DarkRodry commited on
Commit
fd96398
1 Parent(s): 6e2ec09

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.25 +/- 0.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f826566db508afe91dc6fb13d59ed98f088722feeb9cd25f09339bee7cbc99b
3
+ size 106830
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7afda99e9000>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7afda99f2f80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1693763393600969447,
28
+ "learning_rate": 0.001,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4gSivf5TCD9uPYW+btCPvyKKOT/OFeI9MFnYP4gow78YkXi/T5cAQP4TGkDPoxbAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfSWFvvaUnj83DGK+lf5Svyu5UD7L2bA+I+TVP+Iljr/hfJS+lZbEPymAxz/Bspq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADiBKK9/lMIP249hb56m+y/dG/PP2AWsb9u0I+/Ioo5P84V4j2Zz12/xaYRv0OVT78wWdg/iCjDvxiReL/9LgA+FJ1Wv6pWzL9PlwBA/hMaQM+jFsCISe28Ji5XP/em1r+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-0.07911088 0.5325316 -0.2602343 ]\n [-1.1235483 0.724764 0.11039315]\n [ 1.6902218 -1.5246744 -0.97096395]\n [ 2.0092351 2.4074702 -2.353748 ]]",
34
+ "desired_goal": "[[-0.26005164 1.2389209 -0.22074972]\n [-0.8241971 0.20383136 0.34541163]\n [ 1.6710247 -1.1105311 -0.29001525]\n [ 1.5358454 1.5585986 -1.2085801 ]]",
35
+ "observation": "[[-0.07911088 0.5325316 -0.2602343 -1.8484948 1.6205888 -1.3834953 ]\n [-1.1235483 0.724764 0.11039315 -0.86644894 -0.56895095 -0.8108713 ]\n [ 1.6902218 -1.5246744 -0.97096395 0.12517925 -0.8383343 -1.5963948 ]\n [ 2.0092351 2.4074702 -2.353748 -0.02896573 0.8405479 -1.6769704 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEkA/Pcb4B77yNiY+YpaRvb5YFT5cfAw+R/WCPXOzdLx5wjo+ZXqiPIP9bT2a3Ws+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.04669196 -0.13278493 0.16231897]\n [-0.07108761 0.14584634 0.13719314]\n [ 0.06394439 -0.01493536 0.18238248]\n [ 0.01983375 0.0581031 