DandinPower commited on
Commit
7217903
1 Parent(s): 8441dd7

End of training

Browse files
Files changed (2) hide show
  1. README.md +113 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ base_model: microsoft/deberta-v2-xlarge
6
+ tags:
7
+ - nycu-112-2-datamining-hw2
8
+ - generated_from_trainer
9
+ datasets:
10
+ - DandinPower/review_onlytitleandtext
11
+ metrics:
12
+ - accuracy
13
+ model-index:
14
+ - name: deberta-v2-xlarge-otat
15
+ results:
16
+ - task:
17
+ name: Text Classification
18
+ type: text-classification
19
+ dataset:
20
+ name: DandinPower/review_onlytitleandtext
21
+ type: DandinPower/review_onlytitleandtext
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.20114285714285715
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # deberta-v2-xlarge-otat
32
+
33
+ This model is a fine-tuned version of [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) on the DandinPower/review_onlytitleandtext dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 1.6316
36
+ - Accuracy: 0.2011
37
+ - Macro F1: 0.0670
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 4.5e-05
57
+ - train_batch_size: 4
58
+ - eval_batch_size: 4
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 2
61
+ - total_train_batch_size: 8
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_steps: 1500
65
+ - num_epochs: 5
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 |
70
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
71
+ | 1.1994 | 0.14 | 500 | 1.6893 | 0.4029 | 0.3240 |
72
+ | 1.6344 | 0.29 | 1000 | 1.6403 | 0.2011 | 0.0670 |
73
+ | 1.6413 | 0.43 | 1500 | 1.6270 | 0.2 | 0.0667 |
74
+ | 1.6326 | 0.57 | 2000 | 1.6375 | 0.1971 | 0.0659 |
75
+ | 1.6128 | 0.71 | 2500 | 1.6604 | 0.2011 | 0.0670 |
76
+ | 1.6213 | 0.86 | 3000 | 1.6161 | 0.2 | 0.0667 |
77
+ | 1.6199 | 1.0 | 3500 | 1.6132 | 0.2017 | 0.0671 |
78
+ | 1.6177 | 1.14 | 4000 | 1.6142 | 0.2011 | 0.0670 |
79
+ | 1.6183 | 1.29 | 4500 | 1.6213 | 0.2 | 0.0667 |
80
+ | 1.6211 | 1.43 | 5000 | 1.6136 | 0.1971 | 0.0659 |
81
+ | 1.6145 | 1.57 | 5500 | 1.6169 | 0.1971 | 0.0659 |
82
+ | 1.6187 | 1.71 | 6000 | 1.6160 | 0.2011 | 0.0670 |
83
+ | 1.6174 | 1.86 | 6500 | 1.6146 | 0.2 | 0.0667 |
84
+ | 1.6164 | 2.0 | 7000 | 1.6181 | 0.2 | 0.0667 |
85
+ | 1.6184 | 2.14 | 7500 | 1.6109 | 0.1971 | 0.0659 |
86
+ | 1.6152 | 2.29 | 8000 | 1.6189 | 0.2 | 0.0667 |
87
+ | 1.6175 | 2.43 | 8500 | 1.6146 | 0.1971 | 0.0659 |
88
+ | 1.6134 | 2.57 | 9000 | 1.6160 | 0.1971 | 0.0659 |
89
+ | 1.6144 | 2.71 | 9500 | 1.6167 | 0.2011 | 0.0670 |
90
+ | 1.6141 | 2.86 | 10000 | 1.6106 | 0.2017 | 0.0671 |
91
+ | 1.6128 | 3.0 | 10500 | 1.6139 | 0.1971 | 0.0659 |
92
+ | 1.6179 | 3.14 | 11000 | 1.6112 | 0.2 | 0.0667 |
93
+ | 1.6096 | 3.29 | 11500 | 1.6127 | 0.2 | 0.0667 |
94
+ | 1.6132 | 3.43 | 12000 | 1.6135 | 0.2011 | 0.0670 |
95
+ | 1.6053 | 3.57 | 12500 | 1.6186 | 0.2 | 0.0667 |
96
+ | 1.6049 | 3.71 | 13000 | 1.6277 | 0.2011 | 0.0670 |
97
+ | 1.6044 | 3.86 | 13500 | 1.6271 | 0.2011 | 0.0670 |
98
+ | 1.6017 | 4.0 | 14000 | 1.6275 | 0.2011 | 0.0670 |
99
+ | 1.608 | 4.14 | 14500 | 1.6192 | 0.2011 | 0.0670 |
100
+ | 1.6075 | 4.29 | 15000 | 1.6259 | 0.2011 | 0.0670 |
101
+ | 1.601 | 4.43 | 15500 | 1.6267 | 0.2011 | 0.0670 |
102
+ | 1.6086 | 4.57 | 16000 | 1.6339 | 0.2011 | 0.0670 |
103
+ | 1.5955 | 4.71 | 16500 | 1.6340 | 0.2011 | 0.0670 |
104
+ | 1.6013 | 4.86 | 17000 | 1.6322 | 0.2011 | 0.0670 |
105
+ | 1.5976 | 5.0 | 17500 | 1.6316 | 0.2011 | 0.0670 |
106
+
107
+
108
+ ### Framework versions
109
+
110
+ - Transformers 4.39.3
111
+ - Pytorch 2.2.2+cu121
112
+ - Datasets 2.18.0
113
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f829fbcd1991561ef7fde7978ad1441b493544dfb9785b42fd34523f74a51918
3
  size 3547896564
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee92d268b2c35f7e8a822da00f028e1243cf54ef55eb288f0f2be585aa557ada
3
  size 3547896564