|
|
import gradio as gr |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
import tensorflow as tf |
|
|
from safetensors import safe_open |
|
|
|
|
|
|
|
|
IMG_SIZE = 224 |
|
|
CLASS_NAMES = ["Fractured", "Non-Fractured"] |
|
|
SAFETENSOR_PATH = "osteologic.safetensors" |
|
|
|
|
|
|
|
|
def build_model(): |
|
|
inputs = tf.keras.Input(shape=(IMG_SIZE, IMG_SIZE, 3)) |
|
|
base_model = tf.keras.applications.MobileNetV2(weights=None, include_top=False, input_tensor=inputs) |
|
|
x = base_model.output |
|
|
x = tf.keras.layers.GlobalAveragePooling2D()(x) |
|
|
x = tf.keras.layers.Dense(128, activation="relu", kernel_regularizer=tf.keras.regularizers.l2(0.001))(x) |
|
|
x = tf.keras.layers.Dropout(0.5)(x) |
|
|
outputs = tf.keras.layers.Dense(len(CLASS_NAMES), activation="softmax")(x) |
|
|
model = tf.keras.Model(inputs, outputs) |
|
|
return model |
|
|
|
|
|
|
|
|
def load_weights(model, path=SAFETENSOR_PATH): |
|
|
with safe_open(path, framework="pt", device="cpu") as f: |
|
|
for layer in model.layers: |
|
|
if isinstance(layer, (tf.keras.layers.Conv2D, tf.keras.layers.Dense)): |
|
|
w_key = f"{layer.name}.weight" |
|
|
b_key = f"{layer.name}.bias" |
|
|
if w_key in f.keys() and b_key in f.keys(): |
|
|
weights = f.get_tensor(w_key) |
|
|
bias = f.get_tensor(b_key) |
|
|
|
|
|
if isinstance(layer, tf.keras.layers.Conv2D): |
|
|
weights = weights.transpose(2, 3, 1, 0) |
|
|
layer.set_weights([weights, bias]) |
|
|
return model |
|
|
|
|
|
|
|
|
model = build_model() |
|
|
model = load_weights(model) |
|
|
|
|
|
|
|
|
def predict(image: Image.Image): |
|
|
image = image.resize((IMG_SIZE, IMG_SIZE)).convert("RGB") |
|
|
arr = np.array(image) / 255.0 |
|
|
arr = arr.reshape(1, IMG_SIZE, IMG_SIZE, 3) |
|
|
preds = model.predict(arr)[0] |
|
|
label = CLASS_NAMES[np.argmax(preds)] |
|
|
confidence = round(float(np.max(preds)), 3) |
|
|
return f"{label} ({confidence})" |
|
|
|
|
|
|
|
|
gr.Interface( |
|
|
fn=predict, |
|
|
inputs=gr.Image(type="pil", label="Upload Radiograph"), |
|
|
outputs=gr.Text(label="Prediction"), |
|
|
title="𦴠OsteoLogic Fracture Detector", |
|
|
description="Upload a radiograph to detect fractures using safetensors-powered MobileNetV2." |
|
|
).launch() |