Adapters
Bot-2 / U-1
DaddyAloha's picture
Create U-1
6ab75ac verified
raw
history blame
8.01 kB
Here’s a working code model incorporating mathematical rigor, interdisciplinary principles, and concrete usability. This system connects APIs and language models for interdisciplinary problem-solving. It uses a modular, scalable architecture to combine functionality from different disciplines.
Code Model
Directory Structure
interdisciplinary-system/
β”œβ”€β”€ backend/
β”‚ β”œβ”€β”€ physics_api.js # Mathematical and physical API
β”‚ β”œβ”€β”€ ai_language_model.js # Language model-based API
β”‚ β”œβ”€β”€ ethical_framework.js # Ethics and decision-making API
β”œβ”€β”€ models/
β”‚ β”œβ”€β”€ physics_solver.py # Quantum-classical hybrid solver
β”‚ β”œβ”€β”€ ai_model.py # GPT-based advanced AI model
β”‚ └── decision_model.py # Probabilistic decision-making model
β”œβ”€β”€ frontend/
β”‚ β”œβ”€β”€ index.html # Web interface
β”‚ β”œβ”€β”€ styles.css # Styling
β”‚ └── app.js # API integration and user interaction
└── server.js # Main server file
1. Backend API Services
Physics API (backend/physics_api.js)
Provides mathematical models for solving physical problems, like reconciling quantum mechanics and relativity.
const express = require("express");
const router = express.Router();
// Endpoint for solving physical equations
router.post("/solve", (req, res) => {
const { equation, parameters } = req.body;
// Mock response simulating a quantum-classical hybrid solution
const solution = `Solution for ${equation} with parameters ${JSON.stringify(parameters)}`;
res.json({ success: true, solution });
});
module.exports = router;
AI Language Model API (backend/ai_language_model.js)
Provides natural language processing and generation capabilities.
const express = require("express");
const router = express.Router();
// Language model-based response
router.post("/generate", (req, res) => {
const { prompt } = req.body;
// Simulating a GPT-based response
const response = `AI-generated output for prompt: "${prompt}"`;
res.json({ success: true, response });
});
module.exports = router;
Ethical Framework API (backend/ethical_framework.js)
Implements probabilistic decision-making and ethical analysis.
const express = require("express");
const router = express.Router();
// Endpoint for ethical analysis
router.post("/analyze", (req, res) => {
const { scenario } = req.body;
// Mock ethical evaluation
const analysis = `Ethical analysis for scenario: "${scenario}"`;
res.json({ success: true, analysis });
});
module.exports = router;
2. Backend Models
Physics Solver (models/physics_solver.py)
Solves interdisciplinary equations using numerical and symbolic methods.
import sympy as sp
def solve_equation(equation, parameters):
# Example: Solve a symbolic equation
x = sp.Symbol('x')
eq = sp.sympify(equation)
solution = sp.solve(eq, x)
return solution
# Example usage
equation = "x**2 - 4"
parameters = {}
print(solve_equation(equation, parameters))
AI Model (models/ai_model.py)
Simulates an AI response using a language model API.
from transformers import GPT2LMHeadModel, GPT2Tokenizer
def generate_response(prompt):
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs["input_ids"], max_length=50)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Example usage
prompt = "How can AI enhance interdisciplinary research?"
print(generate_response(prompt))
Decision Model (models/decision_model.py)
Implements Bayesian decision-making for ethical and interdisciplinary analysis.
from pomegranate import BayesianNetwork
def evaluate_decision(scenario):
# Define a simple Bayesian network
model = BayesianNetwork.from_structure(
{'AI Ethics': ['Societal Impact'], 'Societal Impact': []}
)
probabilities = model.probability(scenario)
return probabilities
# Example usage
scenario = {'AI Ethics': 'positive', 'Societal Impact': 'high'}
print(evaluate_decision(scenario))
3. Server Integration (server.js)
Combines backend APIs into a unified service.
const express = require("express");
const bodyParser = require("body-parser");
const physicsAPI = require("./backend/physics_api");
const aiAPI = require("./backend/ai_language_model");
const ethicsAPI = require("./backend/ethical_framework");
const app = express();
const PORT = 4000;
app.use(bodyParser.json());
// Register APIs
app.use("/api/physics", physicsAPI);
app.use("/api/ai", aiAPI);
app.use("/api/ethics", ethicsAPI);
// Start the server
app.listen(PORT, () => {
console.log(`Interdisciplinary system running at http://localhost:${PORT}`);
});
4. Frontend Interface
HTML (frontend/index.html)
Provides a terminal-like interface for user interaction.
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Interdisciplinary System</title>
<link rel="stylesheet" href="styles.css">
</head>
<body>
<div id="terminal-container">
<pre id="terminal"></pre>
<input id="input" type="text" placeholder="Enter command..." />
</div>
<script src="app.js"></script>
</body>
</html>
CSS (frontend/styles.css)
Styles the terminal interface.
body {
background-color: #222;
color: #0f0;
font-family: monospace;
margin: 0;
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
}
#terminal-container {
width: 80%;
max-width: 800px;
}
#terminal {
background: black;
padding: 10px;
height: 300px;
overflow-y: auto;
border: 1px solid #0f0;
}
#input {
width: 100%;
padding: 10px;
border: none;
border-top: 1px solid #0f0;
background: black;
color: #0f0;
}
JavaScript (frontend/app.js)
Handles user input and connects to the APIs.
document.addEventListener("DOMContentLoaded", () => {
const terminal = document.getElementById("terminal");
const input = document.getElementById("input");
const commands = {
physics: async (args) => {
const res = await fetch("/api/physics/solve", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ equation: args[1], parameters: {} }),
});
const data = await res.json();
appendToTerminal(data.solution || "Error solving equation.");
},
ai: async (args) => {
const res = await fetch("/api/ai/generate", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ prompt: args.slice(1).join(" ") }),
});
const data = await res.json();
appendToTerminal(data.response || "Error generating response.");
},
ethics: async (args) => {
const res = await fetch("/api/ethics/analyze", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ scenario: args.slice(1).join(" ") }),
});
const data = await res.json();
appendToTerminal(data.analysis || "Error analyzing scenario.");
},
help: () => {
appendToTerminal("Available commands: physics, ai, ethics");
},
};
input.addEventListener("keydown", (e) => {
if (e.key === "Enter") {
const commandLine = input.value.trim();
const args = commandLine.split(" ");
const command = args[0];
if (commands[command]) {
commands[command](args);
} else {
appendToTerminal(`Unknown command: ${command}`);
}
input.value = "";
}
});
function appendToTerminal(text) {
terminal.textContent += `\n${text}`;
terminal.scrollTop = terminal.scrollHeight;
}
});
This system enables seamless interdisciplinary interaction through APIs, supporting mathematical rigor, ethical decision-making, and AI-driven insights. Let me know if you need further refinement!