DeepRL-Course / config.json
DavidAfonsoValente's picture
Upload PPO LunarLander-v2 trained agent
b947181
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a0bcfdc77f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a0bcfdc7880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a0bcfdc7910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a0bcfdc79a0>", "_build": "<function ActorCriticPolicy._build at 0x7a0bcfdc7a30>", "forward": "<function ActorCriticPolicy.forward at 0x7a0bcfdc7ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a0bcfdc7b50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a0bcfdc7be0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a0bcfdc7c70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a0bcfdc7d00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a0bcfdc7d90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a0bcfdc7e20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a0bcfd6f8c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702576590260358467, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3+uz04EY4/+v8rPsw2yb6NuYg+HKNIPQAAAAAAAAAAmnDvvEjDtLqTSY45haaPNNfKqjmeWqK4AACAPwAAgD+t2Ee+hwQEP8axDj0dgm2+mcGAvTQeDj4AAAAAAAAAAPtzpb5gnRs/CIa8PqVRU76vGRa+4uqGPgAAAAAAAAAAAEi+u8U+sjyNgT09C05tvvkFTj2xsDS+AAAAAAAAAACz9oc99pxpuhG9mbq1XIm1Dfpnuq9PtDkAAIA/AACAP1r8lT32xFO6mHM6O07CyLarNVK7neFWugAAAAAAAIA/AKCAvUFHUD9erqu9bCDCvkG9Xryjti+9AAAAAAAAAADNi1A9KcRquhacobVJ2+Cw3ennOrLgsjQAAIA/AACAP7oyST5eaYk/+xuJPX+m2L7lgKY+liKJvQAAAAAAAAAAZnnVPaQQGbnJu405wx39tV+i/buOS6m4AACAPwAAgD/Gmgg+ajGAP7CJHD4ppN2+miJCPi2YTb0AAAAAAAAAACafgb17ZqO6/UHOuvWi57We5H664mTtOQAAgD8AAIA/ALKrvPZMR7rB0jm0kdOeLm4ORrq3WIkzAACAPwAAgD+zZ1W9gT8XPxuwpL39UbK+DqkkvUjFZzwAAAAAAAAAAE1WGz0UHIW6/Cq0tzwxpjFgqla7kEXNNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJLGA9V3lmMAWyUTegDjAF0lEdAlR4ihakhzXV9lChoBkdAZFu+aBqbjWgHTegDaAhHQJUjy4Ds+mp1fZQoaAZHQGKdQ5myxA1oB03oA2gIR0CVJWdqtYCAdX2UKGgGR0BpMDuv2Xb/aAdN6ANoCEdAlTutAX2ugnV9lChoBkdAccGPFvQ4TGgHTQQCaAhHQJU9zaJyhi91fZQoaAZHQGRJg7HQyARoB03oA2gIR0CVPmRrrPdEdX2UKGgGR0BgqXbKzRhMaAdN6ANoCEdAlUVOc2BJ7XV9lChoBkdAXZme8PFvRGgHTegDaAhHQJVMYDZDiOx1fZQoaAZHQERnmcOLBKtoB0v0aAhHQJVMhHI6r/91fZQoaAZHQGDQOieumrNoB03oA2gIR0CVTgp+MIeHdX2UKGgGR0BmHD987ZFoaAdN6ANoCEdAlU5SJfpljHV9lChoBkdAaB8tozvZy2gHTegDaAhHQJVOzqHGjsV1fZQoaAZHQGUI7pV0cOtoB03oA2gIR0CVUE+GGmDUdX2UKGgGR0BDVFDv3JxOaAdLxWgIR0CVUNlGPPszdX2UKGgGR0BgUOFWXC0oaAdN6ANoCEdAlVmYhY/3WXV9lChoBkdAaO8S+xnnMmgHTegDaAhHQJVfZ63RXwN1fZQoaAZHQGBj2fTTfBNoB03oA2gIR0CVa1fHPu5SdX2UKGgGR0BdRLjPv8ZUaAdN6ANoCEdAlW9ZxFRYR3V9lChoBkdAZTI96kZaV2gHTegDaAhHQJVxB3os7Mh1fZQoaAZHQGANEsSTQmhoB03oA2gIR0CVdub4rSVodX2UKGgGR0Bi8H4O+ZgHaAdN6ANoCEdAlXhsdPtUoHV9lChoBkdAYv0yBTXJ5mgHTegDaAhHQJV6oI7eVLV1fZQoaAZHQGWk/Y8Md95oB03oA2gIR0CVjqKQ7tAtdX2UKGgGR0BwP6HCXQdCaAdN/QFoCEdAlY7lLvkRz3V9lChoBkdAb6vPacqe9WgHTe8CaAhHQJWQjFBIFvB1fZQoaAZHQHHenP3SKFZoB03/AWgIR0CVk7VEuxr0dX2UKGgGR0BRf+TvAoG6aAdLy2gIR0CVnE56+nIidX2UKGgGR0Bl4OViWmgraAdN6ANoCEdAlZ1jtXxOL3V9lChoBkdAYPe8OCoS+WgHTegDaAhHQJWdj+irT6V1fZQoaAZHQGHpLxAjY7JoB03oA2gIR0CVn5nfl6qsdX2UKGgGR0BhsKI7/4qPaAdN6ANoCEdAlaDGbwz+FXV9lChoBkdAZJ4I9C/oJWgHTegDaAhHQJWi0bhm5Dt1fZQoaAZHQGTm5i/fwZxoB03oA2gIR0CVo5S+g13udX2UKGgGR0BwVQpiI+GHaAdNuAFoCEdAlanO3QUpNXV9lChoBkdAbq4sRxtHhGgHTdYCaAhHQJWz8ZKnNxF1fZQoaAZHQGBmU3n6l+FoB03oA2gIR0CVuwknTiKjdX2UKGgGR0BlyxLAYYR/aAdN6ANoCEdAlb2vlQuVX3V9lChoBkdAY7nSmZVn3GgHTegDaAhHQJW+yXUpd8l1fZQoaAZHQHFfSjpLVWloB03dAWgIR0CVv2mnO0LMdX2UKGgGR0BkBD2L5ylvaAdN6ANoCEdAlcWEO/cnE3V9lChoBkdAYWfCLMs6JmgHTegDaAhHQJXHkR3/xUh1fZQoaAZHQGNgf8uSOipoB03oA2gIR0CVyZoMrmQsdX2UKGgGR0Bu5pmI0qH5aAdNNwNoCEdAleGoT4+KTHV9lChoBkdAYhgSrYGt62gHTegDaAhHQJXi9noPkJd1fZQoaAZHQHKd7VrhzeZoB00QA2gIR0CV6pT1TR6XdX2UKGgGR0Bxoe0zCUHIaAdNtAFoCEdAleshgqmTDHV9lChoBkdAYgTVghKUV2gHTegDaAhHQJXrPxJ/XoV1fZQoaAZHQGJvYEW69TRoB03oA2gIR0CV7AvXK8tgdX2UKGgGR0BhWh1zQu27aAdN6ANoCEdAle1YmG/N7nV9lChoBkdAcNnix3V092gHTWgBaAhHQJXteTQmeDp1fZQoaAZHQGBM6/Zdv89oB03oA2gIR0CV7gQT238XdX2UKGgGR0BiJpN7BwdbaAdN6ANoCEdAle9eHJtBOnV9lChoBkdAcKfBPbfxc2gHTY4BaAhHQJXyhIClrM