DarkAirforce
commited on
Commit
·
4ffbb6e
1
Parent(s):
661eb06
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -4.21 +/- 1.31
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c2bb65d27a491a36330d28e36324c35dcbeebde2617c0a5ca65e87885f5b244
|
3 |
+
size 108058
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7896f8381630>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7896f8379a80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1691438580602842326,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqXbAPlAupryg9RQ/qXbAPlAupryg9RQ/qXbAPlAupryg9RQ/qXbAPlAupryg9RQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABq8lv/T0tr73Kzm//tMKPi642j9BCMQ9c4EOv9YEmj9Rzag/CsJXPnlmtj8fYOO+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACpdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]]",
|
38 |
+
"desired_goal": "[[-0.6472019 -0.3573376 -0.7233271 ]\n [ 0.13557431 1.7087457 0.09571887]\n [-0.55666274 1.2032726 1.3187658 ]\n [ 0.21070114 1.4250022 -0.44409272]]",
|
39 |
+
"observation": "[[ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAArXhO7llBT7q1jk+iIF9vFriwT266GE+J0bAvda77z32/XE9qdbdPQLklD1xqKM7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.00688803 0.13027085 0.1814839 ]\n [-0.01547278 0.09467001 0.22061434]\n [-0.0938838 0.11705749 0.05908009]\n [ 0.10831959 0.07270052 0.00499445]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgZNt4A5EGMCUhpRSlIwBbJRLMowBdJRHQKi4Wuez2OB1fZQoaAZoCWgPQwicNXhflesGwJSGlFKUaBVLMmgWR0CouC4LkS26dX2UKGgGaAloD0MIsg+yLJiYC8CUhpRSlGgVSzJoFkdAqLgBgy/KyXV9lChoBmgJaA9DCCrHZHH/IRXAlIaUUpRoFUsyaBZHQKi30tVaOgh1fZQoaAZoCWgPQwh/wAMDCN8MwJSGlFKUaBVLMmgWR0CouU8O09hadX2UKGgGaAloD0MIRQ2mYfjIA8CUhpRSlGgVSzJoFkdAqLkiowVTJnV9lChoBmgJaA9DCB3jioujkgHAlIaUUpRoFUsyaBZHQKi49pwjt5V1fZQoaAZoCWgPQwichxOYTmsLwJSGlFKUaBVLMmgWR0CouMjCgsbvdX2UKGgGaAloD0MIaqM6HchaBcCUhpRSlGgVSzJoFkdAqLo6a9bosHV9lChoBmgJaA9DCJ6VtOIbmhDAlIaUUpRoFUsyaBZHQKi6DYkE9uB1fZQoaAZoCWgPQwgKMCx/vs0RwJSGlFKUaBVLMmgWR0CoueD1PFefdX2UKGgGaAloD0MIfgG9cOeCE8CUhpRSlGgVSzJoFkdAqLmyaNMoMXV9lChoBmgJaA9DCOnvpfCgWRTAlIaUUpRoFUsyaBZHQKi7J2FFlTZ1fZQoaAZoCWgPQwiWJqWg20sQwJSGlFKUaBVLMmgWR0Couvr8rI5pdX2UKGgGaAloD0MIN6YnLPFgDcCUhpRSlGgVSzJoFkdAqLrPGMn7YXV9lChoBmgJaA9DCL7aUZyjPhXAlIaUUpRoFUsyaBZHQKi6oT238XN1fZQoaAZoCWgPQwhWurvOhtwdwJSGlFKUaBVLMmgWR0CovBn1nM+vdX2UKGgGaAloD0MIp5TXSujuC8CUhpRSlGgVSzJoFkdAqLvtK9PDYXV9lChoBmgJaA9DCJdUbTfBFwrAlIaUUpRoFUsyaBZHQKi7wOCoS+R1fZQoaAZoCWgPQwggls0ckuoQwJSGlFKUaBVLMmgWR0Cou5KzzErHdX2UKGgGaAloD0MIgsZMol5wCsCUhpRSlGgVSzJoFkdAqL0OLxZuAXV9lChoBmgJaA9DCJCCp5ArlQ3AlIaUUpRoFUsyaBZHQKi84VbA1vV1fZQoaAZoCWgPQwi86gHzkMkMwJSGlFKUaBVLMmgWR0CovLUjs2NvdX2UKGgGaAloD0MIhpDz/j9OEsCUhpRSlGgVSzJoFkdAqLyG5xzaK3V9lChoBmgJaA9DCM8Qjln2hBDAlIaUUpRoFUsyaBZHQKi+A3kxREZ1fZQoaAZoCWgPQwg1lrA2xs4GwJSGlFKUaBVLMmgWR0CovdaAFxGUdX2UKGgGaAloD0MIZTTyecXzEcCUhpRSlGgVSzJoFkdAqL2qEDhcaHV9lChoBmgJaA9DCKIKf4Y3ywvAlIaUUpRoFUsyaBZHQKi9e9GI9DB1fZQoaAZoCWgPQwhh4o+izmwQwJSGlFKUaBVLMmgWR0Covvi1Z1V6dX2UKGgGaAloD0MIs9MP6iLFDMCUhpRSlGgVSzJoFkdAqL7L3bmEG3V9lChoBmgJaA9DCFXejnBakBLAlIaUUpRoFUsyaBZHQKi+n7iQ1aZ1fZQoaAZoCWgPQwg2r+qsFggRwJSGlFKUaBVLMmgWR0CovnFnAZbZdX2UKGgGaAloD0MIzjeie9bVCcCUhpRSlGgVSzJoFkdAqL/xeJHiFXV9lChoBmgJaA9DCHSzP1BuuxTAlIaUUpRoFUsyaBZHQKi/xGpda+x1fZQoaAZoCWgPQwjmkT8YeJ4SwJSGlFKUaBVLMmgWR0Cov5gwwj+rdX2UKGgGaAloD0MIbCbfbHPDD8CUhpRSlGgVSzJoFkdAqL9pv5xionV9lChoBmgJaA9DCDLIXYQp6hnAlIaUUpRoFUsyaBZHQKjA5Y02tMh1fZQoaAZoCWgPQwjecYqO5BIRwJSGlFKUaBVLMmgWR0CowLjbzshQdX2UKGgGaAloD0MI5E7pYP0fCsCUhpRSlGgVSzJoFkdAqMCMbHZK4HV9lChoBmgJaA9DCIKN69/1ORXAlIaUUpRoFUsyaBZHQKjAXhDPWx11fZQoaAZoCWgPQwiM22gAb8EMwJSGlFKUaBVLMmgWR0Cower08NhFdX2UKGgGaAloD0MIrYTukjirEMCUhpRSlGgVSzJoFkdAqMG+VmjCYXV9lChoBmgJaA9DCPg1kgThChPAlIaUUpRoFUsyaBZHQKjBkdMCcPR1fZQoaAZoCWgPQwhWYwlrY2wJwJSGlFKUaBVLMmgWR0CowWNF8XvZdX2UKGgGaAloD0MIgm+aPjtgD8CUhpRSlGgVSzJoFkdAqMLpeAuqWHV9lChoBmgJaA9DCH0/NV66eRHAlIaUUpRoFUsyaBZHQKjCvHcUM5R1fZQoaAZoCWgPQwj0F3rE6LkPwJSGlFKUaBVLMmgWR0CowpAckt2+dX2UKGgGaAloD0MIQuxMofOaEsCUhpRSlGgVSzJoFkdAqMJhpDeCTXV9lChoBmgJaA9DCG4UWWso1QbAlIaUUpRoFUsyaBZHQKjD9a1TisJ1fZQoaAZoCWgPQwgqVg3C3F4YwJSGlFKUaBVLMmgWR0Cow8jw6QvIdX2UKGgGaAloD0MIPITx07i3C8CUhpRSlGgVSzJoFkdAqMOcfPomonV9lChoBmgJaA9DCNKMRdPZqQ/AlIaUUpRoFUsyaBZHQKjDbiPQv6F1fZQoaAZoCWgPQwgai6azkyEHwJSGlFKUaBVLMmgWR0CoxWEOqebvdX2UKGgGaAloD0MIv9alRugHGMCUhpRSlGgVSzJoFkdAqMU01VHWjHV9lChoBmgJaA9DCHtP5bSnVBPAlIaUUpRoFUsyaBZHQKjFCPhAGB51fZQoaAZoCWgPQwibG9MTlrgSwJSGlFKUaBVLMmgWR0CoxNsK1G9YdX2UKGgGaAloD0MInkMZqmLKD8CUhpRSlGgVSzJoFkdAqMbqHARChXV9lChoBmgJaA9DCFpiZTTyORzAlIaUUpRoFUsyaBZHQKjGvbbDdgx1fZQoaAZoCWgPQwgGf7+YLfkLwJSGlFKUaBVLMmgWR0CoxpHQyAQQdX2UKGgGaAloD0MIYDqt26AWD8CUhpRSlGgVSzJoFkdAqMZkNe+mFnV9lChoBmgJaA9DCLKfxVIkfxbAlIaUUpRoFUsyaBZHQKjIgN8VpK11fZQoaAZoCWgPQwgh6GhVS0oTwJSGlFKUaBVLMmgWR0CoyFRnnMdMdX2UKGgGaAloD0MIZk8Cm3PAEMCUhpRSlGgVSzJoFkdAqMgoomXw9nV9lChoBmgJaA9DCNEF9S1zyh7AlIaUUpRoFUsyaBZHQKjH+vwmVqx1fZQoaAZoCWgPQwhGlPYGXzgKwJSGlFKUaBVLMmgWR0CoyijHOryUdX2UKGgGaAloD0MIDJQUWAATCsCUhpRSlGgVSzJoFkdAqMn8nTiKi3V9lChoBmgJaA9DCCkGSDSBUhDAlIaUUpRoFUsyaBZHQKjJ0Uh3aBZ1fZQoaAZoCWgPQwgn+RG/Yg0CwJSGlFKUaBVLMmgWR0CoyaOgxrSFdX2UKGgGaAloD0MIjQxyF2GqDMCUhpRSlGgVSzJoFkdAqMtsw5/9YXV9lChoBmgJaA9DCAiSdw5laAzAlIaUUpRoFUsyaBZHQKjLP8gIQe51fZQoaAZoCWgPQwiPpnoy/8gMwJSGlFKUaBVLMmgWR0CoyxNCAtnPdX2UKGgGaAloD0MIcEIhAg6BHcCUhpRSlGgVSzJoFkdAqMrkpLEk0XV9lChoBmgJaA9DCMzUJHhD+gXAlIaUUpRoFUsyaBZHQKjMXWxyGSJ1fZQoaAZoCWgPQwiCcAUU6ikKwJSGlFKUaBVLMmgWR0CozDCvxH5KdX2UKGgGaAloD0MIYwrWOJuuB8CUhpRSlGgVSzJoFkdAqMwEFKTSs3V9lChoBmgJaA9DCLyxoDAoQxLAlIaUUpRoFUsyaBZHQKjL1VtGd7R1fZQoaAZoCWgPQwi7D0BqEwcJwJSGlFKUaBVLMmgWR0CozU47aIvbdX2UKGgGaAloD0MImbwBZr7jDMCUhpRSlGgVSzJoFkdAqM0hKnNxEXV9lChoBmgJaA9DCOJ1/YLdMBHAlIaUUpRoFUsyaBZHQKjM9JzT4L11fZQoaAZoCWgPQwinsb0W9B4UwJSGlFKUaBVLMmgWR0CozMYiosI3dX2UKGgGaAloD0MI8IXJVMGIG8CUhpRSlGgVSzJoFkdAqM4/MY/FBXV9lChoBmgJaA9DCNwvn6wY3hDAlIaUUpRoFUsyaBZHQKjOEl9jPOZ1fZQoaAZoCWgPQwjgSQuXVfgJwJSGlFKUaBVLMmgWR0CozeX8wYcedX2UKGgGaAloD0MIUyXK3lJOCcCUhpRSlGgVSzJoFkdAqM23PzFuN3V9lChoBmgJaA9DCPg3aK8+LhHAlIaUUpRoFUsyaBZHQKjPMPsAvL51fZQoaAZoCWgPQwjsZ7EUyXcIwJSGlFKUaBVLMmgWR0CozwQ5eZ5SdX2UKGgGaAloD0MINIXOa+zSFcCUhpRSlGgVSzJoFkdAqM7Xp6hQFnV9lChoBmgJaA9DCMjuAiUFRhjAlIaUUpRoFUsyaBZHQKjOqQV9F4N1fZQoaAZoCWgPQwhUO8PUlsoTwJSGlFKUaBVLMmgWR0Co0CcDr7fpdX2UKGgGaAloD0MIvK5fsBsmGMCUhpRSlGgVSzJoFkdAqM/59Vmz0HV9lChoBmgJaA9DCGqIKvwZPg3AlIaUUpRoFUsyaBZHQKjPzWdVea91fZQoaAZoCWgPQwjrcd9qnZgMwJSGlFKUaBVLMmgWR0Coz58DB/I9dX2UKGgGaAloD0MI+5Y5XRYzBsCUhpRSlGgVSzJoFkdAqNERJmNBGHV9lChoBmgJaA9DCG6nrRHBWA3AlIaUUpRoFUsyaBZHQKjQ5BC2MKl1fZQoaAZoCWgPQwhnnfF9cYkXwJSGlFKUaBVLMmgWR0Co0Ld2xIJ7dX2UKGgGaAloD0MIyvrNxHQhEMCUhpRSlGgVSzJoFkdAqNCIvi97GHV9lChoBmgJaA9DCLR224XmOhHAlIaUUpRoFUsyaBZHQKjSB67/XGx1fZQoaAZoCWgPQwgaNPRPcGEiwJSGlFKUaBVLMmgWR0Co0dqoAGSqdX2UKGgGaAloD0MIK2wGuCA7BcCUhpRSlGgVSzJoFkdAqNGuEM9bHXV9lChoBmgJaA9DCJaS5SSUDhDAlIaUUpRoFUsyaBZHQKjRf8IiTt91ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 52114,
|
66 |
+
"observation_space": {
|
67 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
68 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
69 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
70 |
+
"_shape": null,
|
71 |
+
"dtype": null,
|
72 |
+
"_np_random": null
|
73 |
+
},
|
74 |
+
"action_space": {
|
75 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
76 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
77 |
+
"dtype": "float32",
|
78 |
+
"_shape": [
|
79 |
+
3
|
80 |
+
],
|
81 |
+
"low": "[-1. -1. -1.]",
|
82 |
+
"high": "[1. 1. 1.]",
|
83 |
+
"bounded_below": "[ True True True]",
|
84 |
+
"bounded_above": "[ True True True]",
|
85 |
+
"_np_random": null
|
86 |
+
},
|
87 |
+
"n_envs": 4,
|
88 |
+
"n_steps": 5,
|
89 |
+
"gamma": 0.99,
|
90 |
+
"gae_lambda": 1.0,
|
91 |
+
"ent_coef": 0.0,
|
92 |
+
"vf_coef": 0.5,
|
93 |
+
"max_grad_norm": 0.5,
|
94 |
+
"normalize_advantage": false
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db3b60cdcbc457a8c1bbbabed209481047ac549f34074cf6c0850ee93c23c4dc
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e645182c090e2dae77c7a3543ba4dee166830fb493cd36038be98beeaff54557
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7896f8381630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7896f8379a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691438580602842326, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqXbAPlAupryg9RQ/qXbAPlAupryg9RQ/qXbAPlAupryg9RQ/qXbAPlAupryg9RQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABq8lv/T0tr73Kzm//tMKPi642j9BCMQ9c4EOv9YEmj9Rzag/CsJXPnlmtj8fYOO+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACpdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]]", "desired_goal": "[[-0.6472019 -0.3573376 -0.7233271 ]\n [ 0.13557431 1.7087457 0.09571887]\n [-0.55666274 1.2032726 1.3187658 ]\n [ 0.21070114 1.4250022 -0.44409272]]", "observation": "[[ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAArXhO7llBT7q1jk+iIF9vFriwT266GE+J0bAvda77z32/XE9qdbdPQLklD1xqKM7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00688803 0.13027085 0.1814839 ]\n [-0.01547278 0.09467001 0.22061434]\n [-0.0938838 0.11705749 0.05908009]\n [ 0.10831959 0.07270052 0.00499445]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgZNt4A5EGMCUhpRSlIwBbJRLMowBdJRHQKi4Wuez2OB1fZQoaAZoCWgPQwicNXhflesGwJSGlFKUaBVLMmgWR0CouC4LkS26dX2UKGgGaAloD0MIsg+yLJiYC8CUhpRSlGgVSzJoFkdAqLgBgy/KyXV9lChoBmgJaA9DCCrHZHH/IRXAlIaUUpRoFUsyaBZHQKi30tVaOgh1fZQoaAZoCWgPQwh/wAMDCN8MwJSGlFKUaBVLMmgWR0CouU8O09hadX2UKGgGaAloD0MIRQ2mYfjIA8CUhpRSlGgVSzJoFkdAqLkiowVTJnV9lChoBmgJaA9DCB3jioujkgHAlIaUUpRoFUsyaBZHQKi49pwjt5V1fZQoaAZoCWgPQwichxOYTmsLwJSGlFKUaBVLMmgWR0CouMjCgsbvdX2UKGgGaAloD0MIaqM6HchaBcCUhpRSlGgVSzJoFkdAqLo6a9bosHV9lChoBmgJaA9DCJ6VtOIbmhDAlIaUUpRoFUsyaBZHQKi6DYkE9uB1fZQoaAZoCWgPQwgKMCx/vs0RwJSGlFKUaBVLMmgWR0CoueD1PFefdX2UKGgGaAloD0MIfgG9cOeCE8CUhpRSlGgVSzJoFkdAqLmyaNMoMXV9lChoBmgJaA9DCOnvpfCgWRTAlIaUUpRoFUsyaBZHQKi7J2FFlTZ1fZQoaAZoCWgPQwiWJqWg20sQwJSGlFKUaBVLMmgWR0Couvr8rI5pdX2UKGgGaAloD0MIN6YnLPFgDcCUhpRSlGgVSzJoFkdAqLrPGMn7YXV9lChoBmgJaA9DCL7aUZyjPhXAlIaUUpRoFUsyaBZHQKi6oT238XN1fZQoaAZoCWgPQwhWurvOhtwdwJSGlFKUaBVLMmgWR0CovBn1nM+vdX2UKGgGaAloD0MIp5TXSujuC8CUhpRSlGgVSzJoFkdAqLvtK9PDYXV9lChoBmgJaA9DCJdUbTfBFwrAlIaUUpRoFUsyaBZHQKi7wOCoS+R1fZQoaAZoCWgPQwggls0ckuoQwJSGlFKUaBVLMmgWR0Cou5KzzErHdX2UKGgGaAloD0MIgsZMol5wCsCUhpRSlGgVSzJoFkdAqL0OLxZuAXV9lChoBmgJaA9DCJCCp5ArlQ3AlIaUUpRoFUsyaBZHQKi84VbA1vV1fZQoaAZoCWgPQwi86gHzkMkMwJSGlFKUaBVLMmgWR0CovLUjs2NvdX2UKGgGaAloD0MIhpDz/j9OEsCUhpRSlGgVSzJoFkdAqLyG5xzaK3V9lChoBmgJaA9DCM8Qjln2hBDAlIaUUpRoFUsyaBZHQKi+A3kxREZ1fZQoaAZoCWgPQwg1lrA2xs4GwJSGlFKUaBVLMmgWR0CovdaAFxGUdX2UKGgGaAloD0MIZTTyecXzEcCUhpRSlGgVSzJoFkdAqL2qEDhcaHV9lChoBmgJaA9DCKIKf4Y3ywvAlIaUUpRoFUsyaBZHQKi9e9GI9DB1fZQoaAZoCWgPQwhh4o+izmwQwJSGlFKUaBVLMmgWR0Covvi1Z1V6dX2UKGgGaAloD0MIs9MP6iLFDMCUhpRSlGgVSzJoFkdAqL7L3bmEG3V9lChoBmgJaA9DCFXejnBakBLAlIaUUpRoFUsyaBZHQKi+n7iQ1aZ1fZQoaAZoCWgPQwg2r+qsFggRwJSGlFKUaBVLMmgWR0CovnFnAZbZdX2UKGgGaAloD0MIzjeie9bVCcCUhpRSlGgVSzJoFkdAqL/xeJHiFXV9lChoBmgJaA9DCHSzP1BuuxTAlIaUUpRoFUsyaBZHQKi/xGpda+x1fZQoaAZoCWgPQwjmkT8YeJ4SwJSGlFKUaBVLMmgWR0Cov5gwwj+rdX2UKGgGaAloD0MIbCbfbHPDD8CUhpRSlGgVSzJoFkdAqL9pv5xionV9lChoBmgJaA9DCDLIXYQp6hnAlIaUUpRoFUsyaBZHQKjA5Y02tMh1fZQoaAZoCWgPQwjecYqO5BIRwJSGlFKUaBVLMmgWR0CowLjbzshQdX2UKGgGaAloD0MI5E7pYP0fCsCUhpRSlGgVSzJoFkdAqMCMbHZK4HV9lChoBmgJaA9DCIKN69/1ORXAlIaUUpRoFUsyaBZHQKjAXhDPWx11fZQoaAZoCWgPQwiM22gAb8EMwJSGlFKUaBVLMmgWR0Cower08NhFdX2UKGgGaAloD0MIrYTukjirEMCUhpRSlGgVSzJoFkdAqMG+VmjCYXV9lChoBmgJaA9DCPg1kgThChPAlIaUUpRoFUsyaBZHQKjBkdMCcPR1fZQoaAZoCWgPQwhWYwlrY2wJwJSGlFKUaBVLMmgWR0CowWNF8XvZdX2UKGgGaAloD0MIgm+aPjtgD8CUhpRSlGgVSzJoFkdAqMLpeAuqWHV9lChoBmgJaA9DCH0/NV66eRHAlIaUUpRoFUsyaBZHQKjCvHcUM5R1fZQoaAZoCWgPQwj0F3rE6LkPwJSGlFKUaBVLMmgWR0CowpAckt2+dX2UKGgGaAloD0MIQuxMofOaEsCUhpRSlGgVSzJoFkdAqMJhpDeCTXV9lChoBmgJaA9DCG4UWWso1QbAlIaUUpRoFUsyaBZHQKjD9a1TisJ1fZQoaAZoCWgPQwgqVg3C3F4YwJSGlFKUaBVLMmgWR0Cow8jw6QvIdX2UKGgGaAloD0MIPITx07i3C8CUhpRSlGgVSzJoFkdAqMOcfPomonV9lChoBmgJaA9DCNKMRdPZqQ/AlIaUUpRoFUsyaBZHQKjDbiPQv6F1fZQoaAZoCWgPQwgai6azkyEHwJSGlFKUaBVLMmgWR0CoxWEOqebvdX2UKGgGaAloD0MIv9alRugHGMCUhpRSlGgVSzJoFkdAqMU01VHWjHV9lChoBmgJaA9DCHtP5bSnVBPAlIaUUpRoFUsyaBZHQKjFCPhAGB51fZQoaAZoCWgPQwibG9MTlrgSwJSGlFKUaBVLMmgWR0CoxNsK1G9YdX2UKGgGaAloD0MInkMZqmLKD8CUhpRSlGgVSzJoFkdAqMbqHARChXV9lChoBmgJaA9DCFpiZTTyORzAlIaUUpRoFUsyaBZHQKjGvbbDdgx1fZQoaAZoCWgPQwgGf7+YLfkLwJSGlFKUaBVLMmgWR0CoxpHQyAQQdX2UKGgGaAloD0MIYDqt26AWD8CUhpRSlGgVSzJoFkdAqMZkNe+mFnV9lChoBmgJaA9DCLKfxVIkfxbAlIaUUpRoFUsyaBZHQKjIgN8VpK11fZQoaAZoCWgPQwgh6GhVS0oTwJSGlFKUaBVLMmgWR0CoyFRnnMdMdX2UKGgGaAloD0MIZk8Cm3PAEMCUhpRSlGgVSzJoFkdAqMgoomXw9nV9lChoBmgJaA9DCNEF9S1zyh7AlIaUUpRoFUsyaBZHQKjH+vwmVqx1fZQoaAZoCWgPQwhGlPYGXzgKwJSGlFKUaBVLMmgWR0CoyijHOryUdX2UKGgGaAloD0MIDJQUWAATCsCUhpRSlGgVSzJoFkdAqMn8nTiKi3V9lChoBmgJaA9DCCkGSDSBUhDAlIaUUpRoFUsyaBZHQKjJ0Uh3aBZ1fZQoaAZoCWgPQwgn+RG/Yg