Darisian commited on
Commit
90b81a8
·
1 Parent(s): 6e8cf78

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 24.17 +/- 143.75
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7baa0e000430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7baa0e0004c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7baa0e000550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7baa0e0005e0>", "_build": "<function ActorCriticPolicy._build at 0x7baa0e000670>", "forward": "<function ActorCriticPolicy.forward at 0x7baa0e000700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7baa0e000790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7baa0e000820>", "_predict": "<function ActorCriticPolicy._predict at 0x7baa0e0008b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7baa0e000940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7baa0e0009d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7baa0e000a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7baa0dfe78c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689789575862778097, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGZb/zz1LAY/FN+QPbSLOL9uKba++EMvvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCQyr3j+71+MAWyUS9uMAXSUR0CcjDdtEXtTdX2UKGgGR7/md7F85S3taAdLmmgIR0CcjSj7Q9iddX2UKGgGR8BWKc7yQPqcaAdLeGgIR0Ccjd/xlQMydX2UKGgGR8BVxFWn0kGBaAdLmmgIR0Ccj+jkMkQgdX2UKGgGR7/xn3Dej2zwaAdL32gIR0CckTRtgrpadX2UKGgGR0BwF7QswtaqaAdNrAFoCEdAnJOrjxTbWXV9lChoBkdAcEgOkLx7RmgHTXICaAhHQJyYQldC3PR1fZQoaAZHwCKNOGj9GZxoB0t0aAhHQJyY89mpVCJ1fZQoaAZHQDq3DaXa8HxoB0ufaAhHQJyZ1RFZxJd1fZQoaAZHwGV4OdoWYWtoB0tjaAhHQJyaY0bcXWR1fZQoaAZHwFEiWBSUC7toB0tsaAhHQJya/mdRR/F1fZQoaAZHQCR2tnwob4toB0vYaAhHQJydUYwZflZ1fZQoaAZHwFd0HbRF7UpoB0uWaAhHQJyeKJJoTPB1fZQoaAZHwF0LNCZ4Oc5oB0uPaAhHQJye8NgBtDV1fZQoaAZHP+ofuCwr1/VoB0uPaAhHQJyfwXtShrZ1fZQoaAZHwE56bMHKOktoB0u9aAhHQJygzUwztTl1fZQoaAZHwGhuDlYEGJNoB0tUaAhHQJyhS78Nx2l1fZQoaAZHwEaUFOfukUNoB0tpaAhHQJyh4b1h9b51fZQoaAZHwFUdOerdWQxoB0uFaAhHQJyinJ2dNFl1fZQoaAZHQAcJaJQ+EAZoB0vSaAhHQJyk8u01IiF1fZQoaAZHwENp5eqrBCVoB0uMaAhHQJylwUpNKyx1fZQoaAZHwEPzpLVWjoJoB0ujaAhHQJymqCbtqpN1fZQoaAZHwClTfek56t1oB0u6aAhHQJynufI0ZWJ1fZQoaAZHwD5coQWepXJoB0ukaAhHQJyoqdWhh6V1fZQoaAZHwEKx+ZPVNHpoB0uTaAhHQJypg03wTdt1fZQoaAZHwD/hPKuB+WpoB0uoaAhHQJyrgJJGvwF1fZQoaAZHwEBjqtYB/7VoB0uxaAhHQJysf7Kq4pd1fZQoaAZHQEWOgezUqhFoB0t+aAhHQJytag2606Z1fZQoaAZHQE0Q+bmU4aRoB0t7aAhHQJyuVv60pmV1fZQoaAZHwEjQs4DLbHpoB00jAWgIR0CcsH+/xlQNdX2UKGgGR0AIEXDWK/EgaAdLZGgIR0CcsUYsNDtxdX2UKGgGR8BN/KJuVHFxaAdLn2gIR0Ccs/6Ae7tidX2UKGgGR8Ar/KYAsCkoaAdLlmgIR0CctSGeMAFQdX2UKGgGR0Awdk+otL+QaAdLj2gIR0Cctlx6OYICdX2UKGgGR0BJnUkOZssQaAdLnmgIR0Cct5ufmLccdX2UKGgGR8A816CDmKZVaAdLhWgIR0CcuFlFc6eYdX2UKGgGR0AZeeYlY2bYaAdLbGgIR0CcuPT9KmKqdX2UKGgGR8BcnOqzZ6D5aAdLkmgIR0Ccuc/ub7TEdX2UKGgGR0AmOd5prULEaAdLdWgIR0CcunDsdDIBdX2UKGgGR8BiFpQSBbwCaAdLW2gIR0CcvBJ6Y3NtdX2UKGgGR8BnAlZ3cHnmaAdLTmgIR0CcvITNMXabdX2UKGgGR0BFMPn8sMAnaAdLiWgIR0CcvUR+SbH7dX2UKGgGR8BP/oLgGbCraAdLvGgIR0CcvlrBTGYKdX2UKGgGR0Au5dqtYB/7aAdLfmgIR0Ccvxqx1PnCdX2UKGgGR8A4SUTcqOLjaAdLX2gIR0Ccv8DhLoOhdX2UKGgGR8AozZIxxkupaAdLdmgIR0CcwHNxVAAydX2UKGgGR0A4jpxWDHwPaAdL3mgIR0CcwcToMa0hdX2UKGgGR8A/e4i5d4VzaAdLkGgIR0Ccw67EHdGidX2UKGgGR8BNLc0cfeUIaAdLYmgIR0CcxD4J/oaDdX2UKGgGR0AoJSR8twrEaAdLW2gIR0CcxMOAiFCcdX2UKGgGR0BxPRSNwR5DaAdNewFoCEdAnMb3q3VkMHV9lChoBkfAVsEDbJwKjWgHS5JoCEdAnMfZ35eqrHV9lChoBke/2pHVf/m1Y2gHS1hoCEdAnMhc8gZCOXV9lChoBkfASPhxJd0JW2gHS4poCEdAnMpD987ZF3V9lChoBkfAPGEOqebut2gHS+VoCEdAnMuSwB5ooXV9lChoBkdAIpgCW/rSmmgHS5doCEdAnMxtLL6k7HV9lChoBkfASRGPq9oN/mgHS3FoCEdAnM0XDJlrdnV9lChoBkdAblMdlNDc/WgHTVABaAhHQJzPAgjhUBJ1fZQoaAZHwFgqJPZZjhFoB0uSaAhHQJzQ56hQFcJ1fZQoaAZHwFTS/95yEL9oB0uOaAhHQJzRvNqxkd51fZQoaAZHwDhweyRjjJdoB0uQaAhHQJzSlIAfdRB1fZQoaAZHwEj3BFd9lVdoB0u1aAhHQJzTp2MbWEt1fZQoaAZHwCVl7tzCDVZoB0tnaAhHQJzUP9cbBGh1fZQoaAZHwEG5jMFEAo5oB0tyaAhHQJzU58VpKz11fZQoaAZHwDWyqR2bG3poB0twaAhHQJzVh9RaX8h1fZQoaAZHwCmkhLXcxj9oB0uBaAhHQJzWRwjt5Ut1fZQoaAZHQFMiUiY9gWtoB0t/aAhHQJzYEjhUBGR1fZQoaAZHwFDmCaqjrRloB0uPaAhHQJzY4tuk1uR1fZQoaAZHwEBP5Pdl/YtoB0uDaAhHQJzZoZP2wmp1fZQoaAZHwFCYSpzcRDloB0uKaAhHQJzabrjYI0J1fZQoaAZHQDSLOjZcs19oB0u2aAhHQJzbfvBrN4Z1fZQoaAZHwFCRa11GLDRoB0t0aAhHQJzcNVuJk5J1fZQoaAZHwEnRtMwlByFoB0uEaAhHQJzdEz2vjfh1fZQoaAZHwDDJ5WzWwvBoB0t3aAhHQJzdyYOUdJd1fZQoaAZHwFfl46Oo5xRoB0t7aAhHQJzf0nb7CSB1fZQoaAZHQHEiVtsN2DBoB017AWgIR0Cc4rwhW5pbdX2UKGgGR8BYwy8OCoS+aAdLdWgIR0Cc46bx3FDOdX2UKGgGR8BPd8sUZeiSaAdLfGgIR0Cc5JcVxjridX2UKGgGR8AFkUO/cnE3aAdNGAFoCEdAnOa0mY0EYHV9lChoBkfAaPcTQmeDnWgHS2NoCEdAnOkuIdlunHV9lChoBkfAPwC9EkSmImgHS5hoCEdAnOpqiwjdHnV9lChoBkdAaEYsFMZgomgHTRABaAhHQJzr/ywwCbN1fZQoaAZHQDcPacqe9SNoB0u8aAhHQJztEuQIUrV1fZQoaAZHQEUWFnIyTINoB0uPaAhHQJzt4+RoysV1fZQoaAZHwFJiFBppN9JoB0t+aAhHQJzunER8MNN1fZQoaAZHwGASpswco6VoB0tnaAhHQJzwWN4qwyJ1fZQoaAZHwDQTMMZxaPloB0uHaAhHQJzxIxk/bCd1fZQoaAZHQEdCmDUVi4JoB0uzaAhHQJzyMi7kGRp1fZQoaAZHwEV8Tot+TeRoB0uGaAhHQJzy9thuwX91fZQoaAZHwApuuA7PppxoB0t3aAhHQJzzpoi9qUN1fZQoaAZHwFAeCpWFN+NoB0uZaAhHQJz0g8lolD51fZQoaAZHQFFzxt52QnxoB0tnaAhHQJz1GK8+Ro11fZQoaAZHwEMctQKrq+toB0tiaAhHQJz1pb7j1f51fZQoaAZHwD+yVv/BFd9oB0toaAhHQJz3aI68xsV1fZQoaAZHwBfLfpD/lyRoB0uEaAhHQJz4J/gBLf11fZQoaAZHwCz0E9t/FzdoB0vKaAhHQJz5UDbJwKl1fZQoaAZHQDREtkFwDNhoB0u7aAhHQJz6ZNlAeJZ1fZQoaAZHwEqXDTjNpudoB0t3aAhHQJz7F82Jiy91fZQoaAZHQFHhyAxzq8loB0udaAhHQJz8CqzZ6D51fZQoaAZHwFDsrlvIfbNoB0traAhHQJz8qZYxL011ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-CustomLunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24d992b0763326160686cf4e0b3171807a67eb967a0dd67d40429e4537974dd5
3
+ size 145975
ppo-CustomLunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-CustomLunarLander/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7baa0e000430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7baa0e0004c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7baa0e000550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7baa0e0005e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7baa0e000670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7baa0e000700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7baa0e000790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7baa0e000820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7baa0e0008b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7baa0e000940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7baa0e0009d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7baa0e000a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7baa0dfe78c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1689789575862778097,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGZb/zz1LAY/FN+QPbSLOL9uKba++EMvvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCQyr3j+71+MAWyUS9uMAXSUR0CcjDdtEXtTdX2UKGgGR7/md7F85S3taAdLmmgIR0CcjSj7Q9iddX2UKGgGR8BWKc7yQPqcaAdLeGgIR0Ccjd/xlQMydX2UKGgGR8BVxFWn0kGBaAdLmmgIR0Ccj+jkMkQgdX2UKGgGR7/xn3Dej2zwaAdL32gIR0CckTRtgrpadX2UKGgGR0BwF7QswtaqaAdNrAFoCEdAnJOrjxTbWXV9lChoBkdAcEgOkLx7RmgHTXICaAhHQJyYQldC3PR1fZQoaAZHwCKNOGj9GZxoB0t0aAhHQJyY89mpVCJ1fZQoaAZHQDq3DaXa8HxoB0ufaAhHQJyZ1RFZxJd1fZQoaAZHwGV4OdoWYWtoB0tjaAhHQJyaY0bcXWR1fZQoaAZHwFEiWBSUC7toB0tsaAhHQJya/mdRR/F1fZQoaAZHQCR2tnwob4toB0vYaAhHQJydUYwZflZ1fZQoaAZHwFd0HbRF7UpoB0uWaAhHQJyeKJJoTPB1fZQoaAZHwF0LNCZ4Oc5oB0uPaAhHQJye8NgBtDV1fZQoaAZHP+ofuCwr1/VoB0uPaAhHQJyfwXtShrZ1fZQoaAZHwE56bMHKOktoB0u9aAhHQJygzUwztTl1fZQoaAZHwGhuDlYEGJNoB0tUaAhHQJyhS78Nx2l1fZQoaAZHwEaUFOfukUNoB0tpaAhHQJyh4b1h9b51fZQoaAZHwFUdOerdWQxoB0uFaAhHQJyinJ2dNFl1fZQoaAZHQAcJaJQ+EAZoB0vSaAhHQJyk8u01IiF1fZQoaAZHwENp5eqrBCVoB0uMaAhHQJylwUpNKyx1fZQoaAZHwEPzpLVWjoJoB0ujaAhHQJymqCbtqpN1fZQoaAZHwClTfek56t1oB0u6aAhHQJynufI0ZWJ1fZQoaAZHwD5coQWepXJoB0ukaAhHQJyoqdWhh6V1fZQoaAZHwEKx+ZPVNHpoB0uTaAhHQJypg03wTdt1fZQoaAZHwD/hPKuB+WpoB0uoaAhHQJyrgJJGvwF1fZQoaAZHwEBjqtYB/7VoB0uxaAhHQJysf7Kq4pd1fZQoaAZHQEWOgezUqhFoB0t+aAhHQJytag2606Z1fZQoaAZHQE0Q+bmU4aRoB0t7aAhHQJyuVv60pmV1fZQoaAZHwEjQs4DLbHpoB00jAWgIR0CcsH+/xlQNdX2UKGgGR0AIEXDWK/EgaAdLZGgIR0CcsUYsNDtxdX2UKGgGR8BN/KJuVHFxaAdLn2gIR0Ccs/6Ae7tidX2UKGgGR8Ar/KYAsCkoaAdLlmgIR0CctSGeMAFQdX2UKGgGR0Awdk+otL+QaAdLj2gIR0Cctlx6OYICdX2UKGgGR0BJnUkOZssQaAdLnmgIR0Cct5ufmLccdX2UKGgGR8A816CDmKZVaAdLhWgIR0CcuFlFc6eYdX2UKGgGR0AZeeYlY2bYaAdLbGgIR0CcuPT9KmKqdX2UKGgGR8BcnOqzZ6D5aAdLkmgIR0Ccuc/ub7TEdX2UKGgGR0AmOd5prULEaAdLdWgIR0CcunDsdDIBdX2UKGgGR8BiFpQSBbwCaAdLW2gIR0CcvBJ6Y3NtdX2UKGgGR8BnAlZ3cHnmaAdLTmgIR0CcvITNMXabdX2UKGgGR0BFMPn8sMAnaAdLiWgIR0CcvUR+SbH7dX2UKGgGR8BP/oLgGbCraAdLvGgIR0CcvlrBTGYKdX2UKGgGR0Au5dqtYB/7aAdLfmgIR0Ccvxqx1PnCdX2UKGgGR8A4SUTcqOLjaAdLX2gIR0Ccv8DhLoOhdX2UKGgGR8AozZIxxkupaAdLdmgIR0CcwHNxVAAydX2UKGgGR0A4jpxWDHwPaAdL3mgIR0CcwcToMa0hdX2UKGgGR8A/e4i5d4VzaAdLkGgIR0Ccw67EHdGidX2UKGgGR8BNLc0cfeUIaAdLYmgIR0CcxD4J/oaDdX2UKGgGR0AoJSR8twrEaAdLW2gIR0CcxMOAiFCcdX2UKGgGR0BxPRSNwR5DaAdNewFoCEdAnMb3q3VkMHV9lChoBkfAVsEDbJwKjWgHS5JoCEdAnMfZ35eqrHV9lChoBke/2pHVf/m1Y2gHS1hoCEdAnMhc8gZCOXV9lChoBkfASPhxJd0JW2gHS4poCEdAnMpD987ZF3V9lChoBkfAPGEOqebut2gHS+VoCEdAnMuSwB5ooXV9lChoBkdAIpgCW/rSmmgHS5doCEdAnMxtLL6k7HV9lChoBkfASRGPq9oN/mgHS3FoCEdAnM0XDJlrdnV9lChoBkdAblMdlNDc/WgHTVABaAhHQJzPAgjhUBJ1fZQoaAZHwFgqJPZZjhFoB0uSaAhHQJzQ56hQFcJ1fZQoaAZHwFTS/95yEL9oB0uOaAhHQJzRvNqxkd51fZQoaAZHwDhweyRjjJdoB0uQaAhHQJzSlIAfdRB1fZQoaAZHwEj3BFd9lVdoB0u1aAhHQJzTp2MbWEt1fZQoaAZHwCVl7tzCDVZoB0tnaAhHQJzUP9cbBGh1fZQoaAZHwEG5jMFEAo5oB0tyaAhHQJzU58VpKz11fZQoaAZHwDWyqR2bG3poB0twaAhHQJzVh9RaX8h1fZQoaAZHwCmkhLXcxj9oB0uBaAhHQJzWRwjt5Ut1fZQoaAZHQFMiUiY9gWtoB0t/aAhHQJzYEjhUBGR1fZQoaAZHwFDmCaqjrRloB0uPaAhHQJzY4tuk1uR1fZQoaAZHwEBP5Pdl/YtoB0uDaAhHQJzZoZP2wmp1fZQoaAZHwFCYSpzcRDloB0uKaAhHQJzabrjYI0J1fZQoaAZHQDSLOjZcs19oB0u2aAhHQJzbfvBrN4Z1fZQoaAZHwFCRa11GLDRoB0t0aAhHQJzcNVuJk5J1fZQoaAZHwEnRtMwlByFoB0uEaAhHQJzdEz2vjfh1fZQoaAZHwDDJ5WzWwvBoB0t3aAhHQJzdyYOUdJd1fZQoaAZHwFfl46Oo5xRoB0t7aAhHQJzf0nb7CSB1fZQoaAZHQHEiVtsN2DBoB017AWgIR0Cc4rwhW5pbdX2UKGgGR8BYwy8OCoS+aAdLdWgIR0Cc46bx3FDOdX2UKGgGR8BPd8sUZeiSaAdLfGgIR0Cc5JcVxjridX2UKGgGR8AFkUO/cnE3aAdNGAFoCEdAnOa0mY0EYHV9lChoBkfAaPcTQmeDnWgHS2NoCEdAnOkuIdlunHV9lChoBkfAPwC9EkSmImgHS5hoCEdAnOpqiwjdHnV9lChoBkdAaEYsFMZgomgHTRABaAhHQJzr/ywwCbN1fZQoaAZHQDcPacqe9SNoB0u8aAhHQJztEuQIUrV1fZQoaAZHQEUWFnIyTINoB0uPaAhHQJzt4+RoysV1fZQoaAZHwFJiFBppN9JoB0t+aAhHQJzunER8MNN1fZQoaAZHwGASpswco6VoB0tnaAhHQJzwWN4qwyJ1fZQoaAZHwDQTMMZxaPloB0uHaAhHQJzxIxk/bCd1fZQoaAZHQEdCmDUVi4JoB0uzaAhHQJzyMi7kGRp1fZQoaAZHwEV8Tot+TeRoB0uGaAhHQJzy9thuwX91fZQoaAZHwApuuA7PppxoB0t3aAhHQJzzpoi9qUN1fZQoaAZHwFAeCpWFN+NoB0uZaAhHQJz0g8lolD51fZQoaAZHQFFzxt52QnxoB0tnaAhHQJz1GK8+Ro11fZQoaAZHwEMctQKrq+toB0tiaAhHQJz1pb7j1f51fZQoaAZHwD+yVv/BFd9oB0toaAhHQJz3aI68xsV1fZQoaAZHwBfLfpD/lyRoB0uEaAhHQJz4J/gBLf11fZQoaAZHwCz0E9t/FzdoB0vKaAhHQJz5UDbJwKl1fZQoaAZHQDREtkFwDNhoB0u7aAhHQJz6ZNlAeJZ1fZQoaAZHwEqXDTjNpudoB0t3aAhHQJz7F82Jiy91fZQoaAZHQFHhyAxzq8loB0udaAhHQJz8CqzZ6D51fZQoaAZHwFDsrlvIfbNoB0traAhHQJz8qZYxL011ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-CustomLunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24cca4ba08e79aad3f22e034f914c209933c36ca6c8ae2a978c2ef9bd71f7ee7
3
+ size 87929
ppo-CustomLunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21e2a03f90baf5fdbfe39b65f863b7d9bcde87f5681ddbac6d4cf62ddc98cbe2
3
+ size 43329
ppo-CustomLunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-CustomLunarLander/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (200 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 24.170770104558024, "std_reward": 143.75144948086228, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-19T18:35:49.792963"}