0.23033753]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv5mD15B1LaqMAWyUSwGMAXSUR0Cne0aWX1J2dX2UKGgGR7/OVEd/8VHnaAdLA2gIR0Cneu9t/FzddX2UKGgGR7/C2tMfzSThaAdLAmgIR0Cnex+WWyC4dX2UKGgGR7/QMqz7di2EaAdLA2gIR0Cne1KziS7odX2UKGgGR7/OQ5myxA0LaAdLA2gIR0CnevwbMotudX2UKGgGR7/jzT4L1EmZaAdLCGgIR0Cnes/PHDJmdX2UKGgGR7/SCIDYAbQ1aAdLBGgIR0CnezJr+HafdX2UKGgGR7/PVWCEpRXPaAdLA2gIR0Cnewo3irDJdX2UKGgGR7/MlUIcBEKFaAdLA2gIR0Cnet3Xyy2QdX2UKGgGR7/ct52Qnx8VaAdLBGgIR0Cne2WFev6kdX2UKGgGR7/CGEf1YhdMaAdLAmgIR0CnezqE384xdX2UKGgGR7+2/UONHYpVaAdLAmgIR0Cne29bPhQ4dX2UKGgGR7/TT850bLlnaAdLA2gIR0CnexhddE9ddX2UKGgGR7/MVDa4+bExaAdLA2gIR0Cne0iQ1aW5dX2UKGgGR7/hkBjnV5KOaAdLBGgIR0CnevAiml67dX2UKGgGR7/Aksz2vjffaAdLAmgIR0Cne3gLy+YddX2UKGgGR7+eUhV2icoZaAdLAWgIR0Cne01VghKUdX2UKGgGR7/J9G7SRbKSaAdLA2gIR0CneyVafSQYdX2UKGgGR7+3EvTPSlWPaAdLAmgIR0Cne4CiZfD2dX2UKGgGR7+nRVp9JBgNaAdLAWgIR0CneylocrAhdX2UKGgGR7/MCEHt4RmLaAdLA2gIR0Cnevz5O8CgdX2UKGgGR7/JDYRNATqTaAdLA2gIR0Cne1xKYiPidX2UKGgGR7+46RyOq//OaAdLAmgIR0CnezSTyJ9BdX2UKGgGR7/J7Hhjvuw5aAdLA2gIR0Cne5BGH58CdX2UKGgGR7/UbVz6rNnoaAdLA2gIR0CnewzMA3kxdX2UKGgGR7+jFERaouPFaAdLAWgIR0Cne5SXt0FKdX2UKGgGR7/UKRMewLVnaAdLA2gIR0Cne2mdI5HVdX2UKGgGR7/Nk/8l5WzXaAdLA2gIR0Cne0GCqZMMdX2UKGgGR7/DMK1G9YfXaAdLAmgIR0CnexUSAYpEdX2UKGgGR7/Iza9K28ZlaAdLA2gIR0Cne3gvcrRTdX2UKGgGR7/A/lhgE2YOaAdLAmgIR0Cnex/xtpEhdX2UKGgGR7/Y+WGATZg5aAdLBGgIR0Cne6fDDTBqdX2UKGgGR7/QmGucMEzPaAdLA2gIR0Cne1CYTj//dX2UKGgGR7/AgvDgqEvkaAdLAmgIR0Cne7BClabGdX2UKGgGR7/hiVjZtelbaAdLBGgIR0Cne4tf5ULldX2UKGgGR7/UM1jy4FzNaAdLA2gIR0Cne76mwaBJdX2UKGgGR7/Q7kn1FpfyaAdLBWgIR0Cne2f4AS39dX2UKGgGR7/b9LHuJDVpaAdLBmgIR0CnezuQIUrTdX2UKGgGR7/BXzUZvUBoaAdLAmgIR0Cne8dPUKAsdX2UKGgGR7/WXNTtLL6laAdLBGgIR0Cne5xy4nWrdX2UKGgGR7/WGiYb83uNaAdLA2gIR0Cne3aJIlMRdX2UKGgGR7/Qd1uBMBZIaAdLA2gIR0Cne0pIlMRIdX2UKGgGR7/FjPv8ZUDMaAdLAmgIR0Cne9IIfKZEdX2UKGgGR7/P1IRRMvh7aAdLA2gIR0Cne6tAs053dX2UKGgGR7/LnnuAqd6LaAdLA2gIR0Cne4PGZNO/dX2UKGgGR7/LPl+3H7xeaAdLA2gIR0Cne1deY2KmdX2UKGgGR7/LgBtDUmUoaAdLA2gIR0Cne99fCyhSdX2UKGgGR7+4IldC3PRiaAdLAmgIR0Cne7RceKbbdX2UKGgGR7/Cc81XNke7aAdLAmgIR0Cne472criEdX2UKGgGR7+192HLzPKMaAdLAmgIR0Cne2KXOW0JdX2UKGgGR7/Ao2n889wFaAdLAmgIR0Cne79XtBv8dX2UKGgGR7+XAVO9FnZkaAdLAWgIR0Cne5NXYDkmdX2UKGgGR7+4rpaA4GUwaAdLAmgIR0Cne2s8ox5+