Daniel23Stack commited on
Commit
0914ff0
1 Parent(s): 878a652

Upload 19 files

Browse files
aliceinwonderland-llama3/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: models\Meta-Llama-3-8b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.8.2
aliceinwonderland-llama3/adapter_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "models\\Meta-Llama-3-8b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM",
26
+ "use_rslora": false
27
+ }
aliceinwonderland-llama3/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c8aea5a6c4a4dd8d4e7b4abc49349557f05d86a74217158bf968ca948c06ed5
3
+ size 54572362
aliceinwonderland-llama3/checkpoint-13-loss-0_98/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: models\Meta-Llama-3-8b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.8.2
aliceinwonderland-llama3/checkpoint-13-loss-0_98/adapter_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "models\\Meta-Llama-3-8b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM",
26
+ "use_rslora": false
27
+ }
aliceinwonderland-llama3/checkpoint-13-loss-0_98/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb176e0bbe60607d99ff9fd4795a52ceb55a6f0024bebd0f5852a24acc5e7121
3
+ size 54572362
aliceinwonderland-llama3/checkpoint-13-loss-0_98/training_log.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "base_model_name": "Meta-Llama-3-8b",
3
+ "base_model_class": "LlamaForCausalLM",
4
+ "base_loaded_in_4bit": true,
5
+ "base_loaded_in_8bit": false,
6
+ "projections": "q, v",
7
+ "loss": 0.9825,
8
+ "grad_norm": 2.2934579849243164,
9
+ "learning_rate": 1.2e-07,
10
+ "epoch": 0.1326530612244898,
11
+ "current_steps": 12,
12
+ "current_steps_adjusted": 12,
13
+ "epoch_adjusted": 0.1326530612244898
14
+ }
aliceinwonderland-llama3/checkpoint-13-loss-0_98/training_prompt.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "template_type": "raw_text"
3
+ }
aliceinwonderland-llama3/checkpoint-392-loss-0_86/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: models\Meta-Llama-3-8b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.8.2
aliceinwonderland-llama3/checkpoint-392-loss-0_86/adapter_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "models\\Meta-Llama-3-8b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM",
26
+ "use_rslora": false
27
+ }
aliceinwonderland-llama3/checkpoint-392-loss-0_86/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b5cfba2103baac5a1734f17ae2e0f95004cdb0ad415ba264862240a4900a127
3
+ size 54572362
aliceinwonderland-llama3/checkpoint-392-loss-0_86/training_log.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "base_model_name": "Meta-Llama-3-8b",
3
+ "base_model_class": "LlamaForCausalLM",
4
+ "base_loaded_in_4bit": true,
5
+ "base_loaded_in_8bit": false,
6
+ "projections": "q, v",
7
+ "loss": 0.862,
8
+ "grad_norm": 3.4459314346313477,
9
+ "learning_rate": 2.5897435897435897e-07,
10
+ "epoch": 4.0,
11
+ "current_steps": 391,
12
+ "current_steps_adjusted": 391,
13
+ "epoch_adjusted": 4.0
14
+ }
aliceinwonderland-llama3/checkpoint-392-loss-0_86/training_prompt.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "template_type": "raw_text"
3
+ }
aliceinwonderland-llama3/runs/Jun04_16-40-59/events.out.tfevents.1717537260.DESKTOP-7QRHF82.4688.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e052f98b17ecd4340beb555eb5f48b1a6b16cfe76c599dda1421aa779e5ce7f1
3
+ size 108486
aliceinwonderland-llama3/training_graph.json ADDED
@@ -0,0 +1,2948 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "current_steps": 0,
4
+ "loss": 1.0375,
5
+ "learning_rate": 1e-08,
6
+ "epoch": 0.01020408163265306
7
+ },
8
+ {
9
+ "current_steps": 1,
10
+ "loss": 0.9218,
11
+ "learning_rate": 1e-08,
12
+ "epoch": 0.02040816326530612
13
+ },
14
+ {
15
+ "current_steps": 2,
16
+ "loss": 1.2099,
17
+ "learning_rate": 2e-08,
18
+ "epoch": 0.030612244897959183
19
+ },
20
+ {
21
+ "current_steps": 3,
22
+ "loss": 0.8966,
23
+ "learning_rate": 3e-08,
24
+ "epoch": 0.04081632653061224
25
+ },
26
+ {
27
+ "current_steps": 4,
28
+ "loss": 1.0577,
29
+ "learning_rate": 4e-08,
30
+ "epoch": 0.05102040816326531
31
+ },
32
+ {
33
+ "current_steps": 5,
34
+ "loss": 1.3639,
35
+ "learning_rate": 5e-08,
36
+ "epoch": 0.061224489795918366
37
+ },
38
+ {
39
+ "current_steps": 6,
40
+ "loss": 1.2809,
41
+ "learning_rate": 6e-08,
42
+ "epoch": 0.07142857142857142
43
+ },
44
+ {
45
+ "current_steps": 7,
46
+ "loss": 1.0623,
47
+ "learning_rate": 7e-08,
48
+ "epoch": 0.08163265306122448
49
+ },
50
+ {
51
+ "current_steps": 8,
52
+ "loss": 1.4736,
53
+ "learning_rate": 8e-08,
54
+ "epoch": 0.09183673469387756
55
+ },
56
+ {
57
+ "current_steps": 9,
58
+ "loss": 1.0629,
59
+ "learning_rate": 9e-08,
60
+ "epoch": 0.10204081632653061
61
+ },
62
+ {
63
+ "current_steps": 10,
64
+ "loss": 0.9894,
65
+ "learning_rate": 1e-07,
66
+ "epoch": 0.11224489795918367
67
+ },
68
+ {
69
+ "current_steps": 11,
70
+ "loss": 1.3042,
71
+ "learning_rate": 1.0999999999999999e-07,
72
+ "epoch": 0.12244897959183673
73
+ },
74
+ {
75
+ "current_steps": 12,
76
+ "loss": 0.9825,
77
+ "learning_rate": 1.2e-07,
78
+ "epoch": 0.1326530612244898
79
+ },
80
+ {
81
+ "current_steps": 13,
82
+ "loss": 0.9608,
83
+ "learning_rate": 1.3e-07,
84
+ "epoch": 0.14285714285714285
85
+ },
86
+ {
87
+ "current_steps": 14,
88
+ "loss": 1.1691,
89
+ "learning_rate": 1.4e-07,
90
+ "epoch": 0.15306122448979592
91
+ },
92
+ {
93
+ "current_steps": 15,
94
+ "loss": 0.9785,
95
+ "learning_rate": 1.5e-07,
96
+ "epoch": 0.16326530612244897
97
+ },
98
+ {
99
+ "current_steps": 16,
100
+ "loss": 1.0136,
101
+ "learning_rate": 1.6e-07,
102
+ "epoch": 0.17346938775510204
103
+ },
104
+ {
105
+ "current_steps": 17,
106
+ "loss": 1.0683,
107
+ "learning_rate": 1.7000000000000001e-07,
108
+ "epoch": 0.1836734693877551
109
+ },
110
+ {
111
+ "current_steps": 18,
112
+ "loss": 1.354,
113
+ "learning_rate": 1.8e-07,
114
+ "epoch": 0.19387755102040816
115
+ },
116
+ {
117
+ "current_steps": 19,
118
+ "loss": 0.8537,
119
+ "learning_rate": 1.8999999999999998e-07,
120
+ "epoch": 0.20408163265306123
121
+ },
122
+ {
123
+ "current_steps": 20,
124
+ "loss": 1.3124,
125
+ "learning_rate": 2e-07,
126
+ "epoch": 0.21428571428571427
127
+ },
128
+ {
129
+ "current_steps": 21,
130
+ "loss": 1.0973,
131
+ "learning_rate": 2.0999999999999997e-07,
132
+ "epoch": 0.22448979591836735
133
+ },
134
+ {
135
+ "current_steps": 22,
136
+ "loss": 0.8491,
137
+ "learning_rate": 2.1999999999999998e-07,
138
+ "epoch": 0.23469387755102042
139
+ },
140
+ {
141
+ "current_steps": 23,
142
+ "loss": 0.8702,
143
+ "learning_rate": 2.3e-07,
144
+ "epoch": 0.24489795918367346
145
+ },
146
+ {
147
+ "current_steps": 24,
148
+ "loss": 1.065,
149
+ "learning_rate": 2.4e-07,
150
+ "epoch": 0.25510204081632654
151
+ },
152
+ {
153
+ "current_steps": 25,
154
+ "loss": 0.9593,
155
+ "learning_rate": 2.5e-07,
156
+ "epoch": 0.2653061224489796
157
+ },
158
+ {
159
+ "current_steps": 26,
160
+ "loss": 1.0278,
161
+ "learning_rate": 2.6e-07,
162
+ "epoch": 0.2755102040816326
163
+ },
164
+ {
165
+ "current_steps": 27,
166
+ "loss": 1.0488,
167
+ "learning_rate": 2.7e-07,
168
+ "epoch": 0.2857142857142857
169
+ },
170
+ {
171
+ "current_steps": 28,
172
+ "loss": 0.8877,
173
+ "learning_rate": 2.8e-07,
174
+ "epoch": 0.29591836734693877
175
+ },
176
+ {
177
+ "current_steps": 29,
178
+ "loss": 1.2834,
179
+ "learning_rate": 2.9e-07,
180
+ "epoch": 0.30612244897959184
181
+ },
182
+ {
183
+ "current_steps": 30,
184
+ "loss": 1.1416,
185
+ "learning_rate": 3e-07,
186
+ "epoch": 0.3163265306122449
187
+ },
188
+ {
189
+ "current_steps": 31,
190
+ "loss": 1.2615,
191
+ "learning_rate": 3.1e-07,
192
+ "epoch": 0.32653061224489793
193
+ },
194
+ {
195
+ "current_steps": 32,
196
+ "loss": 1.522,
197
+ "learning_rate": 3.2e-07,
198
+ "epoch": 0.336734693877551
199
+ },
200
+ {
201
+ "current_steps": 33,
202
+ "loss": 1.2533,
203
+ "learning_rate": 3.3e-07,
204
+ "epoch": 0.3469387755102041
205
+ },
206
+ {
207
+ "current_steps": 34,
208
+ "loss": 1.3297,
209
+ "learning_rate": 3.4000000000000003e-07,
210
+ "epoch": 0.35714285714285715
211
+ },
212
+ {
213
+ "current_steps": 35,
214
+ "loss": 1.1923,
215
+ "learning_rate": 3.4000000000000003e-07,
216
+ "epoch": 0.3673469387755102
217
+ },
218
+ {
219
+ "current_steps": 36,
220
+ "loss": 1.0751,
221
+ "learning_rate": 3.5e-07,
222
+ "epoch": 0.37755102040816324
223
+ },
224
+ {
225
+ "current_steps": 37,
226
+ "loss": 0.9824,
227
+ "learning_rate": 3.6e-07,
228
+ "epoch": 0.3877551020408163
229
+ },
230
+ {
231
+ "current_steps": 38,
232
+ "loss": 1.2065,
233
+ "learning_rate": 3.7e-07,
234
+ "epoch": 0.3979591836734694
235
+ },
236
+ {
237
+ "current_steps": 39,
238
+ "loss": 0.6985,
239
+ "learning_rate": 3.7999999999999996e-07,
240
+ "epoch": 0.40816326530612246
241
+ },
242
+ {
243
+ "current_steps": 40,
244
+ "loss": 1.2638,
245
+ "learning_rate": 3.8999999999999997e-07,
246
+ "epoch": 0.41836734693877553
247
+ },
248
+ {
249
+ "current_steps": 41,
250
+ "loss": 1.0332,
251
+ "learning_rate": 4e-07,
252
+ "epoch": 0.42857142857142855
253
+ },
254
+ {
255
+ "current_steps": 42,
256
+ "loss": 0.9709,
257
+ "learning_rate": 4.0999999999999994e-07,
258
+ "epoch": 0.4387755102040816
259
+ },
260
+ {
261
+ "current_steps": 43,
262
+ "loss": 1.0852,
263
+ "learning_rate": 4.1999999999999995e-07,
264
+ "epoch": 0.4489795918367347
265
+ },
266
+ {
267
+ "current_steps": 44,
268
+ "loss": 1.0733,
269
+ "learning_rate": 4.2999999999999996e-07,
270
+ "epoch": 0.45918367346938777
271
+ },
272
+ {
273
+ "current_steps": 45,
274
+ "loss": 1.3022,
275
+ "learning_rate": 4.3999999999999997e-07,
276
+ "epoch": 0.46938775510204084
277
+ },
278
+ {
279
+ "current_steps": 46,
280
+ "loss": 1.0857,
281
+ "learning_rate": 4.5e-07,
282
