Training complete with metrics
Browse files
README.md
CHANGED
@@ -1,11 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
## Model description
|
5 |
-
This is a BERT base cased model fine-tuned on the CONLL2002 dataset for Named Entity Recognition (NER).
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-cased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- conll2002
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: bert-base-cased-finetuned-conll2002
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: conll2002
|
21 |
+
type: conll2002
|
22 |
+
config: es
|
23 |
+
split: validation
|
24 |
+
args: es
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.7785542694911552
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.8191636029411765
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.7983428507445974
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9700584273152552
|
38 |
+
---
|
39 |
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# bert-base-cased-finetuned-conll2002
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2002 dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.2269
|
48 |
+
- Precision: 0.7786
|
49 |
+
- Recall: 0.8192
|
50 |
+
- F1: 0.7983
|
51 |
+
- Accuracy: 0.9701
|
52 |
|
53 |
## Model description
|
|
|
54 |
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 3
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0146 | 1.0 | 1041 | 0.2217 | 0.7523 | 0.8104 | 0.7803 | 0.9668 |
|
83 |
+
| 0.0082 | 2.0 | 2082 | 0.2148 | 0.7758 | 0.8143 | 0.7946 | 0.9696 |
|
84 |
+
| 0.0064 | 3.0 | 3123 | 0.2269 | 0.7786 | 0.8192 | 0.7983 | 0.9701 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.41.2
|
90 |
+
- Pytorch 2.3.0+cu121
|
91 |
+
- Datasets 2.19.2
|
92 |
+
- Tokenizers 0.19.1
|
runs/Jun06_13-12-08_861bea3226f3/events.out.tfevents.1717681687.861bea3226f3.683.7
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a68bb1be0b09aefd9a40cfcc5bab4e390bbb141a74057b32ef8b5a6e412446f8
|
3 |
+
size 560
|