dX2UKGgGR7/ZxASnLq2SaAdLBGgIR0Cne/MXSBsidX2UKGgGR7957HAAQxvfaAdLAWgIR0Cne2+QEIPcdX2UKGgGR7/NuHerMkhSaAdLA2gIR0Cne8wyIpH7dX2UKGgGR7/TKCg9Net0aAdLA2gIR0Cne6BQvYe1dX2UKGgGR7/BoX9BKL88aAdLAmgIR0Cne/4A0bcXdX2UKGgGR7+6BxxT850baAdLAmgIR0Cne3p35eqrdX2UKGgGR7/RTPSlWOp9aAdLA2gIR0Cne9rhR64UdX2UKGgGR7/SM6RyOq//aAdLA2gIR0Cne68H4XXRdX2UKGgGR7/BBDXvphWpaAdLAmgIR0Cne4KtHQQddX2UKGgGR7/Q3d9Dx9XtaAdLA2gIR0CnfAqQiiZfdX2UKGgGR7+6QYDTz/ZNaAdLAmgIR0Cne+SamXPadX2UKGgGR7/OZCv5gw49aAdLA2gIR0Cne8Ig3cYZdX2UKGgGR7/SiIcinpB5aAdLA2gIR0Cne5XeFcptdX2UKGgGR7/IrbQC0WuYaAdLA2gIR0CnfB2uX/o8dX2UKGgGR7/JHim2sq8UaAdLA2gIR0Cne/cRtgrpdX2UKGgGR7+1RxcVxjriaAdLAmgIR0CnfCZJK8L8dX2UKGgGR7/VYQ8OkLx7aAdLA2gIR0Cne6KwyIpIdX2UKGgGR7+NU0elsP8RaAdLAWgIR0CnfCqM3qA0dX2UKGgGR7/ao+wC8vmHaAdLBGgIR0Cne9OkLx7RdX2UKGgGR7+nbj94u9OAaAdLAWgIR0Cne6dkJ8fFdX2UKGgGR7/JYPoV2zOYaAdLA2gIR0CnfAaQFLWadX2UKGgGR7+11+y7f51vaAdLAmgIR0Cne95qdpZfdX2UKGgGR7/CogFHJ9y+aAdLAmgIR0Cne7IMBp6AdX2UKGgGR7/ANhE0BOpLaAdLAmgIR0CnfA7Qb+98dX2UKGgGR7+9Jtix3V0+aAdLAmgIR0CnfBbCSA6NdX2UKGgGR7/TExIre67NaAdLA2gIR0Cne+rvTgEVdX2UKGgGR7/R/Yao/A0saAdLA2gIR0Cne76TGHYZdX2UKGgGR7/gtgjQiRnwaAdLB2gIR0CnfE1sDW9UdX2UKGgGR7/K+10DEFW5aAdLA2gIR0CnfCZuyeI3dX2UKGgGR7/NQ0oBq9GraAdLA2gIR0Cne84UnG83dX2UKGgGR7+6YZ2pyZKGaAdLAmgIR0CnfC7EgntwdX2UKGgGR7/XznzQNTcZaAdLBGgIR0CnfGBmPHT7dX2UKGgGR7/hnPVurIYFaAdLBmgIR0CnfAlxGUfQdX2UKGgGR7/VHZ9NN8E3aAdLA2gIR0Cne907Sy+pdX2UKGgGR7/W2alUIcBEaAdLA2gIR0CnfD39rGipdX2UKGgGR7+zMxGlQ/HHaAdLAmgIR0CnfBIHC4z8dX2UKGgGR7/Byo4uK4x2aAdLAmgIR0Cne+XlCCz1dX2UKGgGR7/Jd/J/5LyuaAdLA2gIR0CnfG2/ag27dX2UKGgGR7+aOHWSU1Q7aAdLAWgIR0CnfHGX5WRzdX2UKGgGR7++N83Mpw0gaAdLAmgIR0CnfEaSs8xLdX2UKGgGR7/Ibc45tFa0aAdLA2gIR0CnfCDa4+bFdX2UKGgGR7/STWXkYGdJaAdLA2gIR0Cne/RsVLzxdX2UKGgGR7/DGjKxLTQWaAdLAmgIR0CnfHxLsa86dX2UKGgGR7+pBcAzYVZcaAdLAWgIR0Cne/imVJL/dX2UKGgGR7/Qfa6BiCrcaAdLA2gIR0CnfFVLSNOudX2UKGgGR7+9KWcBltj1aAdLAmgIR0CnfClh5PdmdX2UKGgGR7/BO1OTJQtSaAdLAmgIR0CnfIS7wrlOdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.95,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b33679971a99691238b19bc298a798fb4ad456743bc67e7f00209f9f44e50a1c