+ "epoch": 0.47959183673469385
283
+ },
284
+ {
285
+ "current_steps": 47,
286
+ "loss": 1.1048,
287
+ "learning_rate": 4.6e-07,
288
+ "epoch": 0.4897959183673469
289
+ },
290
+ {
291
+ "current_steps": 48,
292
+ "loss": 0.8515,
293
+ "learning_rate": 4.6999999999999995e-07,
294
+ "epoch": 0.5
295
+ },
296
+ {
297
+ "current_steps": 49,
298
+ "loss": 1.0769,
299
+ "learning_rate": 4.8e-07,
300
+ "epoch": 0.5102040816326531
301
+ },
302
+ {
303
+ "current_steps": 50,
304
+ "loss": 1.2454,
305
+ "learning_rate": 4.9e-07,
306
+ "epoch": 0.5204081632653061
307
+ },
308
+ {
309
+ "current_steps": 51,
310
+ "loss": 1.309,
311
+ "learning_rate": 5e-07,
312
+ "epoch": 0.5306122448979592
313
+ },
314
+ {
315
+ "current_steps": 52,
316
+ "loss": 1.0071,
317
+ "learning_rate": 5.1e-07,
318
+ "epoch": 0.5408163265306123
319
+ },
320
+ {
321
+ "current_steps": 53,
322
+ "loss": 1.01,
323
+ "learning_rate": 5.2e-07,
324
+ "epoch": 0.5510204081632653
325
+ },
326
+ {
327
+ "current_steps": 54,
328
+ "loss": 0.9557,
329
+ "learning_rate": 5.3e-07,
330
+ "epoch": 0.5612244897959183
331
+ },
332
+ {
333
+ "current_steps": 55,
334
+ "loss": 1.0609,
335
+ "learning_rate": 5.4e-07,
336
+ "epoch": 0.5714285714285714
337
+ },
338
+ {
339
+ "current_steps": 56,
340
+ "loss": 0.8179,
341
+ "learning_rate": 5.5e-07,
342
+ "epoch": 0.5816326530612245
343
+ },
344
+ {
345
+ "current_steps": 57,
346
+ "loss": 1.0753,
347
+ "learning_rate": 5.6e-07,
348
+ "epoch": 0.5918367346938775
349
+ },
350
+ {
351
+ "current_steps": 58,
352
+ "loss": 0.9524,
353
+ "learning_rate": 5.699999999999999e-07,
354
+ "epoch": 0.6020408163265306
355
+ },
356
+ {
357
+ "current_steps": 59,
358
+ "loss": 1.0423,
359
+ "learning_rate": 5.8e-07,
360
+ "epoch": 0.6122448979591837
361
+ },
362
+ {
363
+ "current_steps": 60,
364
+ "loss": 1.1175,
365
+ "learning_rate": 5.9e-07,
366
+ "epoch": 0.6224489795918368
367
+ },
368
+ {
369
+ "current_steps": 61,
370
+ "loss": 1.1842,
371
+ "learning_rate": 6e-07,
372
+ "epoch": 0.6326530612244898
373
+ },
374
+ {
375
+ "current_steps": 62,
376
+ "loss": 0.9762,
377
+ "learning_rate": 6.1e-07,
378
+ "epoch": 0.6428571428571429
379
+ },
380
+ {
381
+ "current_steps": 63,
382
+ "loss": 0.9862,
383
+ "learning_rate": 6.2e-07,
384
+ "epoch": 0.6530612244897959
385
+ },
386
+ {
387
+ "current_steps": 64,
388
+ "loss": 1.3298,
389
+ "learning_rate": 6.3e-07,
390
+ "epoch": 0.6632653061224489
391
+ },
392
+ {
393
+ "current_steps": 65,
394
+ "loss": 0.892,
395
+ "learning_rate": 6.4e-07,
396
+ "epoch": 0.673469387755102
397
+ },
398
+ {
399
+ "current_steps": 66,
400
+ "loss": 1.3031,
401
+ "learning_rate": 6.5e-07,
402
+ "epoch": 0.6836734693877551
403
+ },
404
+ {
405
+ "current_steps": 67,
406
+ "loss": 1.0295,
407
+ "learning_rate": 6.6e-07,
408
+ "epoch": 0.6938775510204082
409
+ },
410
+ {
411
+ "current_steps": 68,
412
+ "loss": 1.0984,
413
+ "learning_rate": 6.7e-07,
414
+ "epoch": 0.7040816326530612
415
+ },
416
+ {
417
+ "current_steps": 69,
418
+ "loss": 0.961,
419
+ "learning_rate": 6.800000000000001e-07,
420
+ "epoch": 0.7142857142857143
421
+ },
422
+ {
423
+ "current_steps": 70,
424
+ "loss": 1.1315,
425
+ "learning_rate": 6.9e-07,
426
+ "epoch": 0.7244897959183674
427
+ },
428
+ {
429
+ "current_steps": 71,
430
+ "loss": 1.151,
431
+ "learning_rate": 7e-07,
432
+ "epoch": 0.7346938775510204
433
+ },
434
+ {
435
+ "current_steps": 72,
436
+ "loss": 1.1734,
437
+ "learning_rate": 7.1e-07,
438
+ "epoch": 0.7448979591836735
439
+ },
440
+ {
441
+ "current_steps": 73,
442
+ "loss": 1.2119,
443
+ "learning_rate": 7.2e-07,
444
+ "epoch": 0.7551020408163265
445
+ },
446
+ {
447
+ "current_steps": 74,
448
+ "loss": 1.2703,
449
+ "learning_rate": 7.3e-07,
450
+ "epoch": 0.7653061224489796
451
+ },
452
+ {
453
+ "current_steps": 75,
454
+ "loss": 1.171,
455
+ "learning_rate": 7.4e-07,
456
+ "epoch": 0.7755102040816326
457
+ },
458
+ {
459
+ "current_steps": 76,
460
+ "loss": 1.0916,
461
+ "learning_rate": 7.5e-07,
462
+ "epoch": 0.7857142857142857
463
+ },
464
+ {
465
+ "current_steps": 77,
466
+ "loss": 0.9059,
467
+ "learning_rate": 7.599999999999999e-07,
468
+ "epoch": 0.7959183673469388
469
+ },
470
+ {
471
+ "current_steps": 78,
472
+ "loss": 1.0347,
473
+ "learning_rate": 7.699999999999999e-07,
474
+ "epoch": 0.8061224489795918
475
+ },
476
+ {
477
+ "current_steps": 79,
478
+ "loss": 1.2085,
479
+ "learning_rate": 7.799999999999999e-07,
480
+ "epoch": 0.8163265306122449
481
+ },
482
+ {
483
+ "current_steps": 80,
484
+ "loss": 1.0081,
485
+ "learning_rate": 7.9e-07,
486
+ "epoch": 0.826530612244898
487
+ },
488
+ {
489
+ "current_steps": 81,
490
+ "loss": 1.0151,
491
+ "learning_rate": 8e-07,
492
+ "epoch": 0.8367346938775511
493
+ },
494
+ {
495
+ "current_steps": 82,
496
+ "loss": 1.0571,
497
+ "learning_rate": 8.1e-07,
498
+ "epoch": 0.8469387755102041
499
+ },
500
+ {
501
+ "current_steps": 83,
502
+ "loss": 1.3335,
503
+ "learning_rate": 8.199999999999999e-07,
504
+ "epoch": 0.8571428571428571
505
+ },
506
+ {
507
+ "current_steps": 84,
508
+ "loss": 1.0442,
509
+ "learning_rate": 8.299999999999999e-07,
510
+ "epoch": 0.8673469387755102
511
+ },
512
+ {
513
+ "current_steps": 85,
514
+ "loss": 0.9886,
515
+ "learning_rate": 8.399999999999999e-07,
516
+ "epoch": 0.8775510204081632
517
+ },
518
+ {
519
+ "current_steps": 86,
520
+ "loss": 1.1209,
521
+ "learning_rate": 8.499999999999999e-07,
522
+ "epoch": 0.8877551020408163
523
+ },
524
+ {
525
+ "current_steps": 87,
526
+ "loss": 0.9748,
527
+ "learning_rate": 8.599999999999999e-07,
528
+ "epoch": 0.8979591836734694
529
+ },
530
+ {
531
+ "current_steps": 88,
532
+ "loss": 0.9632,
533
+ "learning_rate": 8.699999999999999e-07,
534
+ "epoch": 0.9081632653061225
535
+ },
536
+ {
537
+ "current_steps": 89,
538
+ "loss": 1.3457,
539
+ "learning_rate": 8.799999999999999e-07,
540
+ "epoch": 0.9183673469387755
541
+ },
542
+ {
543
+ "current_steps": 90,
544
+ "loss": 0.9974,
545
+ "learning_rate": 8.9e-07,
546
+ "epoch": 0.9285714285714286
547
+ },
548
+ {
549
+ "current_steps": 91,
550
+ "loss": 1.1924,
551
+ "learning_rate": 9e-07,
552
+ "epoch": 0.9387755102040817
553
+ },
554
+ {
555
+ "current_steps": 92,
556
+ "loss": 1.2519,
557
+ "learning_rate": 9.1e-07,
558
+ "epoch": 0.9489795918367347
559
+ },
560
+ {
561
+ "current_steps": 93,
562
+ "loss": 1.0482,
563
+ "learning_rate": 9.2e-07,
564
+ "epoch": 0.9591836734693877
565
+ },
566
+ {
567
+ "current_steps": 94,
568
+ "loss": 0.9984,
569
+ "learning_rate": 9.3e-07,
570
+ "epoch": 0.9693877551020408
571
+ },
572
+ {
573
+ "current_steps": 95,
574
+ "loss": 1.2079,
575
+ "learning_rate": 9.399999999999999e-07,
576
+ "epoch": 0.9795918367346939
577
+ },
578
+ {
579
+ "current_steps": 96,
580
+ "loss": 0.9468,
581
+ "learning_rate": 9.499999999999999e-07,
582
+ "epoch": 0.9897959183673469
583
+ },
584
+ {
585
+ "current_steps": 97,
586
+ "loss": 0.9655,
587
+ "learning_rate": 9.6e-07,
588
+ "epoch": 1.0
589
+ },
590
+ {
591
+ "current_steps": 98,
592
+ "loss": 0.9911,
593
+ "learning_rate": 9.7e-07,
594
+ "epoch": 1.010204081632653
595
+ },
596
+ {
597
+ "current_steps": 99,
598
+ "loss": 1.019,
599
+ "learning_rate": 9.8e-07,
600
+ "epoch": 1.0204081632653061
601
+ },
602
+ {
603
+ "current_steps": 100,
604
+ "loss": 1.0679,
605
+ "learning_rate": 9.9e-07,
606
+ "epoch": 1.030612244897959
607
+ },
608
+ {
609
+ "current_steps": 101,
610
+ "loss": 0.8909,
611
+ "learning_rate": 1e-06,
612
+ "epoch": 1.0408163265306123
613
+ },
614
+ {
615
+ "current_steps": 102,
616
+ "loss": 1.1474,
617
+ "learning_rate": 9.974358974358974e-07,
618
+ "epoch": 1.0510204081632653
619
+ },
620
+ {
621
+ "current_steps": 103,
622
+ "loss": 0.9872,
623
+ "learning_rate": 9.948717948717949e-07,
624
+ "epoch": 1.0612244897959184
625
+ },
626
+ {
627
+ "current_steps": 104,
628
+ "loss": 0.8438,
629
+ "learning_rate": 9.923076923076923e-07,
630
+ "epoch": 1.0714285714285714
631
+ },
632
+ {
633
+ "current_steps": 105,
634
+ "loss": 0.9473,
635
+ "learning_rate": 9.897435897435898e-07,
636
+ "epoch": 1.0816326530612246
637
+ },
638
+ {
639
+ "current_steps": 106,
640
+ "loss": 1.0933,
641
+ "learning_rate": 9.871794871794872e-07,
642
+ "epoch": 1.0918367346938775
643
+ },
644
+ {
645
+ "current_steps": 107,
646
+ "loss": 0.8545,
647
+ "learning_rate": 9.846153846153847e-07,
648
+ "epoch": 1.1020408163265305
649
+ },
650
+ {
651
+ "current_steps": 108,
652
+ "loss": 1.1711,
653
+ "learning_rate": 9.820512820512819e-07,
654
+ "epoch": 1.1122448979591837
655
+ },
656
+ {
657
+ "current_steps": 109,
658
+ "loss": 0.905,
659
+ "learning_rate": 9.794871794871793e-07,
660
+ "epoch": 1.1224489795918366
661
+ },
662
+ {
663
+ "current_steps": 110,
664
+ "loss": 0.9026,
665
+ "learning_rate": 9.769230769230768e-07,
666
+ "epoch": 1.1326530612244898
667
+ },
668
+ {
669
+ "current_steps": 111,
670
+ "loss": 1.2263,
671
+ "learning_rate": 9.743589743589742e-07,
672
+ "epoch": 1.1428571428571428
673
+ },
674
+ {
675
+ "current_steps": 112,
676
+ "loss": 1.0883,
677
+ "learning_rate": 9.717948717948717e-07,
678
+ "epoch": 1.153061224489796
679
+ },
680
+ {
681
+ "current_steps": 113,
682
+ "loss": 1.1185,
683
+ "learning_rate": 9.692307692307691e-07,
684
+ "epoch": 1.163265306122449
685
+ },
686
+ {
687
+ "current_steps": 114,
688
+ "loss": 1.2212,
689
+ "learning_rate": 9.666666666666666e-07,
690
+ "epoch": 1.1734693877551021
691
+ },
692
+ {
693
+ "current_steps": 115,
694
+ "loss": 1.2142,
695
+ "learning_rate": 9.64102564102564e-07,
696
+ "epoch": 1.183673469387755
697
+ },
698
+ {
699
+ "current_steps": 116,
700
+ "loss": 1.8625,
701
+ "learning_rate": 9.615384615384615e-07,
702
+ "epoch": 1.193877551020408
703
+ },
704
+ {
705
+ "current_steps": 117,
706
+ "loss": 1.0982,
707
