|
Hereβs a working code model incorporating mathematical rigor, interdisciplinary principles, and concrete usability. This system connects APIs and language models for interdisciplinary problem-solving. It uses a modular, scalable architecture to combine functionality from different disciplines. |
|
|
|
Code Model |
|
|
|
Directory Structure |
|
|
|
interdisciplinary-system/ |
|
βββ backend/ |
|
β βββ physics_api.js |
|
β βββ ai_language_model.js |
|
β βββ ethical_framework.js |
|
βββ models/ |
|
β βββ physics_solver.py |
|
β βββ ai_model.py |
|
β βββ decision_model.py |
|
βββ frontend/ |
|
β βββ index.html |
|
β βββ styles.css |
|
β βββ app.js |
|
βββ server.js |
|
|
|
1. Backend API Services |
|
|
|
Physics API (backend/physics_api.js) |
|
|
|
Provides mathematical models for solving physical problems, like reconciling quantum mechanics and relativity. |
|
|
|
const express = require("express"); |
|
const router = express.Router(); |
|
|
|
|
|
router.post("/solve", (req, res) => { |
|
const { equation, parameters } = req.body; |
|
|
|
|
|
const solution = `Solution for ${equation} with parameters ${JSON.stringify(parameters)}`; |
|
res.json({ success: true, solution }); |
|
}); |
|
|
|
module.exports = router; |
|
|
|
AI Language Model API (backend/ai_language_model.js) |
|
|
|
Provides natural language processing and generation capabilities. |
|
|
|
const express = require("express"); |
|
const router = express.Router(); |
|
|
|
|
|
router.post("/generate", (req, res) => { |
|
const { prompt } = req.body; |
|
|
|
|
|
const response = `AI-generated output for prompt: "${prompt}"`; |
|
res.json({ success: true, response }); |
|
}); |
|
|
|
module.exports = router; |
|
|
|
Ethical Framework API (backend/ethical_framework.js) |
|
|
|
Implements probabilistic decision-making and ethical analysis. |
|
|
|
const express = require("express"); |
|
const router = express.Router(); |
|
|
|
|
|
router.post("/analyze", (req, res) => { |
|
const { scenario } = req.body; |
|
|
|
|
|
const analysis = `Ethical analysis for scenario: "${scenario}"`; |
|
res.json({ success: true, analysis }); |
|
}); |
|
|
|
module.exports = router; |
|
|
|
2. Backend Models |
|
|
|
Physics Solver (models/physics_solver.py) |
|
|
|
Solves interdisciplinary equations using numerical and symbolic methods. |
|
|
|
import sympy as sp |
|
|
|
def solve_equation(equation, parameters): |
|
|
|
x = sp.Symbol('x') |
|
eq = sp.sympify(equation) |
|
solution = sp.solve(eq, x) |
|
return solution |
|
|
|
|
|
equation = "x**2 - 4" |
|
parameters = {} |
|
print(solve_equation(equation, parameters)) |
|
|
|
AI Model (models/ai_model.py) |
|
|
|
Simulates an AI response using a language model API. |
|
|
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
|
|
def generate_response(prompt): |
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
model = GPT2LMHeadModel.from_pretrained("gpt2") |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(inputs["input_ids"], max_length=50) |
|
|
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
prompt = "How can AI enhance interdisciplinary research?" |
|
print(generate_response(prompt)) |
|
|
|
Decision Model (models/decision_model.py) |
|
|
|
Implements Bayesian decision-making for ethical and interdisciplinary analysis. |
|
|
|
from pomegranate import BayesianNetwork |
|
|
|
def evaluate_decision(scenario): |
|
|
|
model = BayesianNetwork.from_structure( |
|
{'AI Ethics': ['Societal Impact'], 'Societal Impact': []} |
|
) |
|
probabilities = model.probability(scenario) |
|
return probabilities |
|
|
|
|
|
scenario = {'AI Ethics': 'positive', 'Societal Impact': 'high'} |
|
print(evaluate_decision(scenario)) |
|
|
|
3. Server Integration (server.js) |
|
|
|
Combines backend APIs into a unified service. |
|
|
|
const express = require("express"); |
|
