Debito's picture
Upload checkpoint_manager.py
48d761f verified
"""
Checkpoint Manager for Mamba Swarm
Handles saving, loading, and managing model checkpoints
"""
import os
import json
import time
import shutil
import logging
import torch
import threading
from typing import Dict, List, Any, Optional, Tuple
from dataclasses import dataclass, asdict
from pathlib import Path
from datetime import datetime
import pickle
import hashlib
@dataclass
class CheckpointMetadata:
checkpoint_id: str
timestamp: float
epoch: int
step: int
loss: float
model_config: Dict[str, Any]
training_config: Dict[str, Any]
metrics: Dict[str, float]
file_path: str
file_size: int
checksum: str
class CheckpointManager:
"""Manages model checkpoints for Mamba Swarm"""
def __init__(self,
checkpoint_dir: str = "./checkpoints",
max_checkpoints: int = 10,
save_interval: int = 1000,
best_metric: str = "loss",
best_metric_mode: str = "min"):
self.checkpoint_dir = Path(checkpoint_dir)
self.max_checkpoints = max_checkpoints
self.save_interval = save_interval
self.best_metric = best_metric
self.best_metric_mode = best_metric_mode
self.logger = logging.getLogger(__name__)
self.lock = threading.Lock()
# Create checkpoint directory
self.checkpoint_dir.mkdir(parents=True, exist_ok=True)
# Metadata storage
self.metadata_file = self.checkpoint_dir / "metadata.json"
self.checkpoints_metadata: Dict[str, CheckpointMetadata] = {}
# Best checkpoint tracking
self.best_checkpoint_id: Optional[str] = None
self.best_metric_value: Optional[float] = None
# Load existing metadata
self._load_metadata()
def save_checkpoint(self,
model_state: Dict[str, Any],
optimizer_state: Optional[Dict[str, Any]] = None,
scheduler_state: Optional[Dict[str, Any]] = None,
epoch: int = 0,
step: int = 0,
loss: float = 0.0,
metrics: Optional[Dict[str, float]] = None,
model_config: Optional[Dict[str, Any]] = None,
training_config: Optional[Dict[str, Any]] = None,
force_save: bool = False) -> str:
"""Save a checkpoint"""
# Check if we should save based on interval
if not force_save and step % self.save_interval != 0:
return None
# Generate checkpoint ID
checkpoint_id = self._generate_checkpoint_id(epoch, step)
# Prepare checkpoint data
checkpoint_data = {
"model_state": model_state,
"optimizer_state": optimizer_state,
"scheduler_state": scheduler_state,
"epoch": epoch,
"step": step,
"loss": loss,
"metrics": metrics or {},
"model_config": model_config or {},
"training_config": training_config or {},
"timestamp": time.time()
}
# Save checkpoint file
checkpoint_path = self.checkpoint_dir / f"{checkpoint_id}.pt"
with self.lock:
try:
torch.save(checkpoint_data, checkpoint_path)
# Calculate file size and checksum
file_size = checkpoint_path.stat().st_size
checksum = self._calculate_checksum(checkpoint_path)
# Create metadata
metadata = CheckpointMetadata(
checkpoint_id=checkpoint_id,
timestamp=checkpoint_data["timestamp"],
epoch=epoch,
step=step,
loss=loss,
model_config=model_config or {},
training_config=training_config or {},
metrics=metrics or {},
file_path=str(checkpoint_path),
file_size=file_size,
checksum=checksum
)
# Store metadata
self.checkpoints_metadata[checkpoint_id] = metadata
# Update best checkpoint
self._update_best_checkpoint(checkpoint_id, metrics or {"loss": loss})
# Clean up old checkpoints
self._cleanup_old_checkpoints()
# Save metadata
self._save_metadata()
self.logger.info(f"Saved checkpoint {checkpoint_id} at step {step}")
return checkpoint_id
except Exception as e:
self.logger.error(f"Failed to save checkpoint: {e}")
# Clean up partial file
if checkpoint_path.exists():
checkpoint_path.unlink()
raise
def load_checkpoint(self, checkpoint_id: Optional[str] = None) -> Optional[Dict[str, Any]]:
"""Load a checkpoint"""
# Use best checkpoint if none specified
if checkpoint_id is None:
checkpoint_id = self.best_checkpoint_id
if checkpoint_id is None or checkpoint_id not in self.checkpoints_metadata:
