|
import numpy as np |
|
from scipy.integrate import solve_ivp |
|
from qiskit import Aer, QuantumCircuit, execute |
|
from qiskit.algorithms import Grover, VQE |
|
from qiskit.circuit.library import EfficientSU2 |
|
from qiskit.utils import QuantumInstance |
|
from qiskit.algorithms.optimizers import COBYLA |
|
from matplotlib import pyplot as plt |
|
import pennylane as qml |
|
|
|
class UnifiedQuantumAgent: |
|
def __init__(self): |
|
# Initialize Quantum Backend |
|
self.backend = Aer.get_backend("qasm_simulator") |
|
self.quantum_instance = QuantumInstance(self.backend) |
|
|
|
# Quantum Optimization (Grover's Search) |
|
def grover_search(self, oracle_bits): |
|
n_qubits = len(oracle_bits) |
|
circuit = QuantumCircuit(n_qubits) |
|
circuit.z([i for i, bit in enumerate(oracle_bits) if bit == "1"]) |
|
circuit = Grover(circuit).construct_circuit(None) |
|
result = execute(circuit, self.backend, shots=1024).result() |
|
counts = result.get_counts() |
|
return counts |
|
|
|
# Variational Quantum Eigensolver (VQE) |
|
def vqe_solver(self, hamiltonian): |
|
ansatz = EfficientSU2(num_qubits=2, entanglement="linear") |
|
optimizer = COBYLA(maxiter=200) |
|
vqe = VQE(ansatz, optimizer, quantum_instance=self.quantum_instance) |
|
result = vqe.compute_minimum_eigenvalue(operator=hamiltonian) |
|
return result |
|
|
|
# Riemann Zeta Function Oscillation Simulation |
|
def riemann_oscillation(self, t_span, zeta_func): |
|
def oscillatory_rhs(t, y): |
|
return [np.sin(y[0]) - zeta_func(t)] |
|
solution = solve_ivp(oscillatory_rhs, t_span, [0], t_eval=np.linspace(t_span[0], t_span[1], 500)) |
|
return solution.t, solution.y[0] |
|
|
|
# PennyLane Quantum Circuit Simulation |
|
def pennylane_simulation(self, params): |
|
dev = qml.device("default.qubit", wires=2) |
|
|
|
@qml.qnode(dev) |
|
def circuit(params): |
|
qml.RX(params[0], wires=0) |
|
qml.RY(params[1], wires=1) |
|
qml.CNOT(wires=[0, 1]) |
|
return qml.expval(qml.PauliZ(0)) |
|
|
|
return circuit(params) |
|
|
|
# Visualization Utility |
|
def plot_results(self, x, y, title, xlabel, ylabel): |
|
plt.figure(figsize=(8, 6)) |
|
plt.plot(x, y, label="Simulation Data") |
|
plt.title(title) |
|
plt.xlabel(xlabel) |
|
plt.ylabel(ylabel) |
|
plt.legend() |
|
plt.grid(True) |
|
plt.show() |
|
|
|
# Unified Agent in Action |
|
if __name__ == "__main__": |
|
agent = UnifiedQuantumAgent() |
|
|
|
# Example 1: Grover's Search |
|
oracle = "1010" |
|
counts = agent.grover_search(oracle) |
|
print(f"Grover's Search Results: {counts}") |
|
|
|
# Example 2: VQE Solver |
|
from qiskit.opflow import I, Z |
|
hamiltonian = (Z ^ I) + (I ^ Z) |
|
vqe_result = agent.vqe_solver(hamiltonian) |
|
print(f"VQE Optimal Value: {vqe_result.eigenvalue.real}") |
|
|
|
# Example 3: Riemann Zeta Function Oscillation |
|
t, y = agent.riemann_oscillation((0, 10), lambda t: np.cos(t)) |
|
agent.plot_results(t, y, "Riemann Zeta Oscillation", "Time", "Amplitude") |
|
|
|
# Example 4: PennyLane Simulation |
|
params = [np.pi / 4, np.pi / 3] |
|
expectation = agent.pennylane_simulation(params) |
|
print(f"PennyLane Simulation Expectation Value: {expectation}") |