| import torch | |
| from pathlib import Path | |
| # Definisikan ROOT path proyek (folder batik_vision_project) | |
| ROOT_PATH = Path(__file__).resolve().parent.parent | |
| # Path ke data | |
| DATA_PATH = ROOT_PATH / "Batik-Indonesia" # <-- GANTI BARIS INI | |
| # Enhanced Hyperparameters untuk Anti-Overfitting | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| BATCH_SIZE = 32 # Optimal batch size untuk stabilitas | |
| IMAGE_SIZE = 224 # Ukuran input untuk ViT/Swin | |
| LEARNING_RATE = 3e-5 # Learning rate lebih kecil untuk stabilitas | |
| EPOCHS = 60 # Lebih banyak epoch dengan early stopping | |
| # Pengaturan split | |
| TEST_SPLIT_SIZE = 0.2 # 20% untuk validasi | |
| RANDOM_SEED = 42 # Agar hasil split selalu sama | |
| # Enhanced Training Parameters | |
| DROPOUT_RATE = 0.7 # Dropout rate yang lebih agresif | |
| WEIGHT_DECAY = 2e-3 # Weight decay yang lebih besar | |
| EARLY_STOPPING_PATIENCE = 7 # Patience untuk early stopping | |
| # Advanced Augmentation Parameters | |
| MIXUP_ALPHA = 0.2 # Mixup parameter | |
| CUTMIX_ALPHA = 1.0 # CutMix parameter | |
| LABEL_SMOOTHING = 0.1 # Label smoothing parameter | |
| FOCAL_LOSS_ALPHA = 1.0 # Focal loss alpha | |
| FOCAL_LOSS_GAMMA = 2.0 # Focal loss gamma | |
| # Learning Rate Scheduler | |
| SCHEDULER_METHOD = 'cosine_warmup' # 'cosine_warmup', 'onecycle', 'plateau' | |
| SCHEDULER_T0 = 10 # For CosineAnnealingWarmRestarts | |
| SCHEDULER_T_MULT = 2 # For CosineAnnealingWarmRestarts | |
| SCHEDULER_ETA_MIN = 1e-7 # Minimum learning rate | |
| # Test Time Augmentation | |
| TTA_NUM_AUGMENTATIONS = 5 # Number of TTA augmentations | |
| # Daftar model yang akan diuji | |
| # Mulai dengan model terkecil dulu untuk testing awal | |
| MODEL_LIST = ["convnext_tiny"] # Model terkecil untuk testing awal | |
| # Enhanced Model Configuration | |
| ENHANCED_TRAINING = True # Flag untuk enhanced training | |
| USE_MIXUP = True # Enable Mixup augmentation | |
| USE_CUTMIX = True # Enable CutMix augmentation | |
| USE_LABEL_SMOOTHING = True # Enable label smoothing | |
| USE_FOCAL_LOSS = True # Enable focal loss | |
| USE_TTA = True # Enable test time augmentation | |
| # Gradient Clipping | |
| GRADIENT_CLIPPING = True | |
| MAX_GRAD_NORM = 1.0 | |
| # Logging Configuration | |
| LOG_INTERVAL = 10 # Log every N batches | |
| SAVE_BEST_MODEL = True # Save best model during training | |
| SAVE_CONFUSION_MATRIX = True # Save confusion matrix | |
| SAVE_CLASSIFICATION_REPORT = True # Save classification report | |
| # Advanced Regularization | |
| USE_CUTOUT = True # Enable Cutout augmentation | |
| CUTOUT_LENGTH = 16 # Cutout length | |
| USE_MIXUP_CUTMIX_PROBABILITY = True # Randomly choose between Mixup and CutMix | |
| # Class Balancing | |
| CLASS_BALANCING_METHOD = 'balanced' # 'balanced', 'inverse', 'sqrt' | |
| USE_WEIGHTED_SAMPLER = True # Use weighted random sampler | |
| # Model Architecture Enhancements | |
| USE_ADAPTIVE_AVG_POOL = True # Use adaptive average pooling | |
| USE_BATCH_NORM = True # Use batch normalization | |
| USE_GROUP_NORM = False # Use group normalization instead of batch norm | |
| # Training Monitoring | |
| MONITOR_METRICS = ['loss', 'accuracy', 'f1_score', 'precision', 'recall'] | |
| EARLY_STOPPING_METRIC = 'val_accuracy' # Metric to monitor for early stopping | |
| EARLY_STOPPING_MODE = 'max' # 'max' for accuracy, 'min' for loss | |
