| 127 |
+
|
| 128 |
+
for token, label in results:
|
| 129 |
+
if label == "O":
|
| 130 |
+
# Jika 'O' (Outside), tampilkan sebagai teks biasa
|
| 131 |
+
html_output += f" {token}"
|
| 132 |
+
else:
|
| 133 |
+
# Jika entitas, tampilkan dengan highlight
|
| 134 |
+
html_output += STYLE.format(token=token, label=label)
|
| 135 |
+
|
| 136 |
+
html_output += "</div>"
|
| 137 |
+
|
| 138 |
+
# --- INI ADALAH PERBAIKANNYA ---
|
| 139 |
+
# Tambahkan unsafe_allow_html=True agar Streamlit merender HTML-nya
|
| 140 |
+
st.markdown(html_output, unsafe_allow_html=True)
|
| 141 |
+
|
| 142 |
+
# --- FUNGSI UTAMA APLIKASI ---
|
| 143 |
+
def main():
|
| 144 |
+
# Konfigurasi halaman
|
| 145 |
+
st.set_page_config(
|
| 146 |
+
page_title="Aplikasi NER Medis",
|
| 147 |
+
page_icon="🧪",
|
| 148 |
+
layout="wide"
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
# --- Header ---
|
| 152 |
+
st.title("🧪 Aplikasi Named Entity Recognition (NER) dengan BERT")
|
| 153 |
+
st.markdown("Aplikasi ini menggunakan model BERT yang di-fine-tune untuk mengenali entitas dari teks medis (berdasarkan notebook Anda).")
|
| 154 |
+
|
| 155 |
+
# --- Memuat Model ---
|
| 156 |
+
# Gunakan st.spinner agar terlihat loading saat model dimuat
|
| 157 |
+
with st.spinner("Memuat model... Ini mungkin perlu beberapa saat..."):
|
| 158 |
+
model, tokenizer, tag_values, device = load_model_and_tokenizer(MODEL_DIR)
|
| 159 |
+
|
| 160 |
+
# Hanya lanjutkan jika model berhasil dimuat
|
| 161 |
+
if model and tokenizer and tag_values and device:
|
| 162 |
+
|
| 163 |
+
st.success("Model berhasil dimuat!")
|
| 164 |
+
|
| 165 |
+
# --- Area Input ---
|
| 166 |
+
st.header("Analisis Teks Anda")
|
| 167 |
+
|
| 168 |
+
# Contoh teks diambil dari notebook Anda
|
| 169 |
+
default_text = (
|
| 170 |
+
"Pasteurellosis in japanese quail (Coturnix coturnix japonica) caused by Pasteurella multocida multocida A:4. \n\n"
|
| 171 |
+
"Evaluation of transdermal penetration enhancers using a novel skin alternative. \n\n"
|
| 172 |
+
"A novel alternative to animal skin models was developed in order to aid in the screening of transdermal penetration enhancer."
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
user_input = st.text_area("Masukkan teks untuk dianalisis di sini:", default_text, height=150)
|
| 176 |
+
|
| 177 |
+
if st.button("🚀 Analisis Teks", type="primary"):
|
| 178 |
+
if user_input:
|
| 179 |
+
# Tampilkan spinner saat proses analisis
|
| 180 |
+
with st.spinner("Menganalisis teks..."):
|
| 181 |
+
results = predict(user_input, model, tokenizer, tag_values, device)
|
| 182 |
+
|
| 183 |
+
st.subheader("Hasil Analisis (Teks dengan Highlight)")
|
| 184 |
+
display_highlighted_text(results)
|
| 185 |
+
|
| 186 |
+
# --- Tampilkan Data Mentah di dalam Expander ---
|
| 187 |
+
with st.expander("Lihat Data Mentah (Token & Tag)"):
|
| 188 |
+
# Filter hanya token yang BUKAN 'O' untuk data mentah
|
| 189 |
+
entities_only = [res for res in results if res[1] != 'O']
|
| 190 |
+
if entities_only:
|
| 191 |
+
df = pd.DataFrame(entities_only, columns=["Token", "Tag"])
|
| 192 |
+
st.dataframe(df, use_container_width=True)
|
| 193 |
+
else:
|
| 194 |
+
st.info("Tidak ada entitas yang ditemukan.")
|
| 195 |
+
else:
|
| 196 |
+
st.warning("Silakan masukkan teks terlebih dahulu.")
|
| 197 |
+
|
| 198 |
+
# Menjalankan aplikasi
|
| 199 |
+
if __name__ == "__main__":
|
| 200 |
+
main()
|
| 201 |
+
|