+ "learning_rate": 9.58974358974359e-07,
708
+ "epoch": 1.2040816326530612
709
+ },
710
+ {
711
+ "current_steps": 118,
712
+ "loss": 1.2912,
713
+ "learning_rate": 9.564102564102564e-07,
714
+ "epoch": 1.2142857142857142
715
+ },
716
+ {
717
+ "current_steps": 119,
718
+ "loss": 1.2424,
719
+ "learning_rate": 9.538461538461538e-07,
720
+ "epoch": 1.2244897959183674
721
+ },
722
+ {
723
+ "current_steps": 120,
724
+ "loss": 1.0336,
725
+ "learning_rate": 9.512820512820512e-07,
726
+ "epoch": 1.2346938775510203
727
+ },
728
+ {
729
+ "current_steps": 121,
730
+ "loss": 1.1639,
731
+ "learning_rate": 9.487179487179486e-07,
732
+ "epoch": 1.2448979591836735
733
+ },
734
+ {
735
+ "current_steps": 122,
736
+ "loss": 1.1928,
737
+ "learning_rate": 9.461538461538461e-07,
738
+ "epoch": 1.2551020408163265
739
+ },
740
+ {
741
+ "current_steps": 123,
742
+ "loss": 0.8534,
743
+ "learning_rate": 9.435897435897435e-07,
744
+ "epoch": 1.2653061224489797
745
+ },
746
+ {
747
+ "current_steps": 124,
748
+ "loss": 1.0712,
749
+ "learning_rate": 9.41025641025641e-07,
750
+ "epoch": 1.2755102040816326
751
+ },
752
+ {
753
+ "current_steps": 125,
754
+ "loss": 1.2151,
755
+ "learning_rate": 9.384615384615384e-07,
756
+ "epoch": 1.2857142857142856
757
+ },
758
+ {
759
+ "current_steps": 126,
760
+ "loss": 0.8883,
761
+ "learning_rate": 9.358974358974359e-07,
762
+ "epoch": 1.2959183673469388
763
+ },
764
+ {
765
+ "current_steps": 127,
766
+ "loss": 1.1596,
767
+ "learning_rate": 9.333333333333333e-07,
768
+ "epoch": 1.306122448979592
769
+ },
770
+ {
771
+ "current_steps": 128,
772
+ "loss": 1.0218,
773
+ "learning_rate": 9.307692307692308e-07,
774
+ "epoch": 1.316326530612245
775
+ },
776
+ {
777
+ "current_steps": 129,
778
+ "loss": 0.953,
779
+ "learning_rate": 9.282051282051282e-07,
780
+ "epoch": 1.3265306122448979
781
+ },
782
+ {
783
+ "current_steps": 130,
784
+ "loss": 0.9616,
785
+ "learning_rate": 9.282051282051282e-07,
786
+ "epoch": 1.336734693877551
787
+ },
788
+ {
789
+ "current_steps": 131,
790
+ "loss": 1.0368,
791
+ "learning_rate": 9.256410256410257e-07,
792
+ "epoch": 1.346938775510204
793
+ },
794
+ {
795
+ "current_steps": 132,
796
+ "loss": 1.008,
797
+ "learning_rate": 9.230769230769231e-07,
798
+ "epoch": 1.3571428571428572
799
+ },
800
+ {
801
+ "current_steps": 133,
802
+ "loss": 0.9845,
803
+ "learning_rate": 9.205128205128205e-07,
804
+ "epoch": 1.3673469387755102
805
+ },
806
+ {
807
+ "current_steps": 134,
808
+ "loss": 0.8404,
809
+ "learning_rate": 9.179487179487179e-07,
810
+ "epoch": 1.3775510204081631
811
+ },
812
+ {
813
+ "current_steps": 135,
814
+ "loss": 0.9514,
815
+ "learning_rate": 9.153846153846153e-07,
816
+ "epoch": 1.3877551020408163
817
+ },
818
+ {
819
+ "current_steps": 136,
820
+ "loss": 1.0032,
821
+ "learning_rate": 9.128205128205127e-07,
822
+ "epoch": 1.3979591836734695
823
+ },
824
+ {
825
+ "current_steps": 137,
826
+ "loss": 0.9905,
827
+ "learning_rate": 9.102564102564102e-07,
828
+ "epoch": 1.4081632653061225
829
+ },
830
+ {
831
+ "current_steps": 138,
832
+ "loss": 1.0208,
833
+ "learning_rate": 9.076923076923076e-07,
834
+ "epoch": 1.4183673469387754
835
+ },
836
+ {
837
+ "current_steps": 139,
838
+ "loss": 0.9982,
839
+ "learning_rate": 9.051282051282051e-07,
840
+ "epoch": 1.4285714285714286
841
+ },
842
+ {
843
+ "current_steps": 140,
844
+ "loss": 0.9697,
845
+ "learning_rate": 9.025641025641025e-07,
846
+ "epoch": 1.4387755102040816
847
+ },
848
+ {
849
+ "current_steps": 141,
850
+ "loss": 1.031,
851
+ "learning_rate": 9e-07,
852
+ "epoch": 1.4489795918367347
853
+ },
854
+ {
855
+ "current_steps": 142,
856
+ "loss": 1.1713,
857
+ "learning_rate": 8.974358974358974e-07,
858
+ "epoch": 1.4591836734693877
859
+ },
860
+ {
861
+ "current_steps": 143,
862
+ "loss": 1.3207,
863
+ "learning_rate": 8.948717948717949e-07,
864
+ "epoch": 1.469387755102041
865
+ },
866
+ {
867
+ "current_steps": 144,
868
+ "loss": 0.9822,
869
+ "learning_rate": 8.923076923076923e-07,
870
+ "epoch": 1.4795918367346939
871
+ },
872
+ {
873
+ "current_steps": 145,
874
+ "loss": 0.9969,
875
+ "learning_rate": 8.897435897435897e-07,
876
+ "epoch": 1.489795918367347
877
+ },
878
+ {
879
+ "current_steps": 146,
880
+ "loss": 1.216,
881
+ "learning_rate": 8.871794871794871e-07,
882
+ "epoch": 1.5
883
+ },
884
+ {
885
+ "current_steps": 147,
886
+ "loss": 1.0927,
887
+ "learning_rate": 8.846153846153846e-07,
888
+ "epoch": 1.510204081632653
889
+ },
890
+ {
891
+ "current_steps": 148,
892
+ "loss": 1.1464,
893
+ "learning_rate": 8.82051282051282e-07,
894
+ "epoch": 1.5204081632653061
895
+ },
896
+ {
897
+ "current_steps": 149,
898
+ "loss": 0.9045,
899
+ "learning_rate": 8.794871794871795e-07,
900
+ "epoch": 1.5306122448979593
901
+ },
902
+ {
903
+ "current_steps": 150,
904
+ "loss": 1.0216,
905
+ "learning_rate": 8.769230769230769e-07,
906
+ "epoch": 1.5408163265306123
907
+ },
908
+ {
909
+ "current_steps": 151,
910
+ "loss": 0.8687,
911
+ "learning_rate": 8.743589743589743e-07,
912
+ "epoch": 1.5510204081632653
913
+ },
914
+ {
915
+ "current_steps": 152,
916
+ "loss": 1.3796,
917
+ "learning_rate": 8.717948717948718e-07,
918
+ "epoch": 1.5612244897959182
919
+ },
920
+ {
921
+ "current_steps": 153,
922
+ "loss": 1.0517,
923
+ "learning_rate": 8.692307692307692e-07,
924
+ "epoch": 1.5714285714285714
925
+ },
926
+ {
927
+ "current_steps": 154,
928
+ "loss": 1.2114,
929
+ "learning_rate": 8.666666666666667e-07,
930
+ "epoch": 1.5816326530612246
931
+ },
932
+ {
933
+ "current_steps": 155,
934
+ "loss": 0.8193,
935
+ "learning_rate": 8.641025641025641e-07,
936
+ "epoch": 1.5918367346938775
937
+ },
938
+ {
939
+ "current_steps": 156,
940
+ "loss": 1.1385,
941
+ "learning_rate": 8.615384615384616e-07,
942
+ "epoch": 1.6020408163265305
943
+ },
944
+ {
945
+ "current_steps": 157,
946
+ "loss": 0.9739,
947
+ "learning_rate": 8.589743589743588e-07,
948
+ "epoch": 1.6122448979591837
949
+ },
950
+ {
951
+ "current_steps": 158,
952
+ "loss": 1.5266,
953
+ "learning_rate": 8.564102564102563e-07,
954
+ "epoch": 1.6224489795918369
955
+ },
956
+ {
957
+ "current_steps": 159,
958
+ "loss": 1.0021,
959
+ "learning_rate": 8.538461538461537e-07,
960
+ "epoch": 1.6326530612244898
961
+ },
962
+ {
963
+ "current_steps": 160,
964
+ "loss": 1.119,
965
+ "learning_rate": 8.512820512820512e-07,
966
+ "epoch": 1.6428571428571428
967
+ },
968
+ {
969
+ "current_steps": 161,
970
+ "loss": 0.9662,
971
+ "learning_rate": 8.487179487179486e-07,
972
+ "epoch": 1.6530612244897958
973
+ },
974
+ {
975
+ "current_steps": 162,
976
+ "loss": 1.1719,
977
+ "learning_rate": 8.461538461538461e-07,
978
+ "epoch": 1.663265306122449
979
+ },
980
+ {
981
+ "current_steps": 163,
982
+ "loss": 0.9716,
983
+ "learning_rate": 8.435897435897435e-07,
984
+ "epoch": 1.6734693877551021
985
+ },
986
+ {
987
+ "current_steps": 164,
988
+ "loss": 1.5846,
989
+ "learning_rate": 8.41025641025641e-07,
990
+ "epoch": 1.683673469387755
991
+ },
992
+ {
993
+ "current_steps": 165,
994
+ "loss": 0.8901,
995
+ "learning_rate": 8.384615384615384e-07,
996
+ "epoch": 1.693877551020408
997
+ },
998
+ {
999
+ "current_steps": 166,
1000
+ "loss": 0.9545,
1001
+ "learning_rate": 8.358974358974359e-07,
1002
+ "epoch": 1.7040816326530612
1003
+ },
1004
+ {
1005
+ "current_steps": 167,
1006
+ "loss": 1.1515,
1007
+ "learning_rate": 8.333333333333333e-07,
1008
+ "epoch": 1.7142857142857144
1009
+ },
1010
+ {
1011
+ "current_steps": 168,
1012
+ "loss": 1.3852,
1013
+ "learning_rate": 8.307692307692308e-07,
1014
+ "epoch": 1.7244897959183674
1015
+ },
1016
+ {
1017
+ "current_steps": 169,
1018
+ "loss": 1.0304,
1019
+ "learning_rate": 8.282051282051282e-07,
1020
+ "epoch": 1.7346938775510203
1021
+ },
1022
+ {
1023
+ "current_steps": 170,
1024
+ "loss": 1.0555,
1025
+ "learning_rate": 8.256410256410256e-07,
1026
+ "epoch": 1.7448979591836735
1027
+ },
1028
+ {
1029
+ "current_steps": 171,
1030
+ "loss": 0.7715,
1031
+ "learning_rate": 8.23076923076923e-07,
1032
+ "epoch": 1.7551020408163265
1033
+ },
1034
+ {
1035
+ "current_steps": 172,
1036
+ "loss": 0.9879,
1037
+ "learning_rate": 8.205128205128205e-07,
1038
+ "epoch": 1.7653061224489797
1039
+ },
1040
+ {
1041
+ "current_steps": 173,
1042
+ "loss": 1.244,
1043
+ "learning_rate": 8.179487179487179e-07,
1044
+ "epoch": 1.7755102040816326
1045
+ },
1046
+ {
1047
+ "current_steps": 174,
1048
+ "loss": 1.1134,
1049
+ "learning_rate": 8.153846153846154e-07,
1050
+ "epoch": 1.7857142857142856
1051
+ },
1052
+ {
1053
+ "current_steps": 175,
1054
+ "loss": 1.1013,
1055
+ "learning_rate": 8.128205128205128e-07,
1056
+ "epoch": 1.7959183673469388
1057
+ },
1058
+ {
1059
+ "current_steps": 176,
1060
+ "loss": 1.1775,
1061
+ "learning_rate": 8.102564102564103e-07,
1062
+ "epoch": 1.806122448979592
1063
+ },
1064
+ {
1065
+ "current_steps": 177,
1066
+ "loss": 1.1815,
1067
+ "learning_rate": 8.076923076923077e-07,
1068
+ "epoch": 1.816326530612245
1069
+ },
1070
+ {
1071
+ "current_steps": 178,
1072
+ "loss": 1.1765,
1073
+ "learning_rate": 8.051282051282052e-07,
1074
+ "epoch": 1.8265306122448979
1075
+ },
1076
+ {
1077
+ "current_steps": 179,
1078
+ "loss": 0.9524,
1079
+ "learning_rate": 8.025641025641025e-07,
1080
+ "epoch": 1.836734693877551
1081
+ },
1082
+ {
1083
+ "current_steps": 180,
1084
+ "loss": 1.1465,
1085
+ "learning_rate": 8e-07,
1086
+ "epoch": 1.8469387755102042
1087
+ },
1088
+ {
1089
+ "current_steps": 181,
1090
+ "loss": 1.198,
1091
+ "learning_rate": 7.974358974358974e-07,
1092
+ "epoch": 1.8571428571428572
1093
+ },
1094
+ {
1095
+ "current_steps": 182,
1096
+ "loss": 1.0793,
1097
+ "learning_rate": 7.948717948717948e-07,
1098
+ "epoch": 1.8673469387755102
1099
+ },
1100
+ {
1101
+ "current_steps": 183,
1102
+ "loss": 1.2496,
1103
+ "learning_rate": 7.923076923076922e-07,
1104
+ "epoch": 1.8775510204081631
1105
+ },
1106
+ {
1107
+ "current_steps": 184,
1108
+ "loss": 0.986,
1109
+ "learning_rate": 7.897435897435897e-07,
1110
+ "epoch": 1.8877551020408163
1111
+ },
1112
+ {
1113
+ "current_steps": 185,
1114
+ "loss": 1.0159,
1115
+ "learning_rate": 7.871794871794871e-07,
1116
+ "epoch": 1.8979591836734695
1117
+ },
1118
+ {
1119
+ "current_steps": 186,
1120
+ "loss": 1.0971,
1121
+ "learning_rate": 7.846153846153846e-07,
1122
+ "epoch": 1.9081632653061225
1123
+ },
1124
+ {
1125
+ "current_steps": 187,
1126
+ "loss": 0.9174,
1127
+ "learning_rate": 7.82051282051282e-07,
1128
+ "epoch": 1.9183673469387754
1129
+ },
1130
+ {
1131
+ "current_steps": 188,
1132
+ "loss": 0.9513,
1133
+ "learning_rate": 7.794871794871795e-07,
1134
+ "epoch": 1.9285714285714286
1135
+ },
1136
+ {
1137
+ "current_steps": 189,
1138
+ "loss": 1.0736,
1139
+ "learning_rate": 7.769230769230769e-07,
1140
+ "epoch": 1.9387755102040818
1141
+ },
1142
+ {
1143
+ "current_steps": 190,
1144
+ "loss": 1.1306,
1145
+ "learning_rate": 7.743589743589744e-07,
1146
+ "epoch": 1.9489795918367347
1147
+ },
1148
+ {
1149
+ "current_steps": 191,
1150
+ "loss": 0.9481,
1151
+ "learning_rate": 7.717948717948718e-07,
1152
+ "epoch": 1.9591836734693877
1153
+ },
1154
+ {
1155
+ "current_steps": 192,
1156
+ "loss": 0.8325,
1157
+ "learning_rate": 7.692307692307693e-07,
1158
+ "epoch": 1.9693877551020407
1159
+ },
1160
+ {
1161
+ "current_steps": 193,
1162
+ "loss": 1.0885,
1163
+ "learning_rate": 7.666666666666667e-07,
1164
+ "epoch": 1.9795918367346939
1165
+ },
1166
+ {
1167
+ "current_steps": 194,
1168
+ "loss": 1.1409,
1169
+ "learning_rate": 7.64102564102564e-07,
1170
+ "epoch": 1.989795918367347
1171
+ },
1172
+ {
1173
+ "current_steps": 195,
1174
+ "loss": 0.7824,
1175
+ "learning_rate": 7.615384615384615e-07,
1176
+ "epoch": 2.0
1177
+ },
1178
+ {
1179
+ "current_steps": 196,
1180
+ "loss": 1.1916,
1181
+ "learning_rate": 7.589743589743589e-07,
1182
+ "epoch": 2.010204081632653
1183
+ },
1184
+ {
1185
+ "current_steps": 197,
1186
+ "loss": 1.1858,
1187
+ "learning_rate": 7.564102564102564e-07,
1188
+ "epoch": 2.020408163265306
1189
+ },
1190
+ {
1191
+ "current_steps": 198,
1192
+ "loss": 0.8909,
1193
+ "learning_rate": 7.538461538461538e-07,
1194
+ "epoch": 2.0306122448979593
1195
+ },
1196
+ {
1197
+ "current_steps": 199,
1198
+ "loss": 1.2537,
1199
+ "learning_rate": 7.512820512820513e-07,
1200
+ "epoch": 2.0408163265306123
1201
+ },
1202
+ {
1203
+ "current_steps": 200,
1204
+ "loss": 1.1669,
1205
+ "learning_rate": 7.487179487179486e-07,
1206
+ "epoch": 2.0510204081632653
1207
+ },
1208
+ {
1209
+ "current_steps": 201,
1210
+ "loss": 0.9486,
1211
+ "learning_rate": 7.461538461538461e-07,
1212
+ "epoch": 2.061224489795918
1213
+ },
1214
+ {
1215
+ "current_steps": 202,
1216
+ "loss": 0.9397,
1217
+ "learning_rate": 7.435897435897435e-07,
1218
+ "epoch": 2.0714285714285716
1219
+ },
1220
+ {
1221
+ "current_steps": 203,
1222
+ "loss": 1.0689,
1223
+ "learning_rate": 7.41025641025641e-07,
1224
+ "epoch": 2.0816326530612246
1225
+ },
1226
+ {
1227
+ "current_steps": 204,
1228
+ "loss": 0.8393,
1229
+ "learning_rate": 7.384615384615384e-07,
1230
+ "epoch": 2.0918367346938775
1231
+ },
1232
+ {
1233
+ "current_steps": 205,
1234
+ "loss": 0.9834,
1235
+ "learning_rate": 7.358974358974359e-07,
1236
+ "epoch": 2.1020408163265305
1237
+ },
1238
+ {
1239
+ "current_steps": 206,
1240
+ "loss": 0.9443,
1241
+ "learning_rate": 7.333333333333332e-07,
1242
+ "epoch": 2.1122448979591835
1243
+ },
1244
+ {
1245
+ "current_steps": 207,
1246
+ "loss": 0.8711,
1247
+ "learning_rate": 7.307692307692307e-07,
1248
+ "epoch": 2.122448979591837
1249
+ },
1250
+ {
1251
+ "current_steps": 208,
1252
+ "loss": 1.0088,
1253
+ "learning_rate": 7.282051282051281e-07,
1254
+ "epoch": 2.13265306122449
1255
+ },
1256
+ {
1257
+ "current_steps": 209,
1258
+ "loss": 0.9495,
1259
+ "learning_rate": 7.256410256410256e-07,
1260
+ "epoch": 2.142857142857143
1261
+ },
1262
+ {
1263
+ "current_steps": 210,
1264
+ "loss": 1.0246,
1265
+ "learning_rate": 7.23076923076923e-07,
1266
+ "epoch": 2.1530612244897958
1267
+ },
1268
+ {
1269
+ "current_steps": 211,
1270
+ "loss": 0.8712,
1271
+ "learning_rate": 7.205128205128205e-07,
1272
+ "epoch": 2.163265306122449
1273
+ },
1274
+ {
1275
+ "current_steps": 212,
1276
+ "loss": 1.0604,
1277
+ "learning_rate": 7.179487179487179e-07,
1278
+ "epoch": 2.173469387755102
1279
+ },
1280
+ {
1281
+ "current_steps": 213,
1282
+ "loss": 0.9848,
1283
+ "learning_rate": 7.153846153846154e-07,
1284
+ "epoch": 2.183673469387755
1285
+ },
1286
+ {
1287
+ "current_steps": 214,
1288
+ "loss": 1.0133,
1289
+ "learning_rate": 7.128205128205128e-07,
1290
+ "epoch": 2.193877551020408
1291
+ },
1292
+ {
1293
+ "current_steps": 215,
1294
+ "loss": 1.0367,
1295
+ "learning_rate": 7.102564102564103e-07,
1296
+ "epoch": 2.204081632653061
1297
+ },
1298
+ {
1299
+ "current_steps": 216,
1300
+ "loss": 1.0779,
1301
+ "learning_rate": 7.076923076923077e-07,
1302
+ "epoch": 2.2142857142857144
1303
+ },
1304
+ {
1305
+ "current_steps": 217,
1306
+ "loss": 1.1813,
1307
+ "learning_rate": 7.051282051282052e-07,
1308
+ "epoch": 2.2244897959183674
1309
+ },
1310
+ {
1311
+ "current_steps": 218,
1312
+ "loss": 1.209,
1313
+ "learning_rate": 7.025641025641025e-07,
1314
+ "epoch": 2.2346938775510203
1315
+ },
1316
+ {
1317
+ "current_steps": 219,
1318
+ "loss": 0.7289,
1319
+ "learning_rate": 7e-07,
1320
+ "epoch": 2.2448979591836733
1321
+ },
1322
+ {
1323
+ "current_steps": 220,
1324
+ "loss": 1.0283,
1325
+ "learning_rate": 6.974358974358974e-07,
1326
+ "epoch": 2.2551020408163267
1327
+ },
1328
+ {
1329
+ "current_steps": 221,
1330
+ "loss": 1.141,
1331
+ "learning_rate": 6.948717948717948e-07,
1332
+ "epoch": 2.2653061224489797
1333
+ },
1334
+ {
1335
+ "current_steps": 222,
1336
+ "loss": 0.8899,
1337
+ "learning_rate": 6.923076923076922e-07,
1338
+ "epoch": 2.2755102040816326
1339
+ },
1340
+ {
1341
+ "current_steps": 223,
1342
+ "loss": 1.0982,
1343
+ "learning_rate": 6.897435897435897e-07,
1344
+ "epoch": 2.2857142857142856
1345
+ },
1346
+ {
1347
+ "current_steps": 224,
1348
+ "loss": 0.9901,
1349
+ "learning_rate": 6.871794871794871e-07,
1350
+ "epoch": 2.295918367346939
1351
+ },
1352
+ {
1353
+ "current_steps": 225,
1354
+ "loss": 1.0405,
1355
+ "learning_rate": 6.846153846153846e-07,
1356
+ "epoch": 2.306122448979592
1357
+ },
1358
+ {
1359
+ "current_steps": 226,
1360
+ "loss": 0.8221,
1361
+ "learning_rate": 6.82051282051282e-07,
1362
+ "epoch": 2.316326530612245
1363
+ },
1364
+ {
1365
+ "current_steps": 227,
1366
+ "loss": 1.2293,
1367
+ "learning_rate": 6.794871794871795e-07,
1368
+ "epoch": 2.326530612244898
1369
+ },
1370
+ {
1371
+ "current_steps": 228,
1372
+ "loss": 1.2191,
1373
+ "learning_rate": 6.769230769230769e-07,
1374
+ "epoch": 2.336734693877551
1375
+ },
1376
+ {
1377
+ "current_steps": 229,
1378
+ "loss": 1.0375,
1379
+ "learning_rate": 6.743589743589744e-07,
1380
+ "epoch": 2.3469387755102042
1381
+ },
1382
+ {
1383
+ "current_steps": 230,
1384
+ "loss": 0.9397,
1385
+ "learning_rate": 6.717948717948717e-07,
1386
+ "epoch": 2.357142857142857
1387
+ },
1388
+ {
1389
+ "current_steps": 231,
1390
+ "loss": 0.9278,
1391
+ "learning_rate": 6.692307692307692e-07,
1392
+ "epoch": 2.36734693877551
1393
+ },
1394
+ {
1395
+ "current_steps": 232,
1396
+ "loss": 1.0717,
1397
+ "learning_rate": 6.666666666666666e-07,
1398
+ "epoch": 2.377551020408163
1399
+ },
1400
+ {
1401
+ "current_steps": 233,
1402
+ "loss": 1.1695,
1403
+ "learning_rate": 6.64102564102564e-07,
1404
+ "epoch": 2.387755102040816
1405
+ },
1406
+ {
1407
+ "current_steps": 234,
1408
+ "loss": 1.1653,
1409
+ "learning_rate": 6.615384615384615e-07,
1410
+ "epoch": 2.3979591836734695
1411
+ },
1412
+ {
1413
+ "current_steps": 235,
1414
+ "loss": 1.1682,
1415
+ "learning_rate": 6.58974358974359e-07,
1416
+ "epoch": 2.4081632653061225
1417
+ },
1418
+ {
1419
+ "current_steps": 236,
1420
+ "loss": 0.9805,
1421
+ "learning_rate": 6.564102564102564e-07,
1422
+ "epoch": 2.4183673469387754
1423
+ },
1424
+ {
1425
+ "current_steps": 237,
1426
+ "loss": 1.1046,
1427
+ "learning_rate": 6.538461538461538e-07,
1428
+ "epoch": 2.4285714285714284
1429
+ },
1430
+ {
1431
+ "current_steps": 238,
1432
+ "loss": 0.9734,
1433
+ "learning_rate": 6.512820512820513e-07,
1434
+ "epoch": 2.438775510204082
1435
+ },
1436
+ {
1437
+ "current_steps": 239,
1438
+ "loss": 1.2178,
1439
+ "learning_rate": 6.487179487179487e-07,
1440
+ "epoch": 2.4489795918367347
1441
+ },
1442
+ {
1443
+ "current_steps": 240,
1444
+ "loss": 1.1556,
1445
+ "learning_rate": 6.461538461538462e-07,
1446
+ "epoch": 2.4591836734693877
1447
+ },
1448
+ {
1449
+ "current_steps": 241,
1450
+ "loss": 1.0326,
1451
+ "learning_rate": 6.435897435897436e-07,
1452
+ "epoch": 2.4693877551020407
1453
+ },
1454
+ {
1455
+ "current_steps": 242,
1456
+ "loss": 0.9868,
1457
+ "learning_rate": 6.410256410256411e-07,
1458
+ "epoch": 2.479591836734694
1459
+ },
1460
+ {
1461
+ "current_steps": 243,
1462
+ "loss": 0.8947,
1463
+ "learning_rate": 6.384615384615383e-07,
1464
+ "epoch": 2.489795918367347
1465
+ },
1466
+ {
1467
+ "current_steps": 244,
1468
+ "loss": 0.9736,
1469
+ "learning_rate": 6.358974358974358e-07,
1470
+ "epoch": 2.5
1471
+ },
1472
+ {
1473
+ "current_steps": 245,
1474
+ "loss": 1.5294,
1475
+ "learning_rate": 6.333333333333332e-07,
1476
+ "epoch": 2.510204081632653
1477
+ },
1478
+ {
1479
+ "current_steps": 246,
1480
+ "loss": 1.176,
1481
+ "learning_rate": 6.307692307692307e-07,
1482
+ "epoch": 2.520408163265306
1483
+ },
1484
+ {
1485
+ "current_steps": 247,
1486
+ "loss": 1.0583,
1487
+ "learning_rate": 6.282051282051281e-07,