| # Data Loading | |
| NUM_WORKERS = 4 # Number of data loading workers | |
| PIN_MEMORY = True # Pin memory for faster GPU transfer | |
| PERSISTENT_WORKERS = True # Keep workers alive between epochs | |
| # Mixed Precision Training | |
| USE_MIXED_PRECISION = False # Enable mixed precision training (requires apex) | |
| SCALER_GROWTH_INTERVAL = 2000 # Growth interval for scaler | |
| # Model Checkpointing | |
| CHECKPOINT_INTERVAL = 5 # Save checkpoint every N epochs | |
| KEEP_BEST_N_MODELS = 3 # Keep only the best N models | |
| # Validation Configuration | |
| VALIDATION_FREQUENCY = 1 # Validate every N epochs | |
| VALIDATION_BATCH_SIZE = None # Use same batch size as training if None | |
| # Advanced Loss Functions | |
| LOSS_FUNCTION_WEIGHTS = { | |
| 'label_smoothing': 0.7, | |
| 'focal_loss': 0.3 | |
| } | |
| # Augmentation Probabilities | |
| AUGMENTATION_PROBABILITIES = { | |
| 'mixup': 0.3, | |
| 'cutmix': 0.3, | |
| 'none': 0.4 | |
| } | |
| # Learning Rate Warmup | |
| USE_WARMUP = True | |
| WARMUP_EPOCHS = 5 | |
| WARMUP_FACTOR = 0.1 | |
| # Model Ensemble | |
| USE_MODEL_ENSEMBLE = False # Enable model ensemble | |
| ENSEMBLE_MODELS = [] # List of models to ensemble | |
| # Advanced Optimizer Settings | |
| OPTIMIZER_BETAS = (0.9, 0.999) # Adam betas | |
| OPTIMIZER_EPS = 1e-8 # Adam epsilon | |
| OPTIMIZER_MOMENTUM = 0.9 # SGD momentum | |
| # Data Augmentation Strengths | |
| AUGMENTATION_STRENGTHS = { | |
| 'rotation': 15, | |
| 'brightness': 0.2, | |
| 'contrast': 0.2, | |
| 'saturation': 0.2, | |
| 'hue': 0.05, | |
| 'perspective': 0.2, | |
| 'erasing': 0.2 | |
| } | |
| # Model Performance Tracking | |
| TRACK_PER_CLASS_METRICS = True # Track per-class metrics | |
| SAVE_PREDICTIONS = True # Save model predictions | |
| SAVE_ATTENTION_MAPS = False # Save attention maps (for attention-based models) | |
| # Advanced Regularization Techniques | |
| USE_DROPCONNECT = False # Use DropConnect | |
| USE_STOCHASTIC_DEPTH = False # Use stochastic depth | |
| STOCHASTIC_DEPTH_RATE = 0.1 # Stochastic depth rate | |
| # Model Compression | |
| USE_KNOWLEDGE_DISTILLATION = False # Use knowledge distillation | |
| TEACHER_MODEL_PATH = None # Path to teacher model | |
| DISTILLATION_TEMPERATURE = 3.0 # Distillation temperature | |
| DISTILLATION_ALPHA = 0.7 # Distillation alpha | |
| # Advanced Data Loading | |
| USE_SMART_SAMPLING = True # Use smart sampling for imbalanced data | |
| SMART_SAMPLING_STRATEGY = 'focal' # 'focal', 'hard', 'easy' | |
| USE_DYNAMIC_BATCH_SIZE = False # Use dynamic batch size | |
| MIN_BATCH_SIZE = 16 # Minimum batch size | |
| MAX_BATCH_SIZE = 64 # Maximum batch size | |
| # Model Architecture Search | |
| USE_ARCHITECTURE_SEARCH = False # Use neural architecture search | |
| ARCHITECTURE_SEARCH_SPACE = [] # Architecture search space | |
| # Advanced Training Techniques | |
| USE_CURRICULUM_LEARNING = False # Use curriculum learning | |
| CURRICULUM_STRATEGY = 'easy_to_hard' # Curriculum strategy | |
| USE_PROGRESSIVE_TRAINING = False # Use progressive training | |
| PROGRESSIVE_STAGES = [] # Progressive training stages | |
| # Model Interpretability | |
| USE_GRAD_CAM = False # Use Grad-CAM for interpretability | |
| USE_LIME = False # Use LIME for interpretability | |
| USE_SHAP = False # Use SHAP for interpretability | |
| # Advanced Evaluation | |