self.logger.warning(f"Checkpoint {checkpoint_id} not found")
return None
metadata = self.checkpoints_metadata[checkpoint_id]
checkpoint_path = Path(metadata.file_path)
if not checkpoint_path.exists():
self.logger.error(f"Checkpoint file {checkpoint_path} does not exist")
return None
try:
# Verify checksum
if not self._verify_checksum(checkpoint_path, metadata.checksum):
self.logger.error(f"Checkpoint {checkpoint_id} failed checksum verification")
return None
# Load checkpoint
checkpoint_data = torch.load(checkpoint_path, map_location='cpu')
self.logger.info(f"Loaded checkpoint {checkpoint_id} from step {metadata.step}")
return checkpoint_data
except Exception as e:
self.logger.error(f"Failed to load checkpoint {checkpoint_id}: {e}")
return None
def load_best_checkpoint(self) -> Optional[Dict[str, Any]]:
"""Load the best checkpoint"""
return self.load_checkpoint(self.best_checkpoint_id)
def load_latest_checkpoint(self) -> Optional[Dict[str, Any]]:
"""Load the most recent checkpoint"""
if not self.checkpoints_metadata:
return None
# Find latest checkpoint by timestamp
latest_id = max(self.checkpoints_metadata.keys(),
key=lambda x: self.checkpoints_metadata[x].timestamp)
return self.load_checkpoint(latest_id)
def list_checkpoints(self, sort_by: str = "timestamp") -> List[CheckpointMetadata]:
"""List all available checkpoints"""
checkpoints = list(self.checkpoints_metadata.values())
if sort_by == "timestamp":
checkpoints.sort(key=lambda x: x.timestamp, reverse=True)
elif sort_by == "step":
checkpoints.sort(key=lambda x: x.step, reverse=True)
elif sort_by == "loss":
checkpoints.sort(key=lambda x: x.loss)
return checkpoints
def delete_checkpoint(self, checkpoint_id: str) -> bool:
"""Delete a specific checkpoint"""
if checkpoint_id not in self.checkpoints_metadata:
self.logger.warning(f"Checkpoint {checkpoint_id} not found")
return False
metadata = self.checkpoints_metadata[checkpoint_id]
checkpoint_path = Path(metadata.file_path)
with self.lock:
try:
# Remove file
if checkpoint_path.exists():
checkpoint_path.unlink()
# Remove from metadata
del self.checkpoints_metadata[checkpoint_id]
# Update best checkpoint if needed
if checkpoint_id == self.best_checkpoint_id:
self._find_new_best_checkpoint()
# Save metadata
self._save_metadata()
self.logger.info(f"Deleted checkpoint {checkpoint_id}")
return True
except Exception as e:
self.logger.error(f"Failed to delete checkpoint {checkpoint_id}: {e}")
return False
def get_checkpoint_info(self, checkpoint_id: str) -> Optional[CheckpointMetadata]:
"""Get information about a specific checkpoint"""
return self.checkpoints_metadata.get(checkpoint_id)
def export_checkpoint(self, checkpoint_id: str, export_path: str) -> bool:
"""Export a checkpoint to a different location"""
if checkpoint_id not in self.checkpoints_metadata:
self.logger.error(f"Checkpoint {checkpoint_id} not found")
return False
metadata = self.checkpoints_metadata[checkpoint_id]
source_path = Path(metadata.file_path)
export_path = Path(export_path)
try:
# Copy checkpoint file
shutil.copy2(source_path, export_path)
# Copy metadata
metadata_export_path = export_path.with_suffix('.json')
with open(metadata_export_path, 'w') as f:
json.dump(asdict(metadata), f, indent=2)
self.logger.info(f"Exported checkpoint {checkpoint_id} to {export_path}")
return True
except Exception as e:
self.logger.error(f"Failed to export checkpoint {checkpoint_id}: {e}")
return False
def import_checkpoint(self, checkpoint_path: str, metadata_path: Optional[str] = None) -> Optional[str]:
"""Import a checkpoint from external location"""
checkpoint_path = Path(checkpoint_path)
if not checkpoint_path.exists():
self.logger.error(f"Checkpoint file {checkpoint_path} does not exist")
return None
try:
# Load metadata if provided
if metadata_path:
with open(metadata_path, 'r') as f:
metadata_dict = json.load(f)
metadata = CheckpointMetadata(**metadata_dict)
else:
# Try to extract metadata from checkpoint
checkpoint_data = torch.load(checkpoint_path, map_location='cpu')
metadata = CheckpointMetadata(
checkpoint_id=self._generate_checkpoint_id(
checkpoint_data.get("epoch", 0),
checkpoint_data.get("step", 0)
),
timestamp=checkpoint_data.get("timestamp", time.time()),
epoch=checkpoint_data.get("epoch", 0),
step=checkpoint_data.get("step", 0),
loss=checkpoint_data.get("loss", 0.0),
model_config=checkpoint_data.get("model_config", {}),
training_config=checkpoint_data.get("training_config", {}),
metrics=checkpoint_data.get("metrics", {}),
file_path="", # Will be set below
file_size=0, # Will be set below
checksum="" # Will be set below
)
# Copy to checkpoint directory
new_checkpoint_path = self.checkpoint_dir / f"{metadata.checkpoint_id}.pt"
shutil.copy2(checkpoint_path, new_checkpoint_path)
# Update metadata
metadata.file_path = str(new_checkpoint_path)
metadata.file_size = new_checkpoint_path.stat().st_size
metadata.checksum = self._calculate_checksum(new_checkpoint_path)
with self.lock:
self.checkpoints_metadata[metadata.checkpoint_id] = metadata
self._update_best_checkpoint(metadata.checkpoint_id, metadata.metrics)
self._save_metadata()
self.logger.info(f"Imported checkpoint {metadata.checkpoint_id}")
return metadata.checkpoint_id
except Exception as e:
self.logger.error(f"Failed to import checkpoint: {e}")
return None
def _generate_checkpoint_id(self, epoch: int, step: int) -> str:
"""Generate unique checkpoint ID"""
timestamp = int(time.time())
return f"checkpoint_epoch_{epoch}_step_{step}_{timestamp}"
def _calculate_checksum(self, file_path: Path) -> str:
"""Calculate MD5 checksum of file"""
hash_md5 = hashlib.md5()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def _verify_checksum(self, file_path: Path, expected_checksum: str) -> bool:
"""Verify file checksum"""
actual_checksum = self._calculate_checksum(file_path)
return actual_checksum == expected_checksum
def _update_best_checkpoint(self, checkpoint_id: str, metrics: Dict[str, float]):
"""Update best checkpoint based on metrics"""
if self.best_metric not in metrics:
return
metric_value = metrics[self.best_metric]
if self.best_metric_value is None:
# First checkpoint
self.best_checkpoint_id = checkpoint_id
self.best_metric_value = metric_value
else:
# Compare with current best
is_better = False
if self.best_metric_mode == "min":
is_better = metric_value < self.best_metric_value
elif self.best_metric_mode == "max":
is_better = metric_value > self.best_metric_value
if is_better:
self.best_checkpoint_id = checkpoint_id
self.best_metric_value = metric_value
self.logger.info(f"New best checkpoint: {checkpoint_id} ({self.best_metric}: {metric_value})")
def _find_new_best_checkpoint(self):
"""Find new best checkpoint after deletion"""
if not self.checkpoints_metadata:
self.best_checkpoint_id = None
self.best_metric_value = None
return
best_id = None
best_value = None
for checkpoint_id, metadata in self.checkpoints_metadata.items():
if self.best_metric in metadata.metrics:
metric_value = metadata.metrics[self.best_metric]
if best_value is None:
best_id = checkpoint_id
best_value = metric_value
else:
is_better = False
if self.best_metric_mode == "min":
is_better = metric_value < best_value
elif self.best_metric_mode == "max":
is_better = metric_value > best_value
if is_better:
best_id = checkpoint_id
best_value = metric_value
self.best_checkpoint_id = best_id
self.best_metric_value = best_value
def _cleanup_old_checkpoints(self):
"""Remove old checkpoints to maintain max_checkpoints limit"""
if len(self.checkpoints_metadata) <= self.max_checkpoints:
return
# Sort by timestamp (oldest first)
sorted_checkpoints = sorted(
self.checkpoints_metadata.items(),
key=lambda x: x[1].timestamp
)
# Calculate how many to remove
num_to_remove = len(sorted_checkpoints) - self.max_checkpoints
for i in range(num_to_remove):
checkpoint_id, metadata = sorted_checkpoints[i]