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3eb3dadeea44f38e3e7198440b7ccf2bd093644dad086a72debab4378ada9904
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7afda99e9000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7afda99f2f80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693763393600969447, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4gSivf5TCD9uPYW+btCPvyKKOT/OFeI9MFnYP4gow78YkXi/T5cAQP4TGkDPoxbAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfSWFvvaUnj83DGK+lf5Svyu5UD7L2bA+I+TVP+Iljr/hfJS+lZbEPymAxz/Bspq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADiBKK9/lMIP249hb56m+y/dG/PP2AWsb9u0I+/Ioo5P84V4j2Zz12/xaYRv0OVT78wWdg/iCjDvxiReL/9LgA+FJ1Wv6pWzL9PlwBA/hMaQM+jFsCISe28Ji5XP/em1r+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.07911088 0.5325316 -0.2602343 ]\n [-1.1235483 0.724764 0.11039315]\n [ 1.6902218 -1.5246744 -0.97096395]\n [ 2.0092351 2.4074702 -2.353748 ]]", "desired_goal": "[[-0.26005164 1.2389209 -0.22074972]\n [-0.8241971 0.20383136 0.34541163]\n [ 1.6710247 -1.1105311 -0.29001525]\n [ 1.5358454 1.5585986 -1.2085801 ]]", "observation": "[[-0.07911088 0.5325316 -0.2602343 -1.8484948 1.6205888 -1.3834953 ]\n [-1.1235483 0.724764 0.11039315 -0.86644894 -0.56895095 -0.8108713 ]\n [ 1.6902218 -1.5246744 -0.97096395 0.12517925 -0.8383343 -1.5963948 ]\n [ 2.0092351 2.4074702 -2.353748 -0.02896573 0.8405479 -1.6769704 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEkA/Pcb4B77yNiY+YpaRvb5YFT5cfAw+R/WCPXOzdLx5wjo+ZXqiPIP9bT2a3Ws+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.04669196 -0.13278493 0.16231897]\n [-0.07108761 0.14584634 0.13719314]\n [ 0.06394439 -0.01493536 0.18238248]\n [ 0.01983375 0.0581031 