Davlan commited on
Commit
fb4b91e
1 Parent(s): 4cff26f

updating readme

Browse files

Files changed (1) hide show
  1. README.md +26 -28
README.md CHANGED
@@ -4,54 +4,52 @@ language: ha
4
  datasets:
5
 
6
  ---
7
- # xlm-roberta-base-finetuned-swahili
8
  ## Model description
9
- **xlm-roberta-base-finetuned-swahili** is a **Swahili RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Swahili language texts. It provides **better performance** than the XLM-RoBERTa on text classification and named entity recognition datasets.
10
 
11
- Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Swahili corpus.
12
  ## Intended uses & limitations
13
  #### How to use
14
  You can use this model with Transformers *pipeline* for masked token prediction.
15
  ```python
16
  >>> from transformers import pipeline
17
- >>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-swahili')
18
- >>> unmasker("Jumatatu, Bwana Kagame alielezea shirika la France24 huko <mask> kwamba hakuna uhalifu ulitendwa")
19
 
20
- [{'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Ufaransa kwamba hakuna uhalifu ulitendwa',
21
- 'score': 0.5077782273292542,
22
- 'token': 190096,
23
- 'token_str': 'Ufaransa'},
24
- {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Paris kwamba hakuna uhalifu ulitendwa',
25
- 'score': 0.3657738268375397,
26
- 'token': 7270,
27
- 'token_str': 'Paris'},
28
- {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Gabon kwamba hakuna uhalifu ulitendwa',
29
- 'score': 0.01592041552066803,
30
- 'token': 176392,
31
- 'token_str': 'Gabon'},
32
- {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko France kwamba hakuna uhalifu ulitendwa',
33
- 'score': 0.010881908237934113,
34
- 'token': 9942,
35
- 'token_str': 'France'},
36
- {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Marseille kwamba hakuna uhalifu ulitendwa',
37
- 'score': 0.009554869495332241,
38
- 'token': 185918,
39
- 'token_str': 'Marseille'}]
40
 
41
 
42
  ```
43
  #### Limitations and bias
44
  This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.
45
  ## Training data
46
- This model was fine-tuned on [Swahili CC-100](http://data.statmt.org/cc-100/)
47
 
48
  ## Training procedure
49
  This model was trained on a single NVIDIA V100 GPU
50
 
51
  ## Eval results on Test set (F-score, average over 5 runs)
52
- Dataset| XLM-R F1 | sw_roberta F1
53
  -|-|-
54
- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 87.10 | 91.47
 
55
 
56
  ### BibTeX entry and citation info
57
  By David Adelani
4
  datasets:
5
 
6
  ---
7
+ # xlm-roberta-base-finetuned-hausa
8
  ## Model description
9
+ **xlm-roberta-base-finetuned-hausa** is a **Hausa RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Hausa language texts. It provides **better performance** than the XLM-RoBERTa on text classification and named entity recognition datasets.
10
 
11
+ Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Hausa corpus.
12
  ## Intended uses & limitations
13
  #### How to use
14
  You can use this model with Transformers *pipeline* for masked token prediction.
15
  ```python
16
  >>> from transformers import pipeline
17
+ >>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-hausa')
18
+ >>> unmasker("Shugaban <mask> Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci")
19
 
20
+ [{'sequence': '<s> Shugaban kasa Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>',
21
+ 'score': 0.8104371428489685,
22
+ 'token': 29762,
23
+ 'token_str': '▁kasa'},
24
+ {'sequence': '<s> Shugaban Najeriya Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>', 'score': 0.17371904850006104,
25
+ 'token': 49173,
26
+ 'token_str': '▁Najeriya'},
27
+ {'sequence': '<s> Shugaban kasar Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>', 'score': 0.006917025428265333,
28
+ 'token': 21221,
29
+ 'token_str': '▁kasar'},
30
+ {'sequence': '<s> Shugaban Nigeria Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>', 'score': 0.005785710643976927,
31
+ 'token': 72620,
32
+ 'token_str': '▁Nigeria'},
33
+ {'sequence': '<s> Shugaban Kasar Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>', 'score': 0.0010596115607768297,
34
+ 'token': 170255,
35
+ 'token_str': '▁Kasar'}]
36
+
 
 
 
37
 
38
 
39
  ```
40
  #### Limitations and bias
41
  This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.
42
  ## Training data
43
+ This model was fine-tuned on [Hausa CC-100](http://data.statmt.org/cc-100/)
44
 
45
  ## Training procedure
46
  This model was trained on a single NVIDIA V100 GPU
47
 
48
  ## Eval results on Test set (F-score, average over 5 runs)
49
+ Dataset| XLM-R F1 | ha_roberta F1
50
  -|-|-
51
+ [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 86.10 | 91.47
52
+ [VOA Hausa Textclass](https://huggingface.co/datasets/hausa_voa_topics) | |
53
 
54
  ### BibTeX entry and citation info
55
  By David Adelani