Daga2001 commited on
Commit
76c1ba4
1 Parent(s): d129aaa

Training complete with metrics

Browse files
README.md CHANGED
@@ -1,11 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
- # BERT Base Cased finetuned on CONLL2002
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  ## Model description
5
- This is a BERT base cased model fine-tuned on the CONLL2002 dataset for Named Entity Recognition (NER).
6
 
7
- ## Metrics
8
- - Precision: 0.7785542694911552
9
- - Recall: 0.8191636029411765
10
- - F1-score: 0.7983428507445974
11
- - Accuracy: 0.9700584273152552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - conll2002
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: bert-base-cased-finetuned-conll2002
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: conll2002
21
+ type: conll2002
22
+ config: es
23
+ split: validation
24
+ args: es
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.7785542694911552
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.8191636029411765
32
+ - name: F1
33
+ type: f1
34
+ value: 0.7983428507445974
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9700584273152552
38
+ ---
39
 
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # bert-base-cased-finetuned-conll2002
44
+
45
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2002 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.2269
48
+ - Precision: 0.7786
49
+ - Recall: 0.8192
50
+ - F1: 0.7983
51
+ - Accuracy: 0.9701
52
 
53
  ## Model description
 
54
 
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 3
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0146 | 1.0 | 1041 | 0.2217 | 0.7523 | 0.8104 | 0.7803 | 0.9668 |
83
+ | 0.0082 | 2.0 | 2082 | 0.2148 | 0.7758 | 0.8143 | 0.7946 | 0.9696 |
84
+ | 0.0064 | 3.0 | 3123 | 0.2269 | 0.7786 | 0.8192 | 0.7983 | 0.9701 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.41.2
90
+ - Pytorch 2.3.0+cu121
91
+ - Datasets 2.19.2
92
+ - Tokenizers 0.19.1
runs/Jun06_13-12-08_861bea3226f3/events.out.tfevents.1717681687.861bea3226f3.683.7 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a68bb1be0b09aefd9a40cfcc5bab4e390bbb141a74057b32ef8b5a6e412446f8
3
+ size 560