DarkAirforce commited on
Commit
4ffbb6e
·
1 Parent(s): 661eb06

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.21 +/- 1.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c2bb65d27a491a36330d28e36324c35dcbeebde2617c0a5ca65e87885f5b244
3
+ size 108058
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7896f8381630>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7896f8379a80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1691438580602842326,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqXbAPlAupryg9RQ/qXbAPlAupryg9RQ/qXbAPlAupryg9RQ/qXbAPlAupryg9RQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABq8lv/T0tr73Kzm//tMKPi642j9BCMQ9c4EOv9YEmj9Rzag/CsJXPnlmtj8fYOO+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACpdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]]",
38
+ "desired_goal": "[[-0.6472019 -0.3573376 -0.7233271 ]\n [ 0.13557431 1.7087457 0.09571887]\n [-0.55666274 1.2032726 1.3187658 ]\n [ 0.21070114 1.4250022 -0.44409272]]",
39
+ "observation": "[[ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAArXhO7llBT7q1jk+iIF9vFriwT266GE+J0bAvda77z32/XE9qdbdPQLklD1xqKM7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.00688803 0.13027085 0.1814839 ]\n [-0.01547278 0.09467001 0.22061434]\n [-0.0938838 0.11705749 0.05908009]\n [ 0.10831959 0.07270052 0.00499445]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgZNt4A5EGMCUhpRSlIwBbJRLMowBdJRHQKi4Wuez2OB1fZQoaAZoCWgPQwicNXhflesGwJSGlFKUaBVLMmgWR0CouC4LkS26dX2UKGgGaAloD0MIsg+yLJiYC8CUhpRSlGgVSzJoFkdAqLgBgy/KyXV9lChoBmgJaA9DCCrHZHH/IRXAlIaUUpRoFUsyaBZHQKi30tVaOgh1fZQoaAZoCWgPQwh/wAMDCN8MwJSGlFKUaBVLMmgWR0CouU8O09hadX2UKGgGaAloD0MIRQ2mYfjIA8CUhpRSlGgVSzJoFkdAqLkiowVTJnV9lChoBmgJaA9DCB3jioujkgHAlIaUUpRoFUsyaBZHQKi49pwjt5V1fZQoaAZoCWgPQwichxOYTmsLwJSGlFKUaBVLMmgWR0CouMjCgsbvdX2UKGgGaAloD0MIaqM6HchaBcCUhpRSlGgVSzJoFkdAqLo6a9bosHV9lChoBmgJaA9DCJ6VtOIbmhDAlIaUUpRoFUsyaBZHQKi6DYkE9uB1fZQoaAZoCWgPQwgKMCx/vs0RwJSGlFKUaBVLMmgWR0CoueD1PFefdX2UKGgGaAloD0MIfgG9cOeCE8CUhpRSlGgVSzJoFkdAqLmyaNMoMXV9lChoBmgJaA9DCOnvpfCgWRTAlIaUUpRoFUsyaBZHQKi7J2FFlTZ1fZQoaAZoCWgPQwiWJqWg20sQwJSGlFKUaBVLMmgWR0Couvr8rI5pdX2UKGgGaAloD0MIN6YnLPFgDcCUhpRSlGgVSzJoFkdAqLrPGMn7YXV9lChoBmgJaA9DCL7aUZyjPhXAlIaUUpRoFUsyaBZHQKi6oT238XN1fZQoaAZoCWgPQwhWurvOhtwdwJSGlFKUaBVLMmgWR0CovBn1nM+vdX2UKGgGaAloD0MIp5TXSujuC8CUhpRSlGgVSzJoFkdAqLvtK9PDYXV9lChoBmgJaA9DCJdUbTfBFwrAlIaUUpRoFUsyaBZHQKi7wOCoS+R1fZQoaAZoCWgPQwggls0ckuoQwJSGlFKUaBVLMmgWR0Cou5KzzErHdX2UKGgGaAloD0MIgsZMol5wCsCUhpRSlGgVSzJoFkdAqL0OLxZuAXV9lChoBmgJaA9DCJCCp5ArlQ3AlIaUUpRoFUsyaBZHQKi84VbA1vV1fZQoaAZoCWgPQwi86gHzkMkMwJSGlFKUaBVLMmgWR0CovLUjs2NvdX2UKGgGaAloD0MIhpDz/j9OEsCUhpRSlGgVSzJoFkdAqLyG5xzaK3V9lChoBmgJaA9DCM8Qjln2hBDAlIaUUpRoFUsyaBZHQKi+A3kxREZ1fZQoaAZoCWgPQwg1lrA2xs4GwJSGlFKUaBVLMmgWR0CovdaAFxGUdX2UKGgGaAloD0MIZTTyecXzEcCUhpRSlGgVSzJoFkdAqL2qEDhcaHV9lChoBmgJaA9DCKIKf4Y3ywvAlIaUUpRoFUsyaBZHQKi9e9GI9DB1fZQoaAZoCWgPQwhh4o+izmwQwJSGlFKUaBVLMmgWR0Covvi1Z1V6dX2UKGgGaAloD0MIs9MP6iLFDMCUhpRSlGgVSzJoFkdAqL7L3bmEG3V9lChoBmgJaA9DCFXejnBakBLAlIaUUpRoFUsyaBZHQKi+n7iQ1aZ1fZQoaAZoCWgPQwg2r+qsFggRwJSGlFKUaBVLMmgWR0CovnFnAZbZdX2UKGgGaAloD0MIzjeie9bVCcCUhpRSlGgVSzJoFkdAqL/xeJHiFXV9lChoBmgJaA9DCHSzP1BuuxTAlIaUUpRoFUsyaBZHQKi/xGpda+x1fZQoaAZoCWgPQwjmkT8YeJ4SwJSGlFKUaBVLMmgWR0Cov5gwwj+rdX2UKGgGaAloD0MIbCbfbHPDD8CUhpRSlGgVSzJoFkdAqL9pv5xionV9lChoBmgJaA9DCDLIXYQp6hnAlIaUUpRoFUsyaBZHQKjA5Y02tMh1fZQoaAZoCWgPQwjecYqO5BIRwJSGlFKUaBVLMmgWR0CowLjbzshQdX2UKGgGaAloD0MI5E7pYP0fCsCUhpRSlGgVSzJoFkdAqMCMbHZK4HV9lChoBmgJaA9DCIKN69/1ORXAlIaUUpRoFUsyaBZHQKjAXhDPWx11fZQoaAZoCWgPQwiM22gAb8EMwJSGlFKUaBVLMmgWR0Cower08NhFdX2UKGgGaAloD0MIrYTukjirEMCUhpRSlGgVSzJoFkdAqMG+VmjCYXV9lChoBmgJaA9DCPg1kgThChPAlIaUUpRoFUsyaBZHQKjBkdMCcPR1fZQoaAZoCWgPQwhWYwlrY2wJwJSGlFKUaBVLMmgWR0CowWNF8XvZdX2UKGgGaAloD0MIgm+aPjtgD8CUhpRSlGgVSzJoFkdAqMLpeAuqWHV9lChoBmgJaA9DCH0/NV66eRHAlIaUUpRoFUsyaBZHQKjCvHcUM5R1fZQoaAZoCWgPQwj0F3rE6LkPwJSGlFKUaBVLMmgWR0CowpAckt2+dX2UKGgGaAloD0MIQuxMofOaEsCUhpRSlGgVSzJoFkdAqMJhpDeCTXV9lChoBmgJaA9DCG4UWWso1QbAlIaUUpRoFUsyaBZHQKjD9a1TisJ1fZQoaAZoCWgPQwgqVg3C3F4YwJSGlFKUaBVLMmgWR0Cow8jw6QvIdX2UKGgGaAloD0MIPITx07i3C8CUhpRSlGgVSzJoFkdAqMOcfPomonV9lChoBmgJaA9DCNKMRdPZqQ/AlIaUUpRoFUsyaBZHQKjDbiPQv6F1fZQoaAZoCWgPQwgai6azkyEHwJSGlFKUaBVLMmgWR0CoxWEOqebvdX2UKGgGaAloD0MIv9alRugHGMCUhpRSlGgVSzJoFkdAqMU01VHWjHV9lChoBmgJaA9DCHtP5bSnVBPAlIaUUpRoFUsyaBZHQKjFCPhAGB51fZQoaAZoCWgPQwibG9MTlrgSwJSGlFKUaBVLMmgWR0CoxNsK1G9YdX2UKGgGaAloD0MInkMZqmLKD8CUhpRSlGgVSzJoFkdAqMbqHARChXV9lChoBmgJaA9DCFpiZTTyORzAlIaUUpRoFUsyaBZHQKjGvbbDdgx1fZQoaAZoCWgPQwgGf7+YLfkLwJSGlFKUaBVLMmgWR0CoxpHQyAQQdX2UKGgGaAloD0MIYDqt26AWD8CUhpRSlGgVSzJoFkdAqMZkNe+mFnV9lChoBmgJaA9DCLKfxVIkfxbAlIaUUpRoFUsyaBZHQKjIgN8VpK11fZQoaAZoCWgPQwgh6GhVS0oTwJSGlFKUaBVLMmgWR0CoyFRnnMdMdX2UKGgGaAloD0MIZk8Cm3PAEMCUhpRSlGgVSzJoFkdAqMgoomXw9nV9lChoBmgJaA9DCNEF9S1zyh7AlIaUUpRoFUsyaBZHQKjH+vwmVqx1fZQoaAZoCWgPQwhGlPYGXzgKwJSGlFKUaBVLMmgWR0CoyijHOryUdX2UKGgGaAloD0MIDJQUWAATCsCUhpRSlGgVSzJoFkdAqMn8nTiKi3V9lChoBmgJaA9DCCkGSDSBUhDAlIaUUpRoFUsyaBZHQKjJ0Uh3aBZ1fZQoaAZoCWgPQwgn+RG/Yg0CwJSGlFKUaBVLMmgWR0CoyaOgxrSFdX2UKGgGaAloD0MIjQxyF2GqDMCUhpRSlGgVSzJoFkdAqMtsw5/9YXV9lChoBmgJaA9DCAiSdw5laAzAlIaUUpRoFUsyaBZHQKjLP8gIQe51fZQoaAZoCWgPQwiPpnoy/8gMwJSGlFKUaBVLMmgWR0CoyxNCAtnPdX2UKGgGaAloD0MIcEIhAg6BHcCUhpRSlGgVSzJoFkdAqMrkpLEk0XV9lChoBmgJaA9DCMzUJHhD+gXAlIaUUpRoFUsyaBZHQKjMXWxyGSJ1fZQoaAZoCWgPQwiCcAUU6ikKwJSGlFKUaBVLMmgWR0CozDCvxH5KdX2UKGgGaAloD0MIYwrWOJuuB8CUhpRSlGgVSzJoFkdAqMwEFKTSs3V9lChoBmgJaA9DCLyxoDAoQxLAlIaUUpRoFUsyaBZHQKjL1VtGd7R1fZQoaAZoCWgPQwi7D0BqEwcJwJSGlFKUaBVLMmgWR0CozU47aIvbdX2UKGgGaAloD0MImbwBZr7jDMCUhpRSlGgVSzJoFkdAqM0hKnNxEXV9lChoBmgJaA9DCOJ1/YLdMBHAlIaUUpRoFUsyaBZHQKjM9JzT4L11fZQoaAZoCWgPQwinsb0W9B4UwJSGlFKUaBVLMmgWR0CozMYiosI3dX2UKGgGaAloD0MI8IXJVMGIG8CUhpRSlGgVSzJoFkdAqM4/MY/FBXV9lChoBmgJaA9DCNwvn6wY3hDAlIaUUpRoFUsyaBZHQKjOEl9jPOZ1fZQoaAZoCWgPQwjgSQuXVfgJwJSGlFKUaBVLMmgWR0CozeX8wYcedX2UKGgGaAloD0MIUyXK3lJOCcCUhpRSlGgVSzJoFkdAqM23PzFuN3V9lChoBmgJaA9DCPg3aK8+LhHAlIaUUpRoFUsyaBZHQKjPMPsAvL51fZQoaAZoCWgPQwjsZ7EUyXcIwJSGlFKUaBVLMmgWR0CozwQ5eZ5SdX2UKGgGaAloD0MINIXOa+zSFcCUhpRSlGgVSzJoFkdAqM7Xp6hQFnV9lChoBmgJaA9DCMjuAiUFRhjAlIaUUpRoFUsyaBZHQKjOqQV9F4N1fZQoaAZoCWgPQwhUO8PUlsoTwJSGlFKUaBVLMmgWR0Co0CcDr7fpdX2UKGgGaAloD0MIvK5fsBsmGMCUhpRSlGgVSzJoFkdAqM/59Vmz0HV9lChoBmgJaA9DCGqIKvwZPg3AlIaUUpRoFUsyaBZHQKjPzWdVea91fZQoaAZoCWgPQwjrcd9qnZgMwJSGlFKUaBVLMmgWR0Coz58DB/I9dX2UKGgGaAloD0MI+5Y5XRYzBsCUhpRSlGgVSzJoFkdAqNERJmNBGHV9lChoBmgJaA9DCG6nrRHBWA3AlIaUUpRoFUsyaBZHQKjQ5BC2MKl1fZQoaAZoCWgPQwhnnfF9cYkXwJSGlFKUaBVLMmgWR0Co0Ld2xIJ7dX2UKGgGaAloD0MIyvrNxHQhEMCUhpRSlGgVSzJoFkdAqNCIvi97GHV9lChoBmgJaA9DCLR224XmOhHAlIaUUpRoFUsyaBZHQKjSB67/XGx1fZQoaAZoCWgPQwgaNPRPcGEiwJSGlFKUaBVLMmgWR0Co0dqoAGSqdX2UKGgGaAloD0MIK2wGuCA7BcCUhpRSlGgVSzJoFkdAqNGuEM9bHXV9lChoBmgJaA9DCJaS5SSUDhDAlIaUUpRoFUsyaBZHQKjRf8IiTt91ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 52114,
66
+ "observation_space": {
67
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
68
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
69
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
70
+ "_shape": null,
71
+ "dtype": null,
72
+ "_np_random": null
73
+ },
74
+ "action_space": {
75
+ ":type:": "<class 'gym.spaces.box.Box'>",
76
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
77
+ "dtype": "float32",
78
+ "_shape": [
79
+ 3
80
+ ],
81
+ "low": "[-1. -1. -1.]",
82
+ "high": "[1. 1. 1.]",
83
+ "bounded_below": "[ True True True]",
84
+ "bounded_above": "[ True True True]",
85
+ "_np_random": null
86
+ },
87
+ "n_envs": 4,
88
+ "n_steps": 5,
89
+ "gamma": 0.99,
90
+ "gae_lambda": 1.0,
91
+ "ent_coef": 0.0,
92
+ "vf_coef": 0.5,
93
+ "max_grad_norm": 0.5,
94
+ "normalize_advantage": false
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db3b60cdcbc457a8c1bbbabed209481047ac549f34074cf6c0850ee93c23c4dc
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e645182c090e2dae77c7a3543ba4dee166830fb493cd36038be98beeaff54557
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7896f8381630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7896f8379a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691438580602842326, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqXbAPlAupryg9RQ/qXbAPlAupryg9RQ/qXbAPlAupryg9RQ/qXbAPlAupryg9RQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABq8lv/T0tr73Kzm//tMKPi642j9BCMQ9c4EOv9YEmj9Rzag/CsJXPnlmtj8fYOO+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACpdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]]", "desired_goal": "[[-0.6472019 -0.3573376 -0.7233271 ]\n [ 0.13557431 1.7087457 0.09571887]\n [-0.55666274 1.2032726 1.3187658 ]\n [ 0.21070114 1.4250022 -0.44409272]]", "observation": "[[ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAArXhO7llBT7q1jk+iIF9vFriwT266GE+J0bAvda77z32/XE9qdbdPQLklD1xqKM7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00688803 0.13027085 0.1814839 ]\n [-0.01547278 0.09467001 0.22061434]\n [-0.0938838 0.11705749 0.05908009]\n [ 0.10831959 0.07270052 0.00499445]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgZNt4A5EGMCUhpRSlIwBbJRLMowBdJRHQKi4Wuez2OB1fZQoaAZoCWgPQwicNXhflesGwJSGlFKUaBVLMmgWR0CouC4LkS26dX2UKGgGaAloD0MIsg+yLJiYC8CUhpRSlGgVSzJoFkdAqLgBgy/KyXV9lChoBmgJaA9DCCrHZHH/IRXAlIaUUpRoFUsyaBZHQKi30tVaOgh1fZQoaAZoCWgPQwh/wAMDCN8MwJSGlFKUaBVLMmgWR0CouU8O09hadX2UKGgGaAloD0MIRQ2mYfjIA8CUhpRSlGgVSzJoFkdAqLkiowVTJnV9lChoBmgJaA9DCB3jioujkgHAlIaUUpRoFUsyaBZHQKi49pwjt5V1fZQoaAZoCWgPQwichxOYTmsLwJSGlFKUaBVLMmgWR0CouMjCgsbvdX2UKGgGaAloD0MIaqM6HchaBcCUhpRSlGgVSzJoFkdAqLo6a9bosHV9lChoBmgJaA9DCJ6VtOIbmhDAlIaUUpRoFUsyaBZHQKi6DYkE9uB1fZQoaAZoCWgPQwgKMCx/vs0RwJSGlFKUaBVLMmgWR0CoueD1PFefdX2UKGgGaAloD0MIfgG9cOeCE8CUhpRSlGgVSzJoFkdAqLmyaNMoMXV9lChoBmgJaA9DCOnvpfCgWRTAlIaUUpRoFUsyaBZHQKi7J2FFlTZ1fZQoaAZoCWgPQwiWJqWg20sQwJSGlFKUaBVLMmgWR0Couvr8rI5pdX2UKGgGaAloD0MIN6YnLPFgDcCUhpRSlGgVSzJoFkdAqLrPGMn7YXV9lChoBmgJaA9DCL7aUZyjPhXAlIaUUpRoFUsyaBZHQKi6oT238XN1fZQoaAZoCWgPQwhWurvOhtwdwJSGlFKUaBVLMmgWR0CovBn1nM+vdX2UKGgGaAloD0MIp5TXSujuC8CUhpRSlGgVSzJoFkdAqLvtK9PDYXV9lChoBmgJaA9DCJdUbTfBFwrAlIaUUpRoFUsyaBZHQKi7wOCoS+R1fZQoaAZoCWgPQwggls0ckuoQwJSGlFKUaBVLMmgWR0Cou5KzzErHdX2UKGgGaAloD0MIgsZMol5wCsCUhpRSlGgVSzJoFkdAqL0OLxZuAXV9lChoBmgJaA9DCJCCp5ArlQ3AlIaUUpRoFUsyaBZHQKi84VbA1vV1fZQoaAZoCWgPQwi86gHzkMkMwJSGlFKUaBVLMmgWR0CovLUjs2NvdX2UKGgGaAloD0MIhpDz/j9OEsCUhpRSlGgVSzJoFkdAqLyG5xzaK3V9lChoBmgJaA9DCM8Qjln2hBDAlIaUUpRoFUsyaBZHQKi+A3kxREZ1fZQoaAZoCWgPQwg1lrA2xs4GwJSGlFKUaBVLMmgWR0CovdaAFxGUdX2UKGgGaAloD0MIZTTyecXzEcCUhpRSlGgVSzJoFkdAqL2qEDhcaHV9lChoBmgJaA9DCKIKf4Y3ywvAlIaUUpRoFUsyaBZHQKi9e9GI9DB1fZQoaAZoCWgPQwhh4o+izmwQwJSGlFKUaBVLMmgWR0Covvi1Z1V6dX2UKGgGaAloD0MIs9MP6iLFDMCUhpRSlGgVSzJoFkdAqL7L3bmEG3V9lChoBmgJaA9DCFXejnBakBLAlIaUUpRoFUsyaBZHQKi+n7iQ1aZ1fZQoaAZoCWgPQwg2r+qsFggRwJSGlFKUaBVLMmgWR0CovnFnAZbZdX2UKGgGaAloD0MIzjeie9bVCcCUhpRSlGgVSzJoFkdAqL/xeJHiFXV9lChoBmgJaA9DCHSzP1BuuxTAlIaUUpRoFUsyaBZHQKi/xGpda+x1fZQoaAZoCWgPQwjmkT8YeJ4SwJSGlFKUaBVLMmgWR0Cov5gwwj+rdX2UKGgGaAloD0MIbCbfbHPDD8CUhpRSlGgVSzJoFkdAqL9pv5xionV9lChoBmgJaA9DCDLIXYQp6hnAlIaUUpRoFUsyaBZHQKjA5Y02tMh1fZQoaAZoCWgPQwjecYqO5BIRwJSGlFKUaBVLMmgWR0CowLjbzshQdX2UKGgGaAloD0MI5E7pYP0fCsCUhpRSlGgVSzJoFkdAqMCMbHZK4HV9lChoBmgJaA9DCIKN69/1ORXAlIaUUpRoFUsyaBZHQKjAXhDPWx11fZQoaAZoCWgPQwiM22gAb8EMwJSGlFKUaBVLMmgWR0Cower08NhFdX2UKGgGaAloD0MIrYTukjirEMCUhpRSlGgVSzJoFkdAqMG+VmjCYXV9lChoBmgJaA9DCPg1kgThChPAlIaUUpRoFUsyaBZHQKjBkdMCcPR1fZQoaAZoCWgPQwhWYwlrY2wJwJSGlFKUaBVLMmgWR0CowWNF8XvZdX2UKGgGaAloD0MIgm+aPjtgD8CUhpRSlGgVSzJoFkdAqMLpeAuqWHV9lChoBmgJaA9DCH0/NV66eRHAlIaUUpRoFUsyaBZHQKjCvHcUM5R1fZQoaAZoCWgPQwj0F3rE6LkPwJSGlFKUaBVLMmgWR0CowpAckt2+dX2UKGgGaAloD0MIQuxMofOaEsCUhpRSlGgVSzJoFkdAqMJhpDeCTXV9lChoBmgJaA9DCG4UWWso1QbAlIaUUpRoFUsyaBZHQKjD9a1TisJ1fZQoaAZoCWgPQwgqVg3C3F4YwJSGlFKUaBVLMmgWR0Cow8jw6QvIdX2UKGgGaAloD0MIPITx07i3C8CUhpRSlGgVSzJoFkdAqMOcfPomonV9lChoBmgJaA9DCNKMRdPZqQ/AlIaUUpRoFUsyaBZHQKjDbiPQv6F1fZQoaAZoCWgPQwgai6azkyEHwJSGlFKUaBVLMmgWR0CoxWEOqebvdX2UKGgGaAloD0MIv9alRugHGMCUhpRSlGgVSzJoFkdAqMU01VHWjHV9lChoBmgJaA9DCHtP5bSnVBPAlIaUUpRoFUsyaBZHQKjFCPhAGB51fZQoaAZoCWgPQwibG9MTlrgSwJSGlFKUaBVLMmgWR0CoxNsK1G9YdX2UKGgGaAloD0MInkMZqmLKD8CUhpRSlGgVSzJoFkdAqMbqHARChXV9lChoBmgJaA9DCFpiZTTyORzAlIaUUpRoFUsyaBZHQKjGvbbDdgx1fZQoaAZoCWgPQwgGf7+YLfkLwJSGlFKUaBVLMmgWR0CoxpHQyAQQdX2UKGgGaAloD0MIYDqt26AWD8CUhpRSlGgVSzJoFkdAqMZkNe+mFnV9lChoBmgJaA9DCLKfxVIkfxbAlIaUUpRoFUsyaBZHQKjIgN8VpK11fZQoaAZoCWgPQwgh6GhVS0oTwJSGlFKUaBVLMmgWR0CoyFRnnMdMdX2UKGgGaAloD0MIZk8Cm3PAEMCUhpRSlGgVSzJoFkdAqMgoomXw9nV9lChoBmgJaA9DCNEF9S1zyh7AlIaUUpRoFUsyaBZHQKjH+vwmVqx1fZQoaAZoCWgPQwhGlPYGXzgKwJSGlFKUaBVLMmgWR0CoyijHOryUdX2UKGgGaAloD0MIDJQUWAATCsCUhpRSlGgVSzJoFkdAqMn8nTiKi3V9lChoBmgJaA9DCCkGSDSBUhDAlIaUUpRoFUsyaBZHQKjJ0Uh3aBZ1fZQoaAZoCWgPQwgn+RG/Yg0CwJSGlFKUaBVLMmgWR0CoyaOgxrSFdX2UKGgGaAloD0MIjQxyF2GqDMCUhpRSlGgVSzJoFkdAqMtsw5/9YXV9lChoBmgJaA9DCAiSdw5laAzAlIaUUpRoFUsyaBZHQKjLP8gIQe51fZQoaAZoCWgPQwiPpnoy/8gMwJSGlFKUaBVLMmgWR0CoyxNCAtnPdX2UKGgGaAloD0MIcEIhAg6BHcCUhpRSlGgVSzJoFkdAqMrkpLEk0XV9lChoBmgJaA9DCMzUJHhD+gXAlIaUUpRoFUsyaBZHQKjMXWxyGSJ1fZQoaAZoCWgPQwiCcAUU6ikKwJSGlFKUaBVLMmgWR0CozDCvxH5KdX2UKGgGaAloD0MIYwrWOJuuB8CUhpRSlGgVSzJoFkdAqMwEFKTSs3V9lChoBmgJaA9DCLyxoDAoQxLAlIaUUpRoFUsyaBZHQKjL1VtGd7R1fZQoaAZoCWgPQwi7D0BqEwcJwJSGlFKUaBVLMmgWR0CozU47aIvbdX2UKGgGaAloD0MImbwBZr7jDMCUhpRSlGgVSzJoFkdAqM0hKnNxEXV9lChoBmgJaA9DCOJ1/YLdMBHAlIaUUpRoFUsyaBZHQKjM9JzT4L11fZQoaAZoCWgPQwinsb0W9B4UwJSGlFKUaBVLMmgWR0CozMYiosI3dX2UKGgGaAloD0MI8IXJVMGIG8CUhpRSlGgVSzJoFkdAqM4/MY/FBXV9lChoBmgJaA9DCNwvn6wY3hDAlIaUUpRoFUsyaBZHQKjOEl9jPOZ1fZQoaAZoCWgPQwjgSQuXVfgJwJSGlFKUaBVLMmgWR0CozeX8wYcedX2UKGgGaAloD0MIUyXK3lJOCcCUhpRSlGgVSzJoFkdAqM23PzFuN3V9lChoBmgJaA9DCPg3aK8+LhHAlIaUUpRoFUsyaBZHQKjPMPsAvL51fZQoaAZoCWgPQwjsZ7EUyXcIwJSGlFKUaBVLMmgWR0CozwQ5eZ5SdX2UKGgGaAloD0MINIXOa+zSFcCUhpRSlGgVSzJoFkdAqM7Xp6hQFnV9lChoBmgJaA9DCMjuAiUFRhjAlIaUUpRoFUsyaBZHQKjOqQV9F4N1fZQoaAZoCWgPQwhUO8PUlsoTwJSGlFKUaBVLMmgWR0Co0CcDr7fpdX2UKGgGaAloD0MIvK5fsBsmGMCUhpRSlGgVSzJoFkdAqM/59Vmz0HV9lChoBmgJaA9DCGqIKvwZPg3AlIaUUpRoFUsyaBZHQKjPzWdVea91fZQoaAZoCWgPQwjrcd9qnZgMwJSGlFKUaBVLMmgWR0Coz58DB/I9dX2UKGgGaAloD0MI+5Y5XRYzBsCUhpRSlGgVSzJoFkdAqNERJmNBGHV9lChoBmgJaA9DCG6nrRHBWA3AlIaUUpRoFUsyaBZHQKjQ5BC2MKl1fZQoaAZoCWgPQwhnnfF9cYkXwJSGlFKUaBVLMmgWR0Co0Ld2xIJ7dX2UKGgGaAloD0MIyvrNxHQhEMCUhpRSlGgVSzJoFkdAqNCIvi97GHV9lChoBmgJaA9DCLR224XmOhHAlIaUUpRoFUsyaBZHQKjSB67/XGx1fZQoaAZoCWgPQwgaNPRPcGEiwJSGlFKUaBVLMmgWR0Co0dqoAGSqdX2UKGgGaAloD0MIK2wGuCA7BcCUhpRSlGgVSzJoFkdAqNGuEM9bHXV9lChoBmgJaA9DCJaS5SSUDhDAlIaUUpRoFUsyaBZHQKjRf8IiTt91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 52114, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.212003, "std_reward": 1.3081956598071256, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-07T20:57:23.014501"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53d991f7c45e37b5b4f735f03fd695cd608c352177c38e5866540586ae017468
3
+ size 2387