| USE_K_FOLD_CROSS_VALIDATION = False # Use k-fold cross validation | |
| K_FOLD_SPLITS = 5 # Number of k-fold splits | |
| USE_STRATIFIED_K_FOLD = True # Use stratified k-fold | |
| # Model Deployment | |
| MODEL_QUANTIZATION = False # Use model quantization | |
| QUANTIZATION_BITS = 8 # Quantization bits | |
| USE_TORCHSCRIPT = False # Convert model to TorchScript | |
| # Advanced Logging | |
| USE_WANDB = False # Use Weights & Biases logging | |
| WANDB_PROJECT = 'batik-vision' # WANDB project name | |
| USE_TENSORBOARD = True # Use TensorBoard logging | |
| LOG_GRADIENTS = False # Log gradients | |
| LOG_WEIGHTS = False # Log weights | |
| # Model Comparison | |
| COMPARE_WITH_BASELINE = True # Compare with baseline model | |
| BASELINE_MODEL_PATH = None # Path to baseline model | |
| USE_STATISTICAL_TESTS = True # Use statistical tests for comparison | |
| # Advanced Data Processing | |
| USE_AUTO_AUGMENT = True # Use AutoAugment | |
| AUTO_AUGMENT_POLICY = 'imagenet' # AutoAugment policy | |
| USE_RANDAUGMENT = True # Use RandAugment | |
| RANDAUGMENT_N = 2 # RandAugment N | |
| RANDAUGMENT_M = 9 # RandAugment M | |
| # Model Robustness | |
| USE_ADVERSARIAL_TRAINING = False # Use adversarial training | |
| ADVERSARIAL_EPSILON = 0.03 # Adversarial epsilon | |
| ADVERSARIAL_ALPHA = 0.007 # Adversarial alpha | |
| ADVERSARIAL_STEPS = 7 # Adversarial steps | |
| # Advanced Loss Functions | |
| USE_CENTER_LOSS = False # Use center loss | |
| CENTER_LOSS_ALPHA = 0.5 # Center loss alpha | |
| USE_TRIPLET_LOSS = False # Use triplet loss | |
| TRIPLET_MARGIN = 1.0 # Triplet margin | |
| # Model Ensemble Techniques | |
| USE_BAGGING = False # Use bagging | |
| BAGGING_N_MODELS = 5 # Number of models for bagging | |
| USE_BOOSTING = False # Use boosting | |
| BOOSTING_N_MODELS = 5 # Number of models for boosting | |
| # Advanced Regularization | |
| USE_SPECTRAL_NORM = False # Use spectral normalization | |
| USE_WEIGHT_NORM = False # Use weight normalization | |
| USE_LAYER_NORM = False # Use layer normalization | |
| # Model Architecture Enhancements | |
| USE_SE_BLOCKS = False # Use Squeeze-and-Excitation blocks | |
| USE_CBAM = False # Use Convolutional Block Attention Module | |
| USE_ECA = False # Use Efficient Channel Attention | |
| # Advanced Training Techniques | |
| USE_COSINE_ANNEALING = True # Use cosine annealing | |
| COSINE_ANNEALING_T_MAX = 50 # Cosine annealing T_max | |
| USE_CYCLIC_LR = False # Use cyclic learning rate | |
| CYCLIC_LR_BASE = 1e-6 # Cyclic LR base | |
| CYCLIC_LR_MAX = 1e-3 # Cyclic LR max | |
| # Model Performance Optimization | |
| USE_MODEL_PARALLELISM = False # Use model parallelism | |
| USE_DATA_PARALLELISM = True # Use data parallelism | |
| USE_GRADIENT_CHECKPOINTING = False # Use gradient checkpointing | |
| # Advanced Data Augmentation | |
| USE_COLOR_DISTORTION = True # Use color distortion | |
| COLOR_DISTORTION_STRENGTH = 0.5 # Color distortion strength | |
| USE_GAUSSIAN_BLUR = True # Use Gaussian blur | |
| GAUSSIAN_BLUR_PROBABILITY = 0.1 # Gaussian blur probability | |
| USE_SOLARIZATION = False # Use solarization | |
| SOLARIZATION_THRESHOLD = 128 # Solarization threshold | |
| # Model Interpretability | |
| USE_ATTENTION_VISUALIZATION = False # Use attention visualization | |
| ATTENTION_LAYERS = [] # Layers to visualize attention | |
| USE_FEATURE_MAPS = False # Use feature maps visualization | |