11fZQoaAZHQHCVIGhVU+9oB01oA2gIR0CV9vr8iwB6dX2UKGgGR0ByIjL7oB7vaAdNKQFoCEdAlgKhzvJA+3V9lChoBkdAcbkDE3sHB2gHTeMCaAhHQJYDPDNyHVR1fZQoaAZHQHI2ZnctXgdoB02EAWgIR0CWBB/lQuVYdX2UKGgGR0BvG++sYEW7aAdN2QNoCEdAlgThUipvP3V9lChoBkdAZlLAVwgkkmgHTegDaAhHQJYI5e9i+cp1fZQoaAZHQGmdli8WbgFoB03oA2gIR0CWCuDGLk0adX2UKGgGR0BRovtpmEoOaAdL5WgIR0CWER+Lm6oVdX2UKGgGR0BFFPrv9cbBaAdL6WgIR0CWEbIWgvlEdX2UKGgGR0BygdMIu5BkaAdNygJoCEdAlhWH6AOJ+HV9lChoBkdAcxeZRbbDdmgHTbwDaAhHQJYWniWE9Md1fZQoaAZHQGVC7r1M/QloB03oA2gIR0CWK9HLzPKMdX2UKGgGR0BwDGoJiRW+aAdNagNoCEdAlix6xHG0eHV9lChoBkdAcwocOskpqmgHTU4BaAhHQJYstmSQo1F1fZQoaAZHQE884H5aePJoB0vTaAhHQJYtkJfICEJ1fZQoaAZHQHJ6e27Wd3BoB03hA2gIR0CWMavpQk5ZdX2UKGgGR0BxI12KVII4aAdN2ANoCEdAljHKa1Cw8nV9lChoBkdAXz9eUpuuR2gHTegDaAhHQJYzKYu01Il1fZQoaAZHQGY7AeRxLkFoB03oA2gIR0CWNFRTS9dvdX2UKGgGR0Bm+zUmUnogaAdN6ANoCEdAljR4+GGmDXV9lChoBkdATH2RaHKwIWgHS9NoCEdAljW3TVlPJ3V9lChoBkdASaBigCfYjGgHS85oCEdAljZuW4Vh1HV9lChoBkdAcw6fPX05EWgHTTQBaAhHQJY3eSNfgJl1fZQoaAZHQHHbrIxQBPtoB02KAWgIR0CWO0uFpPAPdX2UKGgGR0BxUUm+j/MoaAdNJgFoCEdAljtudPLxJHV9lChoBkdAOUwJkXk5qGgHS+loCEdAlj62sA/9pHV9lChoBkdAUIc6YE4ecWgHS/VoCEdAlj9CfDk2gnV9lChoBkdAY8+E0zj3mGgHTegDaAhHQJZA9VtGd7R1fZQoaAZHQHFiiuhbnoxoB00uAWgIR0CWR7hR64UfdX2UKGgGR0BxjqocaOxTaAdNrQJoCEdAlkgL6Hj6vnV9lChoBkdAcqXRO1v2oWgHS+toCEdAlkkdgSeyzHV9lChoBkdAa/ckCV8kU2gHTV4BaAhHQJZLmJgsshB1fZQoaAZHQHCVUQGwA2hoB00hAWgIR0CWS8ElE7W/dX2UKGgGR0BimBWYF7laaAdN6ANoCEdAlkzGbsniN3V9lChoBkdAUZIBV+7UX2gHS+FoCEdAlk0J0r9VFXV9lChoBkdAZaSG7jDKo2gHTegDaAhHQJZNNhF3IMl1fZQoaAZHQHEEGcWj459oB01WAmgIR0CWTZtu1ndwdX2UKGgGR0BwvHy/bj95aAdNtANoCEdAlk7BL0z0pXV9lChoBkdAcgwqwhW5pmgHTfkBaAhHQJZPtFTefqZ1fZQoaAZHQHCmlfVqeshoB01TAmgIR0CWUkYNy5qedX2UKGgGR0BydsLux8lYaAdNmgJoCEdAllbbwz+FUXV9lChoBkdAVNSzsyBTXWgHS7BoCEdAlldxvm5lOHV9lChoBkdAcWc0PYnOSmgHTVcBaAhHQJZXezv7WNF1fZQoaAZHQHGCjvuw5eZoB00UAWgIR0CWV5vFm4AkdX2UKGgGR0BzL5zvJA+qaAdNFgFoCEdAlli9DD0lJHV9lChoBkdAcjnsuWa+e2gHTSYBaAhHQJZZrnOjZct1fZQoaAZHQHIS/4ZdfLNoB000AmgIR0CWWg18b70ndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}