const bodyParser = require("body-parser"); |
|
const physicsAPI = require("./backend/physics_api"); |
|
const aiAPI = require("./backend/ai_language_model"); |
|
const ethicsAPI = require("./backend/ethical_framework"); |
|
|
|
const app = express(); |
|
const PORT = 4000; |
|
|
|
app.use(bodyParser.json()); |
|
|
|
|
|
app.use("/api/physics", physicsAPI); |
|
app.use("/api/ai", aiAPI); |
|
app.use("/api/ethics", ethicsAPI); |
|
|
|
|
|
app.listen(PORT, () => { |
|
console.log(`Interdisciplinary system running at http://localhost:${PORT}`); |
|
}); |
|
|
|
4. Frontend Interface |
|
|
|
HTML (frontend/index.html) |
|
|
|
Provides a terminal-like interface for user interaction. |
|
|
|
<!DOCTYPE html> |
|
<html lang="en"> |
|
<head> |
|
<meta charset="UTF-8"> |
|
<meta name="viewport" content="width=device-width, initial-scale=1.0"> |
|
<title>Interdisciplinary System</title> |
|
<link rel="stylesheet" href="styles.css"> |
|
</head> |
|
<body> |
|
<div id="terminal-container"> |
|
<pre id="terminal"></pre> |
|
<input id="input" type="text" placeholder="Enter command..." /> |
|
</div> |
|
<script src="app.js"></script> |
|
</body> |
|
</html> |
|
|
|
CSS (frontend/styles.css) |
|
|
|
Styles the terminal interface. |
|
|
|
body { |
|
background-color: |
|
color: |
|
font-family: monospace; |
|
margin: 0; |
|
display: flex; |
|
justify-content: center; |
|
align-items: center; |
|
height: 100vh; |
|
} |
|
|
|
|
|
width: 80%; |
|
max-width: 800px; |
|
} |
|
|
|
|
|
background: black; |
|
padding: 10px; |
|
height: 300px; |
|
overflow-y: auto; |
|
border: 1px solid |
|
} |
|
|
|
|
|
width: 100%; |
|
padding: 10px; |
|
border: none; |
|
border-top: 1px solid |
|
background: black; |
|
color: |
|
} |
|
|
|
JavaScript (frontend/app.js) |
|
|
|
Handles user input and connects to the APIs. |
|
|
|
document.addEventListener("DOMContentLoaded", () => { |
|
const terminal = document.getElementById("terminal"); |
|
const input = document.getElementById("input"); |
|
|
|
const commands = { |
|
physics: async (args) => { |
|
const res = await fetch("/api/physics/solve", { |
|
method: "POST", |
|
headers: { "Content-Type": "application/json" }, |
|
body: JSON.stringify({ equation: args[1], parameters: {} }), |
|
}); |
|
const data = await res.json(); |
|
appendToTerminal(data.solution || "Error solving equation."); |
|
}, |
|
ai: async (args) => { |
|
const res = await fetch("/api/ai/generate", { |
|
method: "POST", |
|
headers: { "Content-Type": "application/json" }, |
|
body: JSON.stringify({ prompt: args.slice(1).join(" ") }), |
|
}); |
|
const data = await res.json(); |
|
appendToTerminal(data.response || "Error generating response."); |
|
}, |
|
ethics: async (args) => { |
|
const res = await fetch("/api/ethics/analyze", { |
|
method: "POST", |
|
headers: { "Content-Type": "application/json" }, |
|
body: JSON.stringify({ scenario: args.slice(1).join(" ") }), |
|
}); |
|
const data = await res.json(); |
|
appendToTerminal(data.analysis || "Error analyzing scenario."); |
|
}, |
|
help: () => { |
|
appendToTerminal("Available commands: physics, ai, ethics"); |
|
}, |
|
}; |
|
|
|
input.addEventListener("keydown", (e) => { |
|
if (e.key === "Enter") { |
|
const commandLine = input.value.trim(); |
|
const args = commandLine.split(" "); |
|
const command = args[0]; |
|
if (commands[command]) { |
|
commands[command](args); |
|
} else { |
|
appendToTerminal(`Unknown command: ${command}`); |
|
} |
|
input.value = ""; |
|
} |
|
}); |
|
|
|
function appendToTerminal(text) { |
|
terminal.textContent += `\n${text}`; |
|
terminal.scrollTop = terminal.scrollHeight; |
|
} |
|
}); |
|
|
|
This system enables seamless interdisciplinary interaction through APIs, supporting mathematical rigor, ethical decision-making, and AI-driven insights. Let me know if you need further refinement! |