DataHammer
commited on
Commit
•
4ab5120
1
Parent(s):
4113119
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- allenai/qasper
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: transformers
|
8 |
+
pipeline_tag: sentence-similarity
|
9 |
+
---
|
10 |
+
|
11 |
+
# SciDPR Context Encoder
|
12 |
+
|
13 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
### Model Description
|
20 |
+
|
21 |
+
<!-- Provide a longer summary of what this model is. -->
|
22 |
+
Dense Passage Retrieval (DPR) is a set of tools and models for state-of-the-art open-domain Q&A research. scidpr-ctx-encoder is the Context Encoder trained using the Scientific Question Answer (QA) dataset (Pradeep et al., 2021).
|
23 |
+
|
24 |
+
|
25 |
+
- **Developed by:** See [GitHub repo](https://github.com/gmftbyGMFTBY/science-llm) for model developers
|
26 |
+
- **Model type:** BERT-based encoder
|
27 |
+
- **Language(s) (NLP):** [Apache 2.0](https://github.com/gmftbyGMFTBY/science-llm/blob/main/LICENSE)
|
28 |
+
- **License:** English
|
29 |
+
|
30 |
+
### Model Sources [optional]
|
31 |
+
|
32 |
+
<!-- Provide the basic links for the model. -->
|
33 |
+
|
34 |
+
- **Repository:** [Girhub Repo](https://github.com/gmftbyGMFTBY/science-llm)
|
35 |
+
- **Paper [optional]:** [Paper Repo]()
|