0.23033753]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv5mD15B1LaqMAWyUSwGMAXSUR0Cne0aWX1J2dX2UKGgGR7/OVEd/8VHnaAdLA2gIR0Cneu9t/FzddX2UKGgGR7/C2tMfzSThaAdLAmgIR0Cnex+WWyC4dX2UKGgGR7/QMqz7di2EaAdLA2gIR0Cne1KziS7odX2UKGgGR7/OQ5myxA0LaAdLA2gIR0CnevwbMotudX2UKGgGR7/jzT4L1EmZaAdLCGgIR0Cnes/PHDJmdX2UKGgGR7/SCIDYAbQ1aAdLBGgIR0CnezJr+HafdX2UKGgGR7/PVWCEpRXPaAdLA2gIR0Cnewo3irDJdX2UKGgGR7/MlUIcBEKFaAdLA2gIR0Cnet3Xyy2QdX2UKGgGR7/ct52Qnx8VaAdLBGgIR0Cne2WFev6kdX2UKGgGR7/CGEf1YhdMaAdLAmgIR0CnezqE384xdX2UKGgGR7+2/UONHYpVaAdLAmgIR0Cne29bPhQ4dX2UKGgGR7/TT850bLlnaAdLA2gIR0CnexhddE9ddX2UKGgGR7/MVDa4+bExaAdLA2gIR0Cne0iQ1aW5dX2UKGgGR7/hkBjnV5KOaAdLBGgIR0CnevAiml67dX2UKGgGR7/Aksz2vjffaAdLAmgIR0Cne3gLy+YddX2UKGgGR7+eUhV2icoZaAdLAWgIR0Cne01VghKUdX2UKGgGR7/J9G7SRbKSaAdLA2gIR0CneyVafSQYdX2UKGgGR7+3EvTPSlWPaAdLAmgIR0Cne4CiZfD2dX2UKGgGR7+nRVp9JBgNaAdLAWgIR0CneylocrAhdX2UKGgGR7/MCEHt4RmLaAdLA2gIR0Cnevz5O8CgdX2UKGgGR7/JDYRNATqTaAdLA2gIR0Cne1xKYiPidX2UKGgGR7+46RyOq//OaAdLAmgIR0CnezSTyJ9BdX2UKGgGR7/J7Hhjvuw5aAdLA2gIR0Cne5BGH58CdX2UKGgGR7/UbVz6rNnoaAdLA2gIR0CnewzMA3kxdX2UKGgGR7+jFERaouPFaAdLAWgIR0Cne5SXt0FKdX2UKGgGR7/UKRMewLVnaAdLA2gIR0Cne2mdI5HVdX2UKGgGR7/Nk/8l5WzXaAdLA2gIR0Cne0GCqZMMdX2UKGgGR7/DMK1G9YfXaAdLAmgIR0CnexUSAYpEdX2UKGgGR7/Iza9K28ZlaAdLA2gIR0Cne3gvcrRTdX2UKGgGR7/A/lhgE2YOaAdLAmgIR0Cnex/xtpEhdX2UKGgGR7/Y+WGATZg5aAdLBGgIR0Cne6fDDTBqdX2UKGgGR7/QmGucMEzPaAdLA2gIR0Cne1CYTj//dX2UKGgGR7/AgvDgqEvkaAdLAmgIR0Cne7BClabGdX2UKGgGR7/hiVjZtelbaAdLBGgIR0Cne4tf5ULldX2UKGgGR7/UM1jy4FzNaAdLA2gIR0Cne76mwaBJdX2UKGgGR7/Q7kn1FpfyaAdLBWgIR0Cne2f4AS39dX2UKGgGR7/b9LHuJDVpaAdLBmgIR0CnezuQIUrTdX2UKGgGR7/BXzUZvUBoaAdLAmgIR0Cne8dPUKAsdX2UKGgGR7/WXNTtLL6laAdLBGgIR0Cne5xy4nWrdX2UKGgGR7/WGiYb83uNaAdLA2gIR0Cne3aJIlMRdX2UKGgGR7/Qd1uBMBZIaAdLA2gIR0Cne0pIlMRIdX2UKGgGR7/FjPv8ZUDMaAdLAmgIR0Cne9IIfKZEdX2UKGgGR7/P1IRRMvh7aAdLA2gIR0Cne6tAs053dX2UKGgGR7/LnnuAqd6LaAdLA2gIR0Cne4PGZNO/dX2UKGgGR7/LPl+3H7xeaAdLA2gIR0Cne1deY2KmdX2UKGgGR7/LgBtDUmUoaAdLA2gIR0Cne99fCyhSdX2UKGgGR7+4IldC3PRiaAdLAmgIR0Cne7RceKbbdX2UKGgGR7/Cc81XNke7aAdLAmgIR0Cne472criEdX2UKGgGR7+192HLzPKMaAdLAmgIR0Cne2KXOW0JdX2UKGgGR7/Ao2n889wFaAdLAmgIR0Cne79XtBv8dX2UKGgGR7+XAVO9FnZkaAdLAWgIR0Cne5NXYDkmdX2UKGgGR7+4rpaA4GUwaAdLAmgIR0Cne2s8ox5+dX2UKGgGR7/ZxASnLq2SaAdLBGgIR0Cne/MXSBsidX2UKGgGR7957HAAQxvfaAdLAWgIR0Cne2+QEIPcdX2UKGgGR7/NuHerMkhSaAdLA2gIR0Cne8wyIpH7dX2UKGgGR7/TKCg9Net0aAdLA2gIR0Cne6BQvYe1dX2UKGgGR7/BoX9BKL88aAdLAmgIR0Cne/4A0bcXdX2UKGgGR7+6BxxT850baAdLAmgIR0Cne3p35eqrdX2UKGgGR7/RTPSlWOp9aAdLA2gIR0Cne9rhR64UdX2UKGgGR7/SM6RyOq//aAdLA2gIR0Cne68H4XXRdX2UKGgGR7/BBDXvphWpaAdLAmgIR0Cne4KtHQQddX2UKGgGR7/Q3d9Dx9XtaAdLA2gIR0CnfAqQiiZfdX2UKGgGR7+6QYDTz/ZNaAdLAmgIR0Cne+SamXPadX2UKGgGR7/OZCv5gw49aAdLA2gIR0Cne8Ig3cYZdX2UKGgGR7/SiIcinpB5aAdLA2gIR0Cne5XeFcptdX2UKGgGR7/IrbQC0WuYaAdLA2gIR0CnfB2uX/o8dX2UKGgGR7/JHim2sq8UaAdLA2gIR0Cne/cRtgrpdX2UKGgGR7+1RxcVxjriaAdLAmgIR0CnfCZJK8L8dX2UKGgGR7/VYQ8OkLx7aAdLA2gIR0Cne6KwyIpIdX2UKGgGR7+NU0elsP8RaAdLAWgIR0CnfCqM3qA0dX2UKGgGR7/ao+wC8vmHaAdLBGgIR0Cne9OkLx7RdX2UKGgGR7+nbj94u9OAaAdLAWgIR0Cne6dkJ8fFdX2UKGgGR7/JYPoV2zOYaAdLA2gIR0CnfAaQFLWadX2UKGgGR7+11+y7f51vaAdLAmgIR0Cne95qdpZfdX2UKGgGR7/CogFHJ9y+aAdLAmgIR0Cne7IMBp6AdX2UKGgGR7/ANhE0BOpLaAdLAmgIR0CnfA7Qb+98dX2UKGgGR7+9Jtix3V0+aAdLAmgIR0CnfBbCSA6NdX2UKGgGR7/TExIre67NaAdLA2gIR0Cne+rvTgEVdX2UKGgGR7/R/Yao/A0saAdLA2gIR0Cne76TGHYZdX2UKGgGR7/gtgjQiRnwaAdLB2gIR0CnfE1sDW9UdX2UKGgGR7/K+10DEFW5aAdLA2gIR0CnfCZuyeI3dX2UKGgGR7/NQ0oBq9GraAdLA2gIR0Cne84UnG83dX2UKGgGR7+6YZ2pyZKGaAdLAmgIR0CnfC7EgntwdX2UKGgGR7/XznzQNTcZaAdLBGgIR0CnfGBmPHT7dX2UKGgGR7/hnPVurIYFaAdLBmgIR0CnfAlxGUfQdX2UKGgGR7/VHZ9NN8E3aAdLA2gIR0Cne907Sy+pdX2UKGgGR7/W2alUIcBEaAdLA2gIR0CnfD39rGipdX2UKGgGR7+zMxGlQ/HHaAdLAmgIR0CnfBIHC4z8dX2UKGgGR7/Byo4uK4x2aAdLAmgIR0Cne+XlCCz1dX2UKGgGR7/Jd/J/5LyuaAdLA2gIR0CnfG2/ag27dX2UKGgGR7+aOHWSU1Q7aAdLAWgIR0CnfHGX5WRzdX2UKGgGR7++N83Mpw0gaAdLAmgIR0CnfEaSs8xLdX2UKGgGR7/Ibc45tFa0aAdLA2gIR0CnfCDa4+bFdX2UKGgGR7/STWXkYGdJaAdLA2gIR0Cne/RsVLzxdX2UKGgGR7/DGjKxLTQWaAdLAmgIR0CnfHxLsa86dX2UKGgGR7+pBcAzYVZcaAdLAWgIR0Cne/imVJL/dX2UKGgGR7/Qfa6BiCrcaAdLA2gIR0CnfFVLSNOudX2UKGgGR7+9KWcBltj1aAdLAmgIR0CnfClh5PdmdX2UKGgGR7/BO1OTJQtSaAdLAmgIR0CnfIS7wrlOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.251425451785326, "std_reward": 0.09462971127142689, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-03T18:38:27.443078"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbff0994cb189da847c9c311f4119b73ea74433ec1ad8e28d0eb42a1365ac5b2
3
+ size 2623