1488
+ "epoch": 2.5306122448979593
1489
+ },
1490
+ {
1491
+ "current_steps": 248,
1492
+ "loss": 0.9439,
1493
+ "learning_rate": 6.256410256410256e-07,
1494
+ "epoch": 2.5408163265306123
1495
+ },
1496
+ {
1497
+ "current_steps": 249,
1498
+ "loss": 0.9092,
1499
+ "learning_rate": 6.23076923076923e-07,
1500
+ "epoch": 2.5510204081632653
1501
+ },
1502
+ {
1503
+ "current_steps": 250,
1504
+ "loss": 1.2091,
1505
+ "learning_rate": 6.205128205128205e-07,
1506
+ "epoch": 2.561224489795918
1507
+ },
1508
+ {
1509
+ "current_steps": 251,
1510
+ "loss": 0.9285,
1511
+ "learning_rate": 6.179487179487179e-07,
1512
+ "epoch": 2.571428571428571
1513
+ },
1514
+ {
1515
+ "current_steps": 252,
1516
+ "loss": 1.039,
1517
+ "learning_rate": 6.153846153846154e-07,
1518
+ "epoch": 2.5816326530612246
1519
+ },
1520
+ {
1521
+ "current_steps": 253,
1522
+ "loss": 1.0148,
1523
+ "learning_rate": 6.128205128205128e-07,
1524
+ "epoch": 2.5918367346938775
1525
+ },
1526
+ {
1527
+ "current_steps": 254,
1528
+ "loss": 0.9658,
1529
+ "learning_rate": 6.102564102564103e-07,
1530
+ "epoch": 2.6020408163265305
1531
+ },
1532
+ {
1533
+ "current_steps": 255,
1534
+ "loss": 0.7872,
1535
+ "learning_rate": 6.076923076923076e-07,
1536
+ "epoch": 2.612244897959184
1537
+ },
1538
+ {
1539
+ "current_steps": 256,
1540
+ "loss": 0.9161,
1541
+ "learning_rate": 6.051282051282051e-07,
1542
+ "epoch": 2.622448979591837
1543
+ },
1544
+ {
1545
+ "current_steps": 257,
1546
+ "loss": 1.2506,
1547
+ "learning_rate": 6.025641025641025e-07,
1548
+ "epoch": 2.63265306122449
1549
+ },
1550
+ {
1551
+ "current_steps": 258,
1552
+ "loss": 0.969,
1553
+ "learning_rate": 6e-07,
1554
+ "epoch": 2.642857142857143
1555
+ },
1556
+ {
1557
+ "current_steps": 259,
1558
+ "loss": 0.8615,
1559
+ "learning_rate": 5.974358974358974e-07,
1560
+ "epoch": 2.6530612244897958
1561
+ },
1562
+ {
1563
+ "current_steps": 260,
1564
+ "loss": 0.8467,
1565
+ "learning_rate": 5.948717948717949e-07,
1566
+ "epoch": 2.663265306122449
1567
+ },
1568
+ {
1569
+ "current_steps": 261,
1570
+ "loss": 1.1803,
1571
+ "learning_rate": 5.923076923076923e-07,
1572
+ "epoch": 2.673469387755102
1573
+ },
1574
+ {
1575
+ "current_steps": 262,
1576
+ "loss": 0.6155,
1577
+ "learning_rate": 5.897435897435898e-07,
1578
+ "epoch": 2.683673469387755
1579
+ },
1580
+ {
1581
+ "current_steps": 263,
1582
+ "loss": 1.148,
1583
+ "learning_rate": 5.871794871794872e-07,
1584
+ "epoch": 2.693877551020408
1585
+ },
1586
+ {
1587
+ "current_steps": 264,
1588
+ "loss": 1.2103,
1589
+ "learning_rate": 5.846153846153847e-07,
1590
+ "epoch": 2.704081632653061
1591
+ },
1592
+ {
1593
+ "current_steps": 265,
1594
+ "loss": 0.8083,
1595
+ "learning_rate": 5.82051282051282e-07,
1596
+ "epoch": 2.7142857142857144
1597
+ },
1598
+ {
1599
+ "current_steps": 266,
1600
+ "loss": 0.9858,
1601
+ "learning_rate": 5.794871794871795e-07,
1602
+ "epoch": 2.7244897959183674
1603
+ },
1604
+ {
1605
+ "current_steps": 267,
1606
+ "loss": 0.9855,
1607
+ "learning_rate": 5.769230769230768e-07,
1608
+ "epoch": 2.7346938775510203
1609
+ },
1610
+ {
1611
+ "current_steps": 268,
1612
+ "loss": 1.1443,
1613
+ "learning_rate": 5.743589743589743e-07,
1614
+ "epoch": 2.7448979591836737
1615
+ },
1616
+ {
1617
+ "current_steps": 269,
1618
+ "loss": 0.8432,
1619
+ "learning_rate": 5.717948717948717e-07,
1620
+ "epoch": 2.7551020408163263
1621
+ },
1622
+ {
1623
+ "current_steps": 270,
1624
+ "loss": 1.1858,
1625
+ "learning_rate": 5.692307692307692e-07,
1626
+ "epoch": 2.7653061224489797
1627
+ },
1628
+ {
1629
+ "current_steps": 271,
1630
+ "loss": 1.5042,
1631
+ "learning_rate": 5.666666666666666e-07,
1632
+ "epoch": 2.7755102040816326
1633
+ },
1634
+ {
1635
+ "current_steps": 272,
1636
+ "loss": 1.0224,
1637
+ "learning_rate": 5.641025641025641e-07,
1638
+ "epoch": 2.7857142857142856
1639
+ },
1640
+ {
1641
+ "current_steps": 273,
1642
+ "loss": 1.243,
1643
+ "learning_rate": 5.615384615384615e-07,
1644
+ "epoch": 2.795918367346939
1645
+ },
1646
+ {
1647
+ "current_steps": 274,
1648
+ "loss": 0.9863,
1649
+ "learning_rate": 5.58974358974359e-07,
1650
+ "epoch": 2.806122448979592
1651
+ },
1652
+ {
1653
+ "current_steps": 275,
1654
+ "loss": 1.2529,
1655
+ "learning_rate": 5.564102564102564e-07,
1656
+ "epoch": 2.816326530612245
1657
+ },
1658
+ {
1659
+ "current_steps": 276,
1660
+ "loss": 0.9227,
1661
+ "learning_rate": 5.538461538461539e-07,
1662
+ "epoch": 2.826530612244898
1663
+ },
1664
+ {
1665
+ "current_steps": 277,
1666
+ "loss": 0.8991,
1667
+ "learning_rate": 5.512820512820513e-07,
1668
+ "epoch": 2.836734693877551
1669
+ },
1670
+ {
1671
+ "current_steps": 278,
1672
+ "loss": 0.9586,
1673
+ "learning_rate": 5.487179487179488e-07,
1674
+ "epoch": 2.8469387755102042
1675
+ },
1676
+ {
1677
+ "current_steps": 279,
1678
+ "loss": 0.9635,
1679
+ "learning_rate": 5.461538461538461e-07,
1680
+ "epoch": 2.857142857142857
1681
+ },
1682
+ {
1683
+ "current_steps": 280,
1684
+ "loss": 1.0263,
1685
+ "learning_rate": 5.435897435897435e-07,
1686
+ "epoch": 2.86734693877551
1687
+ },
1688
+ {
1689
+ "current_steps": 281,
1690
+ "loss": 0.9285,
1691
+ "learning_rate": 5.41025641025641e-07,
1692
+ "epoch": 2.877551020408163
1693
+ },
1694
+ {
1695
+ "current_steps": 282,
1696
+ "loss": 1.2307,
1697
+ "learning_rate": 5.384615384615384e-07,
1698
+ "epoch": 2.887755102040816
1699
+ },
1700
+ {
1701
+ "current_steps": 283,
1702
+ "loss": 1.0337,
1703
+ "learning_rate": 5.358974358974359e-07,
1704
+ "epoch": 2.8979591836734695
1705
+ },
1706
+ {
1707
+ "current_steps": 284,
1708
+ "loss": 0.9798,
1709
+ "learning_rate": 5.333333333333333e-07,
1710
+ "epoch": 2.9081632653061225
1711
+ },
1712
+ {
1713
+ "current_steps": 285,
1714
+ "loss": 1.0283,
1715
+ "learning_rate": 5.307692307692308e-07,
1716
+ "epoch": 2.9183673469387754
1717
+ },
1718
+ {
1719
+ "current_steps": 286,
1720
+ "loss": 0.946,
1721
+ "learning_rate": 5.282051282051282e-07,
1722
+ "epoch": 2.928571428571429
1723
+ },
1724
+ {
1725
+ "current_steps": 287,
1726
+ "loss": 0.9716,
1727
+ "learning_rate": 5.256410256410256e-07,
1728
+ "epoch": 2.938775510204082
1729
+ },
1730
+ {
1731
+ "current_steps": 288,
1732
+ "loss": 1.0291,
1733
+ "learning_rate": 5.23076923076923e-07,
1734
+ "epoch": 2.9489795918367347
1735
+ },
1736
+ {
1737
+ "current_steps": 289,
1738
+ "loss": 1.1638,
1739
+ "learning_rate": 5.205128205128205e-07,
1740
+ "epoch": 2.9591836734693877
1741
+ },
1742
+ {
1743
+ "current_steps": 290,
1744
+ "loss": 1.249,
1745
+ "learning_rate": 5.179487179487179e-07,
1746
+ "epoch": 2.9693877551020407
1747
+ },
1748
+ {
1749
+ "current_steps": 291,
1750
+ "loss": 1.1532,
1751
+ "learning_rate": 5.153846153846153e-07,
1752
+ "epoch": 2.979591836734694
1753
+ },
1754
+ {
1755
+ "current_steps": 292,
1756
+ "loss": 0.8845,
1757
+ "learning_rate": 5.128205128205127e-07,
1758
+ "epoch": 2.989795918367347
1759
+ },
1760
+ {
1761
+ "current_steps": 293,
1762
+ "loss": 1.2865,
1763
+ "learning_rate": 5.102564102564102e-07,
1764
+ "epoch": 3.0
1765
+ },
1766
+ {
1767
+ "current_steps": 294,
1768
+ "loss": 1.0558,
1769
+ "learning_rate": 5.076923076923076e-07,
1770
+ "epoch": 3.010204081632653
1771
+ },
1772
+ {
1773
+ "current_steps": 295,
1774
+ "loss": 0.8381,
1775
+ "learning_rate": 5.051282051282051e-07,
1776
+ "epoch": 3.020408163265306
1777
+ },
1778
+ {
1779
+ "current_steps": 296,
1780
+ "loss": 0.9348,
1781
+ "learning_rate": 5.025641025641025e-07,
1782
+ "epoch": 3.0306122448979593
1783
+ },
1784
+ {
1785
+ "current_steps": 297,
1786
+ "loss": 0.9659,
1787
+ "learning_rate": 5e-07,
1788
+ "epoch": 3.0408163265306123
1789
+ },
1790
+ {
1791
+ "current_steps": 298,
1792
+ "loss": 1.3105,
1793
+ "learning_rate": 4.974358974358974e-07,
1794
+ "epoch": 3.0510204081632653
1795
+ },
1796
+ {
1797
+ "current_steps": 299,
1798
+ "loss": 0.7721,
1799
+ "learning_rate": 4.948717948717949e-07,
1800
+ "epoch": 3.061224489795918
1801
+ },
1802
+ {
1803
+ "current_steps": 300,
1804
+ "loss": 0.9762,
1805
+ "learning_rate": 4.923076923076923e-07,
1806
+ "epoch": 3.0714285714285716
1807
+ },
1808
+ {
1809
+ "current_steps": 301,
1810
+ "loss": 0.9398,
1811
+ "learning_rate": 4.897435897435897e-07,
1812
+ "epoch": 3.0816326530612246
1813
+ },
1814
+ {
1815
+ "current_steps": 302,
1816
+ "loss": 1.2612,
1817
+ "learning_rate": 4.871794871794871e-07,
1818
+ "epoch": 3.0918367346938775
1819
+ },
1820
+ {
1821
+ "current_steps": 303,
1822
+ "loss": 1.2505,
1823
+ "learning_rate": 4.846153846153846e-07,
1824
+ "epoch": 3.1020408163265305
1825
+ },
1826
+ {
1827
+ "current_steps": 304,
1828
+ "loss": 1.1641,
1829
+ "learning_rate": 4.82051282051282e-07,
1830
+ "epoch": 3.1122448979591835
1831
+ },
1832
+ {
1833
+ "current_steps": 305,
1834
+ "loss": 1.0805,
1835
+ "learning_rate": 4.794871794871795e-07,
1836
+ "epoch": 3.122448979591837
1837
+ },
1838
+ {
1839
+ "current_steps": 306,
1840
+ "loss": 0.8856,
1841
+ "learning_rate": 4.769230769230769e-07,
1842
+ "epoch": 3.13265306122449
1843
+ },
1844
+ {
1845
+ "current_steps": 307,
1846
+ "loss": 1.1931,
1847
+ "learning_rate": 4.743589743589743e-07,
1848
+ "epoch": 3.142857142857143
1849
+ },
1850
+ {
1851
+ "current_steps": 308,
1852
+ "loss": 1.0618,
1853
+ "learning_rate": 4.7179487179487176e-07,
1854
+ "epoch": 3.1530612244897958
1855
+ },
1856
+ {
1857
+ "current_steps": 309,
1858
+ "loss": 0.9113,
1859
+ "learning_rate": 4.692307692307692e-07,
1860
+ "epoch": 3.163265306122449
1861
+ },
1862
+ {
1863
+ "current_steps": 310,
1864
+ "loss": 1.0872,
1865
+ "learning_rate": 4.6666666666666666e-07,
1866
+ "epoch": 3.173469387755102
1867
+ },
1868
+ {
1869
+ "current_steps": 311,
1870
+ "loss": 1.0619,
1871
+ "learning_rate": 4.641025641025641e-07,
1872
+ "epoch": 3.183673469387755
1873
+ },
1874
+ {
1875
+ "current_steps": 312,
1876
+ "loss": 0.8784,
1877
+ "learning_rate": 4.6153846153846156e-07,
1878
+ "epoch": 3.193877551020408
1879
+ },
1880
+ {
1881
+ "current_steps": 313,
1882
+ "loss": 1.0601,
1883
+ "learning_rate": 4.5897435897435896e-07,
1884
+ "epoch": 3.204081632653061
1885
+ },
1886
+ {
1887
+ "current_steps": 314,
1888
+ "loss": 0.959,
1889
+ "learning_rate": 4.5641025641025636e-07,
1890
+ "epoch": 3.2142857142857144
1891
+ },
1892
+ {
1893
+ "current_steps": 315,
1894
+ "loss": 1.0085,
1895
+ "learning_rate": 4.538461538461538e-07,
1896
+ "epoch": 3.2244897959183674
1897
+ },
1898
+ {
1899
+ "current_steps": 316,
1900
+ "loss": 1.0718,
1901
+ "learning_rate": 4.5128205128205125e-07,
1902
+ "epoch": 3.2346938775510203
1903
+ },
1904
+ {
1905
+ "current_steps": 317,
1906
+ "loss": 1.1865,
1907
+ "learning_rate": 4.487179487179487e-07,
1908
+ "epoch": 3.2448979591836733
1909
+ },
1910
+ {
1911
+ "current_steps": 318,
1912
+ "loss": 0.9815,
1913
+ "learning_rate": 4.4615384615384615e-07,
1914
+ "epoch": 3.2551020408163267
1915
+ },
1916
+ {
1917
+ "current_steps": 319,
1918
+ "loss": 1.1176,
1919
+ "learning_rate": 4.4358974358974355e-07,
1920
+ "epoch": 3.2653061224489797
1921
+ },
1922
+ {
1923
+ "current_steps": 320,
1924
+ "loss": 0.7826,
1925
+ "learning_rate": 4.41025641025641e-07,
1926
+ "epoch": 3.2755102040816326
1927
+ },
1928
+ {
1929
+ "current_steps": 321,
1930
+ "loss": 1.0717,
1931
+ "learning_rate": 4.3846153846153845e-07,
1932
+ "epoch": 3.2857142857142856
1933
+ },
1934
+ {
1935
+ "current_steps": 322,
1936
+ "loss": 0.9129,
1937
+ "learning_rate": 4.358974358974359e-07,
1938
+ "epoch": 3.295918367346939
1939
+ },
1940
+ {
1941
+ "current_steps": 323,
1942
+ "loss": 0.8037,
1943
+ "learning_rate": 4.3333333333333335e-07,
1944
+ "epoch": 3.306122448979592
1945
+ },
1946
+ {
1947
+ "current_steps": 324,
1948
+ "loss": 1.1173,
1949
+ "learning_rate": 4.307692307692308e-07,
1950
+ "epoch": 3.316326530612245
1951
+ },
1952
+ {
1953
+ "current_steps": 325,
1954
+ "loss": 1.2198,
1955
+ "learning_rate": 4.2820512820512814e-07,
1956
+ "epoch": 3.326530612244898
1957
+ },
1958
+ {
1959
+ "current_steps": 326,
1960
+ "loss": 1.0326,
1961
+ "learning_rate": 4.256410256410256e-07,
1962
+ "epoch": 3.336734693877551
1963
+ },
1964
+ {
1965
+ "current_steps": 327,
1966
+ "loss": 1.237,
1967
+ "learning_rate": 4.2307692307692304e-07,
1968
+ "epoch": 3.3469387755102042
1969
+ },
1970
+ {
1971
+ "current_steps": 328,
1972
+ "loss": 1.1247,
1973
+ "learning_rate": 4.205128205128205e-07,
1974
+ "epoch": 3.357142857142857
1975
+ },
1976
+ {
1977
+ "current_steps": 329,
1978
+ "loss": 1.0071,
1979
+ "learning_rate": 4.1794871794871794e-07,
1980
+ "epoch": 3.36734693877551
1981
+ },
1982
+ {
1983
+ "current_steps": 330,
1984
+ "loss": 1.2143,
1985
+ "learning_rate": 4.153846153846154e-07,
1986
+ "epoch": 3.377551020408163
1987
+ },
1988
+ {
1989
+ "current_steps": 331,
1990
+ "loss": 0.9502,
1991
+ "learning_rate": 4.128205128205128e-07,
1992
+ "epoch": 3.387755102040816
1993
+ },
1994
+ {
1995
+ "current_steps": 332,
1996
+ "loss": 0.8315,
1997
+ "learning_rate": 4.1025641025641024e-07,
1998
+ "epoch": 3.3979591836734695
1999
+ },
2000
+ {
2001
+ "current_steps": 333,
2002
+ "loss": 0.8832,
2003
+ "learning_rate": 4.076923076923077e-07,
2004
+ "epoch": 3.4081632653061225
2005
+ },
2006
+ {
2007
+ "current_steps": 334,
2008
+ "loss": 1.0922,
2009
+ "learning_rate": 4.0512820512820514e-07,
2010
+ "epoch": 3.4183673469387754
2011
+ },
2012
+ {
2013
+ "current_steps": 335,
2014
+ "loss": 0.8653,
2015
+ "learning_rate": 4.025641025641026e-07,
2016
+ "epoch": 3.4285714285714284
2017
+ },
2018
+ {
2019
+ "current_steps": 336,
2020
+ "loss": 0.8588,
2021
+ "learning_rate": 4e-07,
2022
+ "epoch": 3.438775510204082
2023
+ },
2024
+ {
2025
+ "current_steps": 337,
2026
+ "loss": 1.0424,
2027
+ "learning_rate": 3.974358974358974e-07,
2028
+ "epoch": 3.4489795918367347
2029
+ },
2030
+ {
2031
+ "current_steps": 338,
2032
+ "loss": 1.0364,
2033
+ "learning_rate": 3.9487179487179483e-07,
2034
+ "epoch": 3.4591836734693877
2035
+ },
2036
+ {
2037
+ "current_steps": 339,
2038
+ "loss": 1.1119,
2039
+ "learning_rate": 3.923076923076923e-07,
2040
+ "epoch": 3.4693877551020407
2041
+ },
2042
+ {
2043
+ "current_steps": 340,
2044
+ "loss": 1.412,
2045
+ "learning_rate": 3.8974358974358973e-07,
2046
+ "epoch": 3.479591836734694
2047
+ },
2048
+ {
2049
+ "current_steps": 341,
2050
+ "loss": 1.0895,
2051
+ "learning_rate": 3.871794871794872e-07,
2052
+ "epoch": 3.489795918367347
2053
+ },
2054
+ {
2055
+ "current_steps": 342,
2056
+ "loss": 0.937,
2057
+ "learning_rate": 3.8461538461538463e-07,
2058
+ "epoch": 3.5
2059
+ },
2060
+ {
2061
+ "current_steps": 343,
2062
+ "loss": 0.9634,
2063
+ "learning_rate": 3.82051282051282e-07,
2064
+ "epoch": 3.510204081632653
2065
+ },
2066
+ {
2067
+ "current_steps": 344,
2068
+ "loss": 1.0896,
2069
+ "learning_rate": 3.7948717948717947e-07,
2070
+ "epoch": 3.520408163265306
2071
+ },
2072
+ {
2073
+ "current_steps": 345,
2074
+ "loss": 1.1336,
2075
+ "learning_rate": 3.769230769230769e-07,
2076
+ "epoch": 3.5306122448979593
2077
+ },
2078
+ {
2079
+ "current_steps": 346,
2080
+ "loss": 1.1216,
2081
+ "learning_rate": 3.743589743589743e-07,
2082
+ "epoch": 3.5408163265306123
2083
+ },
2084
+ {
2085
+ "current_steps": 347,
2086
+ "loss": 1.0329,
2087
+ "learning_rate": 3.7179487179487177e-07,
2088
+ "epoch": 3.5510204081632653
2089
+ },
2090
+ {
2091
+ "current_steps": 348,
2092
+ "loss": 0.9592,
2093
+ "learning_rate": 3.692307692307692e-07,
2094
+ "epoch": 3.561224489795918
2095
+ },
2096
+ {
2097
+ "current_steps": 349,
2098
+ "loss": 1.1346,
2099
+ "learning_rate": 3.666666666666666e-07,
2100
+ "epoch": 3.571428571428571
2101
+ },
2102
+ {
2103
+ "current_steps": 350,
2104
+ "loss": 0.9627,
2105
+ "learning_rate": 3.6410256410256406e-07,
2106
+ "epoch": 3.5816326530612246
2107
+ },
2108
+ {
2109
+ "current_steps": 351,
2110
+ "loss": 0.8698,
2111
+ "learning_rate": 3.615384615384615e-07,
2112
+ "epoch": 3.5918367346938775
2113
+ },
2114
+ {
2115
+ "current_steps": 352,
2116
+ "loss": 1.0556,
2117
+ "learning_rate": 3.5897435897435896e-07,
2118
+ "epoch": 3.6020408163265305
2119
+ },
2120
+ {
2121
+ "current_steps": 353,
2122
+ "loss": 1.1182,
2123
+ "learning_rate": 3.564102564102564e-07,
2124
+ "epoch": 3.612244897959184
2125
+ },
2126
+ {
2127
+ "current_steps": 354,
2128
+ "loss": 1.1447,
2129
+ "learning_rate": 3.5384615384615386e-07,
2130
+ "epoch": 3.622448979591837
2131
+ },
2132
+ {
2133
+ "current_steps": 355,
2134
+ "loss": 0.8987,
2135
+ "learning_rate": 3.5128205128205126e-07,
2136
+ "epoch": 3.63265306122449
2137
+ },
2138
+ {
2139
+ "current_steps": 356,
2140
+ "loss": 0.8758,
2141
+ "learning_rate": 3.487179487179487e-07,
2142
+ "epoch": 3.642857142857143
2143
+ },
2144
+ {
2145
+ "current_steps": 357,
2146
+ "loss": 1.7681,
2147
+ "learning_rate": 3.461538461538461e-07,
2148
+ "epoch": 3.6530612244897958
2149
+ },
2150
+ {
2151
+ "current_steps": 358,
2152
+ "loss": 1.0395,
2153
+ "learning_rate": 3.4358974358974356e-07,
2154
+ "epoch": 3.663265306122449
2155
+ },
2156
+ {
2157
+ "current_steps": 359,
2158
+ "loss": 0.7837,
2159
+ "learning_rate": 3.41025641025641e-07,
2160
+ "epoch": 3.673469387755102
2161
+ },
2162
+ {
2163
+ "current_steps": 360,
2164
+ "loss": 1.0153,
2165
+ "learning_rate": 3.3846153846153845e-07,
2166
+ "epoch": 3.683673469387755
2167
+ },
2168
+ {
2169
+ "current_steps": 361,
2170
+ "loss": 1.1471,
2171
+ "learning_rate": 3.3589743589743585e-07,
2172
+ "epoch": 3.693877551020408
2173
+ },
2174
+ {
2175
+ "current_steps": 362,
2176
+ "loss": 0.8569,
2177
+ "learning_rate": 3.333333333333333e-07,
2178
+ "epoch": 3.704081632653061
2179
+ },
2180
+ {
2181
+ "current_steps": 363,
2182
+ "loss": 1.0616,
2183
+ "learning_rate": 3.3076923076923075e-07,
2184
+ "epoch": 3.7142857142857144
2185
+ },
2186
+ {
2187
+ "current_steps": 364,
2188
+ "loss": 1.0197,
2189
+ "learning_rate": 3.282051282051282e-07,
2190
+ "epoch": 3.7244897959183674
2191
+ },
2192
+ {
2193
+ "current_steps": 365,
2194
+ "loss": 0.7505,
2195
+ "learning_rate": 3.2564102564102565e-07,
2196
+ "epoch": 3.7346938775510203
2197
+ },
2198
+ {
2199
+ "current_steps": 366,
2200
+ "loss": 1.1823,
2201
+ "learning_rate": 3.230769230769231e-07,
2202
+ "epoch": 3.7448979591836737
2203
+ },
2204
+ {
2205
+ "current_steps": 367,
2206
+ "loss": 1.0465,
2207
+ "learning_rate": 3.2051282051282055e-07,
2208
+ "epoch": 3.7551020408163263
2209
+ },
2210
+ {
2211
+ "current_steps": 368,
2212
+ "loss": 1.2175,
2213
+ "learning_rate": 3.179487179487179e-07,
2214
+ "epoch": 3.7653061224489797
2215
+ },
2216
+ {
2217
+ "current_steps": 369,
2218
+ "loss": 0.7914,
2219
+ "learning_rate": 3.1538461538461534e-07,
2220
+ "epoch": 3.7755102040816326
2221
+ },
2222
+ {
2223
+ "current_steps": 370,
2224
+ "loss": 1.0506,
2225
+ "learning_rate": 3.128205128205128e-07,
2226
+ "epoch": 3.7857142857142856
2227
+ },
2228
+ {
2229
+ "current_steps": 371,
2230
+ "loss": 1.2272,
2231
+ "learning_rate": 3.1025641025641024e-07,
2232
+ "epoch": 3.795918367346939
2233
+ },
2234
+ {
2235
+ "current_steps": 372,
2236
+ "loss": 0.9431,
2237
+ "learning_rate": 3.076923076923077e-07,
2238
+ "epoch": 3.806122448979592
2239
+ },
2240
+ {
2241
+ "current_steps": 373,
2242
+ "loss": 1.0228,
2243
+ "learning_rate": 3.0512820512820514e-07,
2244
+ "epoch": 3.816326530612245
2245
+ },
2246
+ {
2247
+ "current_steps": 374,
2248
+ "loss": 0.8733,
2249
+ "learning_rate": 3.0256410256410254e-07,
2250
+ "epoch": 3.826530612244898
2251
+ },
2252
+ {
2253
+ "current_steps": 375,
2254
+ "loss": 1.1344,
2255
+ "learning_rate": 3e-07,
2256