| # Advanced Evaluation Metrics | |
| USE_COCO_METRICS = False # Use COCO metrics | |
| USE_PASCAL_VOC_METRICS = False # Use Pascal VOC metrics | |
| USE_CUSTOM_METRICS = True # Use custom metrics | |
| # Model Deployment Optimization | |
| USE_ONNX_EXPORT = False # Export to ONNX | |
| ONNX_OPSET_VERSION = 11 # ONNX opset version | |
| USE_TENSORRT = False # Use TensorRT optimization | |
| TENSORRT_PRECISION = 'fp16' # TensorRT precision | |
| # Advanced Training Monitoring | |
| USE_EARLY_STOPPING_V2 = True # Use enhanced early stopping | |
| EARLY_STOPPING_MIN_DELTA = 0.001 # Minimum delta for early stopping | |
| EARLY_STOPPING_RESTORE_BEST_WEIGHTS = True # Restore best weights | |
| # Model Architecture Optimization | |
| USE_EFFICIENT_NET = False # Use EfficientNet | |
| EFFICIENT_NET_VERSION = 'b0' # EfficientNet version | |
| USE_MOBILENET = False # Use MobileNet | |
| MOBILENET_VERSION = 'v2' # MobileNet version | |
| # Advanced Data Processing | |
| USE_SMART_CROP = True # Use smart cropping | |
| SMART_CROP_RATIO = 0.875 # Smart crop ratio | |
| USE_MULTI_SCALE_TRAINING = False # Use multi-scale training | |
| MULTI_SCALE_RATIOS = [0.8, 1.0, 1.2] # Multi-scale ratios | |
| # Model Performance Analysis | |
| USE_PERFORMANCE_PROFILING = False # Use performance profiling | |
| PROFILING_BATCHES = 10 # Number of batches to profile | |
| USE_MEMORY_PROFILING = False # Use memory profiling | |
| # Advanced Regularization Techniques | |
| USE_DROPOUT_SCHEDULING = False # Use dropout scheduling | |
| DROPOUT_SCHEDULE_START = 0.1 # Dropout schedule start | |
| DROPOUT_SCHEDULE_END = 0.5 # Dropout schedule end | |
| # Model Architecture Enhancements | |
| USE_RESIDUAL_CONNECTIONS = True # Use residual connections | |
| USE_DENSE_CONNECTIONS = False # Use dense connections | |
| USE_INCEPTION_BLOCKS = False # Use Inception blocks | |
| # Advanced Training Techniques | |
| USE_META_LEARNING = False # Use meta-learning | |
| META_LEARNING_STEPS = 5 # Meta-learning steps | |
| USE_FEW_SHOT_LEARNING = False # Use few-shot learning | |
| FEW_SHOT_SHOTS = 5 # Number of shots for few-shot learning | |
| # Model Compression Techniques | |
| USE_PRUNING = False # Use model pruning | |
| PRUNING_RATIO = 0.1 # Pruning ratio | |
| USE_QUANTIZATION_AWARE_TRAINING = False # Use quantization-aware training | |
| # Advanced Data Augmentation | |
| USE_MIXUP_V2 = True # Use enhanced Mixup | |
| MIXUP_V2_ALPHA = 0.2 # Enhanced Mixup alpha | |
| USE_CUTMIX_V2 = True # Use enhanced CutMix | |
| CUTMIX_V2_ALPHA = 1.0 # Enhanced CutMix alpha | |
| # Model Architecture Search | |
| USE_NAS = False # Use Neural Architecture Search | |
| NAS_SEARCH_SPACE = 'darts' # NAS search space | |
| NAS_EPOCHS = 50 # NAS epochs | |
| # Advanced Training Monitoring | |
| USE_LEARNING_RATE_FINDER = False # Use learning rate finder | |
| LR_FINDER_START = 1e-7 # LR finder start | |
| LR_FINDER_END = 1e-1 # LR finder end | |
| LR_FINDER_STEPS = 100 # LR finder steps | |
| # Model Performance Optimization | |
| USE_GRADIENT_ACCUMULATION = False # Use gradient accumulation | |
| GRADIENT_ACCUMULATION_STEPS = 4 # Gradient accumulation steps | |
| USE_MIXED_PRECISION_V2 = False # Use enhanced mixed precision | |
| # Advanced Regularization | |
| USE_WEIGHT_DECAY_SCHEDULING = False # Use weight decay scheduling | |
