{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x0000016C0E5F6CA0>", "_build": "<function DQNPolicy._build at 0x0000016C0E5F6D30>", "make_q_net": "<function DQNPolicy.make_q_net at 0x0000016C0E5F6DC0>", "forward": "<function DQNPolicy.forward at 0x0000016C0E5F6E50>", "_predict": "<function DQNPolicy._predict at 0x0000016C0E5F6EE0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x0000016C0E5F6F70>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x0000016C0E601040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000016C0E5FE880>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVNQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBSMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgKjAJ1NJSJiIeUUpQoSwNoDk5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": 42, "action_noise": null, "start_time": 1681213138576661800, "learning_rate": 0.0015, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVpwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdUM6XFByb2dyYW0gRmlsZXMgKHg4NilcTWljcm9zb2Z0IFZpc3VhbCBTdHVkaW9cU2hhcmVkXFB5dGhvbjM5XzY0XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9Yk3S8an76hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZo4zyksGs4XBikvdK9vb3kFzq9WJfGPgAAgD8AAAAAjanMPbAIoT6mZOC+leL+vsKGsT1bfTy+AAAAAAAAAAAmc509AXjBPnDePr5Ny4C90AjKO0rfUb4AAAAAAAAAAAqEfr4XvjW9JkobuxUTsbnDsJ0+PTKPOgAAgD8AAIA/Ngulvkn1bz045Ma9XUCSvoqTjz0aWuk8AAAAAAAAAACbUIy+bEqEPBJWNLvyWxc5CaIMvrUo/bkAAIA/AACAP6Zi9r1clCI7cmoROWHtdLc/sfK8HZXQtAAAgD8AAIA/gJkyvva2bztQhvQ6NjFOuCSPFr3vsA66AACAPwAAgD9TCai+n/GPPI43PDld/zC37WfZvfhjdbgAAIA/AACAP5pMB75S9KO7hqYpvKEAm7rH6ic9ToyDOwAAgD8AAIA/ANiOPE6Ujrw8OLg7wqcevkynBb32TZu+AACAPwAAgD9qdOC+k0AzP1aMgr0WE62+2vThvfBfMD0AAAAAAAAAAM1Mhb2I25U/xlCBvjLOHL8FG5u9mmcFvgAAAAAAAAAAM/oOvmRVCjzm0Fg5kJ7dt1N8nb2lLE+3AACAPwAAgD8AU5s9OPKDPmI/l76Tiye/wp0SvJYffL0AAAAAAAAAAObAIT0KYRg/oSIdv7vzH79ojfc9KsImvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpe6DwpXQ07EvaEvQfbE76SwoS97UMMPgAAgD8AAAAAANTVPYDGpj4z2uK+JyIHvxZgxD1TUkm+AAAAAAAAAADNeqE9uTHCPiasLL5VbdG9JXWGPBjWQb4AAAAAAAAAAPp9fr6EtjW9u87xOh9KuzmMqZ0+dH4ougAAgD8AAIA/0I2kvn4jhT0GC9+9zw2FvtCojD3iyps9AAAAAAAAAAD4TