Adapters
Bot-2 / Quantayomama
DaddyAloha's picture
Create Quantayomama
3a144cc verified
import numpy as np
from scipy.integrate import solve_ivp
from qiskit import Aer, QuantumCircuit, execute
from qiskit.algorithms import Grover, VQE
from qiskit.circuit.library import EfficientSU2
from qiskit.utils import QuantumInstance
from qiskit.algorithms.optimizers import COBYLA
from matplotlib import pyplot as plt
import pennylane as qml
class UnifiedQuantumAgent:
def __init__(self):
# Initialize Quantum Backend
self.backend = Aer.get_backend("qasm_simulator")
self.quantum_instance = QuantumInstance(self.backend)
# Quantum Optimization (Grover's Search)
def grover_search(self, oracle_bits):
n_qubits = len(oracle_bits)
circuit = QuantumCircuit(n_qubits)
circuit.z([i for i, bit in enumerate(oracle_bits) if bit == "1"])
circuit = Grover(circuit).construct_circuit(None)
result = execute(circuit, self.backend, shots=1024).result()
counts = result.get_counts()
return counts
# Variational Quantum Eigensolver (VQE)
def vqe_solver(self, hamiltonian):
ansatz = EfficientSU2(num_qubits=2, entanglement="linear")
optimizer = COBYLA(maxiter=200)
vqe = VQE(ansatz, optimizer, quantum_instance=self.quantum_instance)
result = vqe.compute_minimum_eigenvalue(operator=hamiltonian)
return result
# Riemann Zeta Function Oscillation Simulation
def riemann_oscillation(self, t_span, zeta_func):
def oscillatory_rhs(t, y):
return [np.sin(y[0]) - zeta_func(t)]
solution = solve_ivp(oscillatory_rhs, t_span, [0], t_eval=np.linspace(t_span[0], t_span[1], 500))
return solution.t, solution.y[0]
# PennyLane Quantum Circuit Simulation
def pennylane_simulation(self, params):
dev = qml.device("default.qubit", wires=2)
@qml.qnode(dev)
def circuit(params):
qml.RX(params[0], wires=0)
qml.RY(params[1], wires=1)
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(0))
return circuit(params)
# Visualization Utility
def plot_results(self, x, y, title, xlabel, ylabel):
plt.figure(figsize=(8, 6))
plt.plot(x, y, label="Simulation Data")
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.legend()
plt.grid(True)
plt.show()
# Unified Agent in Action
if __name__ == "__main__":
agent = UnifiedQuantumAgent()
# Example 1: Grover's Search
oracle = "1010"
counts = agent.grover_search(oracle)
print(f"Grover's Search Results: {counts}")
# Example 2: VQE Solver
from qiskit.opflow import I, Z
hamiltonian = (Z ^ I) + (I ^ Z)
vqe_result = agent.vqe_solver(hamiltonian)
print(f"VQE Optimal Value: {vqe_result.eigenvalue.real}")
# Example 3: Riemann Zeta Function Oscillation
t, y = agent.riemann_oscillation((0, 10), lambda t: np.cos(t))
agent.plot_results(t, y, "Riemann Zeta Oscillation", "Time", "Amplitude")
# Example 4: PennyLane Simulation
params = [np.pi / 4, np.pi / 3]
expectation = agent.pennylane_simulation(params)
print(f"PennyLane Simulation Expectation Value: {expectation}")