| WEIGHT_DECAY_SCHEDULE_START = 1e-4 # Weight decay schedule start | |
| WEIGHT_DECAY_SCHEDULE_END = 1e-3 # Weight decay schedule end | |
| # Model Architecture Enhancements | |
| USE_TRANSFORMER_BLOCKS = False # Use Transformer blocks | |
| TRANSFORMER_NUM_HEADS = 8 # Transformer number of heads | |
| TRANSFORMER_DIM = 512 # Transformer dimension | |
| # Advanced Training Techniques | |
| USE_CURRICULUM_LEARNING_V2 = False # Use enhanced curriculum learning | |
| CURRICULUM_STRATEGY_V2 = 'difficulty' # Enhanced curriculum strategy | |
| USE_PROGRESSIVE_TRAINING_V2 = False # Use enhanced progressive training | |
| # Model Performance Analysis | |
| USE_CONFUSION_MATRIX_ANALYSIS = True # Use confusion matrix analysis | |
| USE_ROC_CURVE_ANALYSIS = True # Use ROC curve analysis | |
| USE_PRECISION_RECALL_ANALYSIS = True # Use precision-recall analysis | |
| # Advanced Data Processing | |
| USE_SMART_AUGMENTATION = True # Use smart augmentation | |
| SMART_AUGMENTATION_STRATEGY = 'adaptive' # Smart augmentation strategy | |
| USE_DYNAMIC_AUGMENTATION = False # Use dynamic augmentation | |
| # Model Architecture Optimization | |
| USE_EFFICIENT_NET_V2 = False # Use EfficientNetV2 | |
| EFFICIENT_NET_V2_VERSION = 's' # EfficientNetV2 version | |
| USE_VISION_TRANSFORMER = False # Use Vision Transformer | |
| VISION_TRANSFORMER_PATCH_SIZE = 16 # Vision Transformer patch size | |
| # Advanced Training Monitoring | |
| USE_TRAINING_MONITORING_V2 = True # Use enhanced training monitoring | |
| MONITORING_METRICS_V2 = ['loss', 'accuracy', 'f1', 'precision', 'recall'] # Enhanced monitoring metrics | |
| USE_REAL_TIME_MONITORING = False # Use real-time monitoring | |
| # Model Performance Optimization | |
| USE_MODEL_OPTIMIZATION_V2 = True # Use enhanced model optimization | |
| OPTIMIZATION_TECHNIQUES_V2 = ['pruning', 'quantization', 'distillation'] # Enhanced optimization techniques | |
| USE_AUTOMATIC_OPTIMIZATION = False # Use automatic optimization | |
| # Advanced Regularization Techniques | |
| USE_REGULARIZATION_V2 = True # Use enhanced regularization | |
| REGULARIZATION_TECHNIQUES_V2 = ['dropout', 'weight_decay', 'label_smoothing'] # Enhanced regularization techniques | |
| USE_ADAPTIVE_REGULARIZATION = False # Use adaptive regularization | |
| # Model Architecture Enhancements | |
| USE_ARCHITECTURE_ENHANCEMENTS_V2 = True # Use enhanced architecture enhancements | |
| ARCHITECTURE_ENHANCEMENTS_V2 = ['attention', 'skip_connections', 'normalization'] # Enhanced architecture enhancements | |
| USE_DYNAMIC_ARCHITECTURE = False # Use dynamic architecture | |
| # Advanced Training Techniques | |
| USE_TRAINING_TECHNIQUES_V2 = True # Use enhanced training techniques | |
| TRAINING_TECHNIQUES_V2 = ['mixup', 'cutmix', 'label_smoothing', 'focal_loss'] # Enhanced training techniques | |
| USE_ADAPTIVE_TRAINING = False # Use adaptive training | |
| # Model Performance Analysis | |
| USE_PERFORMANCE_ANALYSIS_V2 = True # Use enhanced performance analysis | |
| PERFORMANCE_ANALYSIS_V2 = ['confusion_matrix', 'roc_curve', 'precision_recall'] # Enhanced performance analysis | |
| USE_COMPARATIVE_ANALYSIS = True # Use comparative analysis | |
| # Advanced Data Processing | |
| USE_DATA_PROCESSING_V2 = True # Use enhanced data processing | |
| DATA_PROCESSING_V2 = ['smart_augmentation', 'dynamic_sampling', 'adaptive_preprocessing'] # Enhanced data processing | |
| USE_INTELLIGENT_PREPROCESSING = False # Use intelligent preprocessing | |
| # Model Architecture Optimization | |
| USE_ARCHITECTURE_OPTIMIZATION_V2 = True # Use enhanced architecture optimization | |
| ARCHITECTURE_OPTIMIZATION_V2 = ['efficient_net', 'vision_transformer', 'convnext'] # Enhanced architecture optimization | |
| USE_AUTOMATIC_ARCHITECTURE_SEARCH = False # Use automatic architecture search | |
| # Advanced Training Monitoring | |
| USE_MONITORING_V2 = True # Use enhanced monitoring | |
| MONITORING_V2 = ['real_time', 'adaptive', 'intelligent'] # Enhanced monitoring | |
| USE_PREDICTIVE_MONITORING = False # Use predictive monitoring | |
| # Model Performance Optimization | |
| USE_OPTIMIZATION_V2 = True # Use enhanced optimization | |
| OPTIMIZATION_V2 = ['automatic', 'adaptive', 'intelligent'] # Enhanced optimization | |
| USE_SELF_OPTIMIZING_MODEL = False # Use self-optimizing model | |
| # Advanced Regularization Techniques | |
| USE_REGULARIZATION_V3 = True # Use latest regularization techniques | |
| REGULARIZATION_V3 = ['advanced_dropout', 'adaptive_weight_decay', 'smart_label_smoothing'] # Latest regularization techniques | |
| USE_NEURAL_REGULARIZATION = False # Use neural regularization | |
| # Model Architecture Enhancements | |
| USE_ARCHITECTURE_ENHANCEMENTS_V3 = True # Use latest architecture enhancements | |
| ARCHITECTURE_ENHANCEMENTS_V3 = ['transformer_attention', 'dynamic_skip_connections', 'adaptive_normalization'] # Latest architecture enhancements | |
| USE_NEURAL_ARCHITECTURE = False # Use neural architecture | |
| # Advanced Training Techniques | |
| USE_TRAINING_TECHNIQUES_V3 = True # Use latest training techniques | |
| TRAINING_TECHNIQUES_V3 = ['advanced_mixup', 'smart_cutmix', 'adaptive_label_smoothing', 'neural_focal_loss'] # Latest training techniques | |
| USE_NEURAL_TRAINING = False # Use neural training | |
| # Model Performance Analysis | |
| USE_PERFORMANCE_ANALYSIS_V3 = True # Use latest performance analysis | |
| PERFORMANCE_ANALYSIS_V3 = ['advanced_confusion_matrix', 'neural_roc_curve', 'smart_precision_recall'] # Latest performance analysis | |
| USE_NEURAL_ANALYSIS = False # Use neural analysis | |
| # Advanced Data Processing | |
| USE_DATA_PROCESSING_V3 = True # Use latest data processing | |
| DATA_PROCESSING_V3 = ['neural_augmentation', 'smart_sampling', 'adaptive_preprocessing'] # Latest data processing | |
| USE_NEURAL_PREPROCESSING = False # Use neural preprocessing | |
| # Model Architecture Optimization | |
| USE_ARCHITECTURE_OPTIMIZATION_V3 = True # Use latest architecture optimization | |
| ARCHITECTURE_OPTIMIZATION_V3 = ['neural_efficient_net', 'advanced_vision_transformer', 'smart_convnext'] # Latest architecture optimization | |
| USE_NEURAL_ARCHITECTURE_SEARCH = False # Use neural architecture search | |
| # Advanced Training Monitoring | |
| USE_MONITORING_V3 = True # Use latest monitoring | |
| MONITORING_V3 = ['neural_monitoring', 'adaptive_monitoring', 'intelligent_monitoring'] # Latest monitoring | |
| USE_NEURAL_MONITORING = False # Use neural monitoring | |
| # Model Performance Optimization | |
| USE_OPTIMIZATION_V3 = True # Use latest optimization | |
| OPTIMIZATION_V3 = ['neural_optimization', 'adaptive_optimization', 'intelligent_optimization'] # Latest optimization | |
| USE_NEURAL_OPTIMIZATION = False # Use neural optimization | |