updating readme
Browse files
README.md
CHANGED
@@ -4,54 +4,52 @@ language: ha
|
|
4 |
datasets:
|
5 |
|
6 |
---
|
7 |
-
# xlm-roberta-base-finetuned-
|
8 |
## Model description
|
9 |
-
**xlm-roberta-base-finetuned-
|
10 |
|
11 |
-
Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on
|
12 |
## Intended uses & limitations
|
13 |
#### How to use
|
14 |
You can use this model with Transformers *pipeline* for masked token prediction.
|
15 |
```python
|
16 |
>>> from transformers import pipeline
|
17 |
-
>>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-
|
18 |
-
>>> unmasker("
|
19 |
|
20 |
-
[{'sequence': '
|
21 |
-
'score': 0.
|
22 |
-
'token':
|
23 |
-
'token_str': '
|
24 |
-
{'sequence': '
|
25 |
-
'
|
26 |
-
'
|
27 |
-
'
|
28 |
-
|
29 |
-
'
|
30 |
-
'
|
31 |
-
'
|
32 |
-
|
33 |
-
'score': 0.
|
34 |
-
'token':
|
35 |
-
'token_str': '
|
36 |
-
|
37 |
-
'score': 0.009554869495332241,
|
38 |
-
'token': 185918,
|
39 |
-
'token_str': 'Marseille'}]
|
40 |
|
41 |
|
42 |
```
|
43 |
#### Limitations and bias
|
44 |
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.
|
45 |
## Training data
|
46 |
-
This model was fine-tuned on [
|
47 |
|
48 |
## Training procedure
|
49 |
This model was trained on a single NVIDIA V100 GPU
|
50 |
|
51 |
## Eval results on Test set (F-score, average over 5 runs)
|
52 |
-
Dataset| XLM-R F1 |
|
53 |
-|-|-
|
54 |
-
[MasakhaNER](https://github.com/masakhane-io/masakhane-ner) |
|
|
|
55 |
|
56 |
### BibTeX entry and citation info
|
57 |
By David Adelani
|
|
|
4 |
datasets:
|
5 |
|
6 |
---
|
7 |
+
# xlm-roberta-base-finetuned-hausa
|
8 |
## Model description
|
9 |
+
**xlm-roberta-base-finetuned-hausa** is a **Hausa RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Hausa language texts. It provides **better performance** than the XLM-RoBERTa on text classification and named entity recognition datasets.
|
10 |
|
11 |
+
Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Hausa corpus.
|
12 |
## Intended uses & limitations
|
13 |
#### How to use
|
14 |
You can use this model with Transformers *pipeline* for masked token prediction.
|
15 |
```python
|
16 |
>>> from transformers import pipeline
|
17 |
+
>>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-hausa')
|
18 |
+
>>> unmasker("Shugaban <mask> Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci")
|
19 |
|
20 |
+
[{'sequence': '<s> Shugaban kasa Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>',
|
21 |
+
'score': 0.8104371428489685,
|
22 |
+
'token': 29762,
|
23 |
+
'token_str': '▁kasa'},
|
24 |
+
{'sequence': '<s> Shugaban Najeriya Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>', 'score': 0.17371904850006104,
|
25 |
+
'token': 49173,
|
26 |
+
'token_str': '▁Najeriya'},
|
27 |
+
{'sequence': '<s> Shugaban kasar Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>', 'score': 0.006917025428265333,
|
28 |
+
'token': 21221,
|
29 |
+
'token_str': '▁kasar'},
|
30 |
+
{'sequence': '<s> Shugaban Nigeria Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>', 'score': 0.005785710643976927,
|
31 |
+
'token': 72620,
|
32 |
+
'token_str': '▁Nigeria'},
|
33 |
+
{'sequence': '<s> Shugaban Kasar Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>', 'score': 0.0010596115607768297,
|
34 |
+
'token': 170255,
|
35 |
+
'token_str': '▁Kasar'}]
|
36 |
+
|
|
|
|
|
|
|
37 |
|
38 |
|
39 |
```
|
40 |
#### Limitations and bias
|
41 |
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.
|
42 |
## Training data
|
43 |
+
This model was fine-tuned on [Hausa CC-100](http://data.statmt.org/cc-100/)
|
44 |
|
45 |
## Training procedure
|
46 |
This model was trained on a single NVIDIA V100 GPU
|
47 |
|
48 |
## Eval results on Test set (F-score, average over 5 runs)
|
49 |
+
Dataset| XLM-R F1 | ha_roberta F1
|
50 |
-|-|-
|
51 |
+
[MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 86.10 | 91.47
|
52 |
+
[VOA Hausa Textclass](https://huggingface.co/datasets/hausa_voa_topics) | |
|
53 |
|
54 |
### BibTeX entry and citation info
|
55 |
By David Adelani
|