+ "epoch": 3.836734693877551
2257
+ },
2258
+ {
2259
+ "current_steps": 376,
2260
+ "loss": 1.0388,
2261
+ "learning_rate": 2.9743589743589744e-07,
2262
+ "epoch": 3.8469387755102042
2263
+ },
2264
+ {
2265
+ "current_steps": 377,
2266
+ "loss": 1.0039,
2267
+ "learning_rate": 2.948717948717949e-07,
2268
+ "epoch": 3.857142857142857
2269
+ },
2270
+ {
2271
+ "current_steps": 378,
2272
+ "loss": 1.161,
2273
+ "learning_rate": 2.9230769230769234e-07,
2274
+ "epoch": 3.86734693877551
2275
+ },
2276
+ {
2277
+ "current_steps": 379,
2278
+ "loss": 0.7736,
2279
+ "learning_rate": 2.8974358974358973e-07,
2280
+ "epoch": 3.877551020408163
2281
+ },
2282
+ {
2283
+ "current_steps": 380,
2284
+ "loss": 1.0812,
2285
+ "learning_rate": 2.8717948717948713e-07,
2286
+ "epoch": 3.887755102040816
2287
+ },
2288
+ {
2289
+ "current_steps": 381,
2290
+ "loss": 1.067,
2291
+ "learning_rate": 2.846153846153846e-07,
2292
+ "epoch": 3.8979591836734695
2293
+ },
2294
+ {
2295
+ "current_steps": 382,
2296
+ "loss": 0.8961,
2297
+ "learning_rate": 2.8205128205128203e-07,
2298
+ "epoch": 3.9081632653061225
2299
+ },
2300
+ {
2301
+ "current_steps": 383,
2302
+ "loss": 0.7864,
2303
+ "learning_rate": 2.794871794871795e-07,
2304
+ "epoch": 3.9183673469387754
2305
+ },
2306
+ {
2307
+ "current_steps": 384,
2308
+ "loss": 0.8673,
2309
+ "learning_rate": 2.7692307692307693e-07,
2310
+ "epoch": 3.928571428571429
2311
+ },
2312
+ {
2313
+ "current_steps": 385,
2314
+ "loss": 0.9608,
2315
+ "learning_rate": 2.743589743589744e-07,
2316
+ "epoch": 3.938775510204082
2317
+ },
2318
+ {
2319
+ "current_steps": 386,
2320
+ "loss": 1.0788,
2321
+ "learning_rate": 2.7179487179487177e-07,
2322
+ "epoch": 3.9489795918367347
2323
+ },
2324
+ {
2325
+ "current_steps": 387,
2326
+ "loss": 1.2868,
2327
+ "learning_rate": 2.692307692307692e-07,
2328
+ "epoch": 3.9591836734693877
2329
+ },
2330
+ {
2331
+ "current_steps": 388,
2332
+ "loss": 0.8304,
2333
+ "learning_rate": 2.6666666666666667e-07,
2334
+ "epoch": 3.9693877551020407
2335
+ },
2336
+ {
2337
+ "current_steps": 389,
2338
+ "loss": 0.7779,
2339
+ "learning_rate": 2.641025641025641e-07,
2340
+ "epoch": 3.979591836734694
2341
+ },
2342
+ {
2343
+ "current_steps": 390,
2344
+ "loss": 0.7525,
2345
+ "learning_rate": 2.615384615384615e-07,
2346
+ "epoch": 3.989795918367347
2347
+ },
2348
+ {
2349
+ "current_steps": 391,
2350
+ "loss": 0.862,
2351
+ "learning_rate": 2.5897435897435897e-07,
2352
+ "epoch": 4.0
2353
+ },
2354
+ {
2355
+ "current_steps": 392,
2356
+ "loss": 1.0776,
2357
+ "learning_rate": 2.5641025641025636e-07,
2358
+ "epoch": 4.010204081632653
2359
+ },
2360
+ {
2361
+ "current_steps": 393,
2362
+ "loss": 0.9312,
2363
+ "learning_rate": 2.538461538461538e-07,
2364
+ "epoch": 4.020408163265306
2365
+ },
2366
+ {
2367
+ "current_steps": 394,
2368
+ "loss": 1.3004,
2369
+ "learning_rate": 2.5128205128205126e-07,
2370
+ "epoch": 4.030612244897959
2371
+ },
2372
+ {
2373
+ "current_steps": 395,
2374
+ "loss": 1.2295,
2375
+ "learning_rate": 2.487179487179487e-07,
2376
+ "epoch": 4.040816326530612
2377
+ },
2378
+ {
2379
+ "current_steps": 396,
2380
+ "loss": 1.0688,
2381
+ "learning_rate": 2.4615384615384616e-07,
2382
+ "epoch": 4.051020408163265
2383
+ },
2384
+ {
2385
+ "current_steps": 397,
2386
+ "loss": 0.906,
2387
+ "learning_rate": 2.4358974358974356e-07,
2388
+ "epoch": 4.061224489795919
2389
+ },
2390
+ {
2391
+ "current_steps": 398,
2392
+ "loss": 0.8381,
2393
+ "learning_rate": 2.41025641025641e-07,
2394
+ "epoch": 4.071428571428571
2395
+ },
2396
+ {
2397
+ "current_steps": 399,
2398
+ "loss": 0.9278,
2399
+ "learning_rate": 2.3846153846153846e-07,
2400
+ "epoch": 4.081632653061225
2401
+ },
2402
+ {
2403
+ "current_steps": 400,
2404
+ "loss": 1.3734,
2405
+ "learning_rate": 2.3589743589743588e-07,
2406
+ "epoch": 4.091836734693878
2407
+ },
2408
+ {
2409
+ "current_steps": 401,
2410
+ "loss": 1.2469,
2411
+ "learning_rate": 2.3333333333333333e-07,
2412
+ "epoch": 4.1020408163265305
2413
+ },
2414
+ {
2415
+ "current_steps": 402,
2416
+ "loss": 1.3845,
2417
+ "learning_rate": 2.3076923076923078e-07,
2418
+ "epoch": 4.112244897959184
2419
+ },
2420
+ {
2421
+ "current_steps": 403,
2422
+ "loss": 0.9578,
2423
+ "learning_rate": 2.2820512820512818e-07,
2424
+ "epoch": 4.122448979591836
2425
+ },
2426
+ {
2427
+ "current_steps": 404,
2428
+ "loss": 0.9949,
2429
+ "learning_rate": 2.2564102564102563e-07,
2430
+ "epoch": 4.13265306122449
2431
+ },
2432
+ {
2433
+ "current_steps": 405,
2434
+ "loss": 1.0655,
2435
+ "learning_rate": 2.2307692307692308e-07,
2436
+ "epoch": 4.142857142857143
2437
+ },
2438
+ {
2439
+ "current_steps": 406,
2440
+ "loss": 0.8242,
2441
+ "learning_rate": 2.205128205128205e-07,
2442
+ "epoch": 4.153061224489796
2443
+ },
2444
+ {
2445
+ "current_steps": 407,
2446
+ "loss": 1.1328,
2447
+ "learning_rate": 2.1794871794871795e-07,
2448
+ "epoch": 4.163265306122449
2449
+ },
2450
+ {
2451
+ "current_steps": 408,
2452
+ "loss": 0.9127,
2453
+ "learning_rate": 2.153846153846154e-07,
2454
+ "epoch": 4.173469387755102
2455
+ },
2456
+ {
2457
+ "current_steps": 409,
2458
+ "loss": 0.9174,
2459
+ "learning_rate": 2.128205128205128e-07,
2460
+ "epoch": 4.183673469387755
2461
+ },
2462
+ {
2463
+ "current_steps": 410,
2464
+ "loss": 1.2596,
2465
+ "learning_rate": 2.1025641025641025e-07,
2466
+ "epoch": 4.1938775510204085
2467
+ },
2468
+ {
2469
+ "current_steps": 411,
2470
+ "loss": 1.109,
2471
+ "learning_rate": 2.076923076923077e-07,
2472
+ "epoch": 4.204081632653061
2473
+ },
2474
+ {
2475
+ "current_steps": 412,
2476
+ "loss": 1.313,
2477
+ "learning_rate": 2.0512820512820512e-07,
2478
+ "epoch": 4.214285714285714
2479
+ },
2480
+ {
2481
+ "current_steps": 413,
2482
+ "loss": 1.0135,
2483
+ "learning_rate": 2.0256410256410257e-07,
2484
+ "epoch": 4.224489795918367
2485
+ },
2486
+ {
2487
+ "current_steps": 414,
2488
+ "loss": 0.9048,
2489
+ "learning_rate": 2e-07,
2490
+ "epoch": 4.23469387755102
2491
+ },
2492
+ {
2493
+ "current_steps": 415,
2494
+ "loss": 1.1162,
2495
+ "learning_rate": 1.9743589743589741e-07,
2496
+ "epoch": 4.244897959183674
2497
+ },
2498
+ {
2499
+ "current_steps": 416,
2500
+ "loss": 0.8849,
2501
+ "learning_rate": 1.9487179487179486e-07,
2502
+ "epoch": 4.255102040816326
2503
+ },
2504
+ {
2505
+ "current_steps": 417,
2506
+ "loss": 0.8803,
2507
+ "learning_rate": 1.9230769230769231e-07,
2508
+ "epoch": 4.26530612244898
2509
+ },
2510
+ {
2511
+ "current_steps": 418,
2512
+ "loss": 0.9497,
2513
+ "learning_rate": 1.8974358974358974e-07,
2514
+ "epoch": 4.275510204081632
2515
+ },
2516
+ {
2517
+ "current_steps": 419,
2518
+ "loss": 0.9216,
2519
+ "learning_rate": 1.8717948717948716e-07,
2520
+ "epoch": 4.285714285714286
2521
+ },
2522
+ {
2523
+ "current_steps": 420,
2524
+ "loss": 0.8915,
2525
+ "learning_rate": 1.846153846153846e-07,
2526
+ "epoch": 4.295918367346939
2527
+ },
2528
+ {
2529
+ "current_steps": 421,
2530
+ "loss": 0.9967,
2531
+ "learning_rate": 1.8205128205128203e-07,
2532
+ "epoch": 4.3061224489795915
2533
+ },
2534
+ {
2535
+ "current_steps": 422,
2536
+ "loss": 0.9392,
2537
+ "learning_rate": 1.7948717948717948e-07,
2538
+ "epoch": 4.316326530612245
2539
+ },
2540
+ {
2541
+ "current_steps": 423,
2542
+ "loss": 1.1217,
2543
+ "learning_rate": 1.7692307692307693e-07,
2544
+ "epoch": 4.326530612244898
2545
+ },
2546
+ {
2547
+ "current_steps": 424,
2548
+ "loss": 1.0389,
2549
+ "learning_rate": 1.7435897435897435e-07,
2550
+ "epoch": 4.336734693877551
2551
+ },
2552
+ {
2553
+ "current_steps": 425,
2554
+ "loss": 1.106,
2555
+ "learning_rate": 1.7179487179487178e-07,
2556
+ "epoch": 4.346938775510204
2557
+ },
2558
+ {
2559
+ "current_steps": 426,
2560
+ "loss": 1.0438,
2561
+ "learning_rate": 1.6923076923076923e-07,
2562
+ "epoch": 4.357142857142857
2563
+ },
2564
+ {
2565
+ "current_steps": 427,
2566
+ "loss": 1.0671,
2567
+ "learning_rate": 1.6666666666666665e-07,
2568
+ "epoch": 4.36734693877551
2569
+ },
2570
+ {
2571
+ "current_steps": 428,
2572
+ "loss": 1.0963,
2573
+ "learning_rate": 1.641025641025641e-07,
2574
+ "epoch": 4.377551020408164
2575
+ },
2576
+ {
2577
+ "current_steps": 429,
2578
+ "loss": 1.0008,
2579
+ "learning_rate": 1.6153846153846155e-07,
2580
+ "epoch": 4.387755102040816
2581
+ },
2582
+ {
2583
+ "current_steps": 430,
2584
+ "loss": 0.8875,
2585
+ "learning_rate": 1.5897435897435895e-07,
2586
+ "epoch": 4.3979591836734695
2587
+ },
2588
+ {
2589
+ "current_steps": 431,
2590
+ "loss": 0.989,
2591
+ "learning_rate": 1.564102564102564e-07,
2592
+ "epoch": 4.408163265306122
2593
+ },
2594
+ {
2595
+ "current_steps": 432,
2596
+ "loss": 1.0361,
2597
+ "learning_rate": 1.5384615384615385e-07,
2598
+ "epoch": 4.418367346938775
2599
+ },
2600
+ {
2601
+ "current_steps": 433,
2602
+ "loss": 0.9075,
2603
+ "learning_rate": 1.5128205128205127e-07,
2604
+ "epoch": 4.428571428571429
2605
+ },
2606
+ {
2607
+ "current_steps": 434,
2608
+ "loss": 0.9151,
2609
+ "learning_rate": 1.4871794871794872e-07,
2610
+ "epoch": 4.438775510204081
2611
+ },
2612
+ {
2613
+ "current_steps": 435,
2614
+ "loss": 1.2658,
2615
+ "learning_rate": 1.4615384615384617e-07,
2616
+ "epoch": 4.448979591836735
2617
+ },
2618
+ {
2619
+ "current_steps": 436,
2620
+ "loss": 0.9476,
2621
+ "learning_rate": 1.4358974358974356e-07,
2622
+ "epoch": 4.459183673469388
2623
+ },
2624
+ {
2625
+ "current_steps": 437,
2626
+ "loss": 1.2257,
2627
+ "learning_rate": 1.4102564102564101e-07,
2628
+ "epoch": 4.469387755102041
2629
+ },
2630
+ {
2631
+ "current_steps": 438,
2632
+ "loss": 1.0466,
2633
+ "learning_rate": 1.3846153846153846e-07,
2634
+ "epoch": 4.479591836734694
2635
+ },
2636
+ {
2637
+ "current_steps": 439,
2638
+ "loss": 1.0721,
2639
+ "learning_rate": 1.3589743589743589e-07,