# Don't delete the best checkpoint
if checkpoint_id == self.best_checkpoint_id:
continue
# Delete checkpoint
checkpoint_path = Path(metadata.file_path)
if checkpoint_path.exists():
checkpoint_path.unlink()
del self.checkpoints_metadata[checkpoint_id]
self.logger.info(f"Cleaned up old checkpoint: {checkpoint_id}")
def _load_metadata(self):
"""Load checkpoint metadata from file"""
if not self.metadata_file.exists():
return
try:
with open(self.metadata_file, 'r') as f:
data = json.load(f)
# Load checkpoint metadata
for checkpoint_id, metadata_dict in data.get("checkpoints", {}).items():
metadata = CheckpointMetadata(**metadata_dict)
self.checkpoints_metadata[checkpoint_id] = metadata
# Load best checkpoint info
self.best_checkpoint_id = data.get("best_checkpoint_id")
self.best_metric_value = data.get("best_metric_value")
self.logger.info(f"Loaded metadata for {len(self.checkpoints_metadata)} checkpoints")
except Exception as e:
self.logger.error(f"Failed to load metadata: {e}")
def _save_metadata(self):
"""Save checkpoint metadata to file"""
try:
data = {
"checkpoints": {
checkpoint_id: asdict(metadata)
for checkpoint_id, metadata in self.checkpoints_metadata.items()
},
"best_checkpoint_id": self.best_checkpoint_id,
"best_metric_value": self.best_metric_value,
"last_updated": time.time()
}
# Write to temporary file first
temp_file = self.metadata_file.with_suffix('.tmp')
with open(temp_file, 'w') as f:
json.dump(data, f, indent=2)
# Atomic rename
temp_file.replace(self.metadata_file)
except Exception as e:
self.logger.error(f"Failed to save metadata: {e}")
def get_storage_usage(self) -> Dict[str, Any]:
"""Get storage usage statistics"""
total_size = 0
checkpoint_count = len(self.checkpoints_metadata)
for metadata in self.checkpoints_metadata.values():
total_size += metadata.file_size
return {
"total_size_bytes": total_size,
"total_size_mb": total_size / (1024 * 1024),
"total_size_gb": total_size / (1024 * 1024 * 1024),
"checkpoint_count": checkpoint_count,
"average_size_mb": (total_size / checkpoint_count / (1024 * 1024)) if checkpoint_count > 0 else 0,
"checkpoint_directory": str(self.checkpoint_dir)
}
def cleanup_all_checkpoints(self):
"""Remove all checkpoints (dangerous operation)"""
with self.lock:
for metadata in self.checkpoints_metadata.values():
checkpoint_path = Path(metadata.file_path)
if checkpoint_path.exists():
checkpoint_path.unlink()
self.checkpoints_metadata.clear()
self.best_checkpoint_id = None
self.best_metric_value = None
# Remove metadata file
if self.metadata_file.exists():
self.metadata_file.unlink()
self.logger.info("Cleaned up all checkpoints")
# Example usage and testing
if __name__ == "__main__":
# Create checkpoint manager
checkpoint_manager = CheckpointManager(
checkpoint_dir="./test_checkpoints",
max_checkpoints=5,
save_interval=100
)
# Simulate saving checkpoints
for step in range(0, 1000, 100):
model_state = {"layer_weights": torch.randn(10, 10)}
optimizer_state = {"param_groups": [{"lr": 0.001}]}
metrics = {
"loss": 1.0 - step / 1000.0, # Decreasing loss
"accuracy": step / 1000.0 # Increasing accuracy
}
checkpoint_id = checkpoint_manager.save_checkpoint(
model_state=model_state,
optimizer_state=optimizer_state,
step=step,
loss=metrics["loss"],
metrics=metrics,
force_save=True
)
print(f"Saved checkpoint: {checkpoint_id}")
# List checkpoints
print("\nAvailable checkpoints:")
for metadata in checkpoint_manager.list_checkpoints():
print(f" {metadata.checkpoint_id}: step {metadata.step}, loss {metadata.loss:.3f}")
# Load best checkpoint
best_checkpoint = checkpoint_manager.load_best_checkpoint()
print(f"\nLoaded best checkpoint: {checkpoint_manager.best_checkpoint_id}")
# Get storage usage
usage = checkpoint_manager.get_storage_usage()
print(f"\nStorage usage: {usage['total_size_mb']:.2f} MB ({usage['checkpoint_count']} checkpoints)")
# Cleanup
checkpoint_manager.cleanup_all_checkpoints()
print("Cleaned up test checkpoints")