0CwJSGlFKUaBVLMmgWR0CoyaOgxrSFdX2UKGgGaAloD0MIjQxyF2GqDMCUhpRSlGgVSzJoFkdAqMtsw5/9YXV9lChoBmgJaA9DCAiSdw5laAzAlIaUUpRoFUsyaBZHQKjLP8gIQe51fZQoaAZoCWgPQwiPpnoy/8gMwJSGlFKUaBVLMmgWR0CoyxNCAtnPdX2UKGgGaAloD0MIcEIhAg6BHcCUhpRSlGgVSzJoFkdAqMrkpLEk0XV9lChoBmgJaA9DCMzUJHhD+gXAlIaUUpRoFUsyaBZHQKjMXWxyGSJ1fZQoaAZoCWgPQwiCcAUU6ikKwJSGlFKUaBVLMmgWR0CozDCvxH5KdX2UKGgGaAloD0MIYwrWOJuuB8CUhpRSlGgVSzJoFkdAqMwEFKTSs3V9lChoBmgJaA9DCLyxoDAoQxLAlIaUUpRoFUsyaBZHQKjL1VtGd7R1fZQoaAZoCWgPQwi7D0BqEwcJwJSGlFKUaBVLMmgWR0CozU47aIvbdX2UKGgGaAloD0MImbwBZr7jDMCUhpRSlGgVSzJoFkdAqM0hKnNxEXV9lChoBmgJaA9DCOJ1/YLdMBHAlIaUUpRoFUsyaBZHQKjM9JzT4L11fZQoaAZoCWgPQwinsb0W9B4UwJSGlFKUaBVLMmgWR0CozMYiosI3dX2UKGgGaAloD0MI8IXJVMGIG8CUhpRSlGgVSzJoFkdAqM4/MY/FBXV9lChoBmgJaA9DCNwvn6wY3hDAlIaUUpRoFUsyaBZHQKjOEl9jPOZ1fZQoaAZoCWgPQwjgSQuXVfgJwJSGlFKUaBVLMmgWR0CozeX8wYcedX2UKGgGaAloD0MIUyXK3lJOCcCUhpRSlGgVSzJoFkdAqM23PzFuN3V9lChoBmgJaA9DCPg3aK8+LhHAlIaUUpRoFUsyaBZHQKjPMPsAvL51fZQoaAZoCWgPQwjsZ7EUyXcIwJSGlFKUaBVLMmgWR0CozwQ5eZ5SdX2UKGgGaAloD0MINIXOa+zSFcCUhpRSlGgVSzJoFkdAqM7Xp6hQFnV9lChoBmgJaA9DCMjuAiUFRhjAlIaUUpRoFUsyaBZHQKjOqQV9F4N1fZQoaAZoCWgPQwhUO8PUlsoTwJSGlFKUaBVLMmgWR0Co0CcDr7fpdX2UKGgGaAloD0MIvK5fsBsmGMCUhpRSlGgVSzJoFkdAqM/59Vmz0HV9lChoBmgJaA9DCGqIKvwZPg3AlIaUUpRoFUsyaBZHQKjPzWdVea91fZQoaAZoCWgPQwjrcd9qnZgMwJSGlFKUaBVLMmgWR0Coz58DB/I9dX2UKGgGaAloD0MI+5Y5XRYzBsCUhpRSlGgVSzJoFkdAqNERJmNBGHV9lChoBmgJaA9DCG6nrRHBWA3AlIaUUpRoFUsyaBZHQKjQ5BC2MKl1fZQoaAZoCWgPQwhnnfF9cYkXwJSGlFKUaBVLMmgWR0Co0Ld2xIJ7dX2UKGgGaAloD0MIyvrNxHQhEMCUhpRSlGgVSzJoFkdAqNCIvi97GHV9lChoBmgJaA9DCLR224XmOhHAlIaUUpRoFUsyaBZHQKjSB67/XGx1fZQoaAZoCWgPQwgaNPRPcGEiwJSGlFKUaBVLMmgWR0Co0dqoAGSqdX2UKGgGaAloD0MIK2wGuCA7BcCUhpRSlGgVSzJoFkdAqNGuEM9bHXV9lChoBmgJaA9DCJaS5SSUDhDAlIaUUpRoFUsyaBZHQKjRf8IiTt91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 52114, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -4.212003, "std_reward": 1.3081956598071256, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-07T20:57:23.014501"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53d991f7c45e37b5b4f735f03fd695cd608c352177c38e5866540586ae017468
|
3 |
+
size 2387
|