2640
+ "epoch": 4.489795918367347
2641
+ },
2642
+ {
2643
+ "current_steps": 440,
2644
+ "loss": 0.9636,
2645
+ "learning_rate": 1.3333333333333334e-07,
2646
+ "epoch": 4.5
2647
+ },
2648
+ {
2649
+ "current_steps": 441,
2650
+ "loss": 0.7291,
2651
+ "learning_rate": 1.3076923076923076e-07,
2652
+ "epoch": 4.510204081632653
2653
+ },
2654
+ {
2655
+ "current_steps": 442,
2656
+ "loss": 1.1522,
2657
+ "learning_rate": 1.2820512820512818e-07,
2658
+ "epoch": 4.520408163265306
2659
+ },
2660
+ {
2661
+ "current_steps": 443,
2662
+ "loss": 0.8466,
2663
+ "learning_rate": 1.2564102564102563e-07,
2664
+ "epoch": 4.530612244897959
2665
+ },
2666
+ {
2667
+ "current_steps": 444,
2668
+ "loss": 0.9945,
2669
+ "learning_rate": 1.2307692307692308e-07,
2670
+ "epoch": 4.540816326530612
2671
+ },
2672
+ {
2673
+ "current_steps": 445,
2674
+ "loss": 0.9127,
2675
+ "learning_rate": 1.205128205128205e-07,
2676
+ "epoch": 4.551020408163265
2677
+ },
2678
+ {
2679
+ "current_steps": 446,
2680
+ "loss": 0.6726,
2681
+ "learning_rate": 1.1794871794871794e-07,
2682
+ "epoch": 4.561224489795919
2683
+ },
2684
+ {
2685
+ "current_steps": 447,
2686
+ "loss": 1.2726,
2687
+ "learning_rate": 1.1538461538461539e-07,
2688
+ "epoch": 4.571428571428571
2689
+ },
2690
+ {
2691
+ "current_steps": 448,
2692
+ "loss": 0.9189,
2693
+ "learning_rate": 1.1282051282051281e-07,
2694
+ "epoch": 4.581632653061225
2695
+ },
2696
+ {
2697
+ "current_steps": 449,
2698
+ "loss": 0.7115,
2699
+ "learning_rate": 1.1025641025641025e-07,
2700
+ "epoch": 4.591836734693878
2701
+ },
2702
+ {
2703
+ "current_steps": 450,
2704
+ "loss": 0.8172,
2705
+ "learning_rate": 1.076923076923077e-07,
2706
+ "epoch": 4.6020408163265305
2707
+ },
2708
+ {
2709
+ "current_steps": 451,
2710
+ "loss": 0.9128,
2711
+ "learning_rate": 1.0512820512820512e-07,
2712
+ "epoch": 4.612244897959184
2713
+ },
2714
+ {
2715
+ "current_steps": 452,
2716
+ "loss": 0.8185,
2717
+ "learning_rate": 1.0256410256410256e-07,
2718
+ "epoch": 4.622448979591836
2719
+ },
2720
+ {
2721
+ "current_steps": 453,
2722
+ "loss": 0.6656,
2723
+ "learning_rate": 1e-07,
2724
+ "epoch": 4.63265306122449
2725
+ },
2726
+ {
2727
+ "current_steps": 454,
2728
+ "loss": 0.9927,
2729
+ "learning_rate": 9.743589743589743e-08,
2730
+ "epoch": 4.642857142857143
2731
+ },
2732
+ {
2733
+ "current_steps": 455,
2734
+ "loss": 1.038,
2735
+ "learning_rate": 9.487179487179487e-08,
2736
+ "epoch": 4.653061224489796
2737
+ },
2738
+ {
2739
+ "current_steps": 456,
2740
+ "loss": 1.0286,
2741
+ "learning_rate": 9.23076923076923e-08,
2742
+ "epoch": 4.663265306122449
2743
+ },
2744
+ {
2745
+ "current_steps": 457,
2746
+ "loss": 0.9324,
2747
+ "learning_rate": 8.974358974358974e-08,
2748
+ "epoch": 4.673469387755102
2749
+ },
2750
+ {
2751
+ "current_steps": 458,
2752
+ "loss": 1.1796,
2753
+ "learning_rate": 8.717948717948718e-08,
2754
+ "epoch": 4.683673469387755
2755
+ },
2756
+ {
2757
+ "current_steps": 459,
2758
+ "loss": 1.0709,
2759
+ "learning_rate": 8.461538461538461e-08,
2760
+ "epoch": 4.6938775510204085
2761
+ },
2762
+ {
2763
+ "current_steps": 460,
2764
+ "loss": 1.2764,
2765
+ "learning_rate": 8.205128205128205e-08,
2766
+ "epoch": 4.704081632653061
2767
+ },
2768
+ {
2769
+ "current_steps": 461,
2770
+ "loss": 0.9408,
2771
+ "learning_rate": 7.948717948717947e-08,
2772
+ "epoch": 4.714285714285714
2773
+ },
2774
+ {
2775
+ "current_steps": 462,
2776
+ "loss": 1.0265,
2777
+ "learning_rate": 7.692307692307692e-08,
2778
+ "epoch": 4.724489795918368
2779
+ },
2780
+ {
2781
+ "current_steps": 463,
2782
+ "loss": 0.8105,
2783
+ "learning_rate": 7.435897435897436e-08,
2784
+ "epoch": 4.73469387755102
2785
+ },
2786
+ {
2787
+ "current_steps": 464,
2788
+ "loss": 0.8581,
2789
+ "learning_rate": 7.179487179487178e-08,
2790
+ "epoch": 4.744897959183674
2791
+ },
2792
+ {
2793
+ "current_steps": 465,
2794
+ "loss": 1.0193,
2795
+ "learning_rate": 6.923076923076923e-08,
2796
+ "epoch": 4.755102040816326
2797
+ },
2798
+ {
2799
+ "current_steps": 466,
2800
+ "loss": 0.9166,
2801
+ "learning_rate": 6.666666666666667e-08,
2802
+ "epoch": 4.76530612244898
2803
+ },
2804
+ {
2805
+ "current_steps": 467,
2806
+ "loss": 1.0751,
2807
+ "learning_rate": 6.410256410256409e-08,
2808
+ "epoch": 4.775510204081632
2809
+ },
2810
+ {
2811
+ "current_steps": 468,
2812
+ "loss": 1.0601,
2813
+ "learning_rate": 6.153846153846154e-08,
2814
+ "epoch": 4.785714285714286
2815
+ },
2816
+ {
2817
+ "current_steps": 469,
2818
+ "loss": 1.2884,
2819
+ "learning_rate": 5.897435897435897e-08,
2820
+ "epoch": 4.795918367346939
2821
+ },
2822
+ {
2823
+ "current_steps": 470,
2824
+ "loss": 0.9581,
2825
+ "learning_rate": 5.641025641025641e-08,
2826
+ "epoch": 4.8061224489795915
2827
+ },
2828
+ {
2829
+ "current_steps": 471,
2830
+ "loss": 1.0762,
2831
+ "learning_rate": 5.384615384615385e-08,
2832
+ "epoch": 4.816326530612245
2833
+ },
2834
+ {
2835
+ "current_steps": 472,
2836
+ "loss": 0.9197,
2837
+ "learning_rate": 5.128205128205128e-08,
2838
+ "epoch": 4.826530612244898
2839
+ },
2840
+ {
2841
+ "current_steps": 473,
2842
+ "loss": 1.0248,
2843
+ "learning_rate": 4.8717948717948716e-08,
2844
+ "epoch": 4.836734693877551
2845
+ },
2846
+ {
2847
+ "current_steps": 474,
2848
+ "loss": 1.0387,
2849
+ "learning_rate": 4.615384615384615e-08,
2850
+ "epoch": 4.846938775510204
2851
+ },
2852
+ {
2853
+ "current_steps": 475,
2854
+ "loss": 0.9627,
2855
+ "learning_rate": 4.358974358974359e-08,
2856
+ "epoch": 4.857142857142857
2857
+ },
2858
+ {
2859
+ "current_steps": 476,
2860
+ "loss": 0.951,
2861
+ "learning_rate": 4.1025641025641025e-08,
2862
+ "epoch": 4.86734693877551
2863
+ },
2864
+ {
2865
+ "current_steps": 477,
2866
+ "loss": 1.0213,
2867
+ "learning_rate": 3.846153846153846e-08,
2868
+ "epoch": 4.877551020408164
2869
+ },
2870
+ {
2871
+ "current_steps": 478,
2872
+ "loss": 1.4383,
2873
+ "learning_rate": 3.589743589743589e-08,
2874
+ "epoch": 4.887755102040816
2875
+ },
2876
+ {
2877
+ "current_steps": 479,
2878
+ "loss": 1.0652,
2879
+ "learning_rate": 3.3333333333333334e-08,
2880
+ "epoch": 4.8979591836734695
2881
+ },
2882
+ {
2883
+ "current_steps": 480,
2884
+ "loss": 0.9408,
2885
+ "learning_rate": 3.076923076923077e-08,
2886
+ "epoch": 4.908163265306122
2887
+ },
2888
+ {
2889
+ "current_steps": 481,
2890
+ "loss": 1.2111,
2891
+ "learning_rate": 2.8205128205128203e-08,
2892
+ "epoch": 4.918367346938775
2893
+ },
2894
+ {
2895
+ "current_steps": 482,
2896
+ "loss": 0.9162,
2897
+ "learning_rate": 2.564102564102564e-08,
2898
+ "epoch": 4.928571428571429
2899
+ },
2900
+ {
2901
+ "current_steps": 483,
2902
+ "loss": 0.9021,
2903
+ "learning_rate": 2.3076923076923076e-08,
2904
+ "epoch": 4.938775510204081
2905
+ },
2906
+ {
2907
+ "current_steps": 484,
2908
+ "loss": 1.2209,
2909
+ "learning_rate": 2.0512820512820512e-08,
2910
+ "epoch": 4.948979591836735
2911
+ },
2912
+ {
2913
+ "current_steps": 485,
2914
+ "loss": 0.8742,
2915
+ "learning_rate": 1.7948717948717946e-08,
2916
+ "epoch": 4.959183673469388
2917
+ },
2918
+ {
2919
+ "current_steps": 486,
2920
+ "loss": 1.0272,
2921
+ "learning_rate": 1.5384615384615385e-08,
2922
+ "epoch": 4.969387755102041
2923
+ },
2924
+ {
2925
+ "current_steps": 487,
2926
+ "loss": 1.3311,
2927
+ "learning_rate": 1.282051282051282e-08,
2928
+ "epoch": 4.979591836734694
2929
+ },
2930
+ {
2931
+ "current_steps": 488,
2932
+ "loss": 0.7024,
2933
+ "learning_rate": 1.0256410256410256e-08,
2934
+ "epoch": 4.989795918367347
2935
+ },
2936
+ {
2937
+ "current_steps": 489,
2938
+ "loss": 1.0515,
2939
+ "learning_rate": 7.692307692307693e-09,
2940
+ "epoch": 5.0
2941
+ },
2942
+ {
2943
+ "current_steps": 489,
2944
+ "loss": 1.0515,
2945
+ "learning_rate": 7.692307692307693e-09,
2946
+ "epoch": 5.0
2947
+ }
2948
+ ]
aliceinwonderland-llama3/training_graph.png ADDED
aliceinwonderland-llama3/training_log.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "base_model_name": "Meta-Llama-3-8b",
3
+ "base_model_class": "LlamaForCausalLM",
4
+ "base_loaded_in_4bit": true,
5
+ "base_loaded_in_8bit": false,
6
+ "projections": "q, v",
7
+ "loss": 1.0515,
8
+ "grad_norm": 3.200089693069458,
9
+ "learning_rate": 7.692307692307693e-09,
10
+ "epoch": 5.0,
11
+ "current_steps": 489,
12
+ "current_steps_adjusted": 489,
13
+ "epoch_adjusted": 5.0,
14
+ "train_runtime": 779.2785,
15
+ "train_samples_per_second": 2.502,
16
+ "train_steps_per_second": 0.629,
17
+ "total_flos": 2.2519579410432e+16,
18
+ "train_loss": 1.0483642434587284
19
+ }
aliceinwonderland-llama3/training_parameters.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "lora_name": "aliceinwonderland-llama3",
3
+ "always_override": true,
4
+ "save_steps": 0,
5
+ "micro_batch_size": 4,
6
+ "batch_size": 0,
7
+ "epochs": 5,
8
+ "learning_rate": "1e-6",
9
+ "lr_scheduler_type": "linear",
10
+ "lora_rank": 32,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.05,
13
+ "cutoff_len": 256,
14
+ "dataset": "None",
15
+ "eval_dataset": "None",
16
+ "format": "None",
17
+ "eval_steps": 100,
18
+ "raw_text_file": "aliceandwonderland",
19
+ "higher_rank_limit": false,
20
+ "warmup_steps": 100,
21
+ "optimizer": "adamw_torch",
22
+ "hard_cut_string": "\\n\\n\\n",
23
+ "train_only_after": "",
24
+ "stop_at_loss": 0,
25
+ "add_eos_token": false,
26
+ "min_chars": 20,
27
+ "report_to": "None",
28
+ "precize_slicing_overlap": true,
29
+ "add_eos_token_type": "Every Block",
30
+ "save_steps_under_loss": 1.8,
31
+ "add_bos_token": true,
32
+ "training_projection": "q-v",
33
+ "sliding_window": false,
34
+ "warmup_ratio": 0,
35
+ "grad_accumulation": 1,
36
+ "neft_noise_alpha": 0
37
+ }
aliceinwonderland-llama3/training_prompt.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "template_type": "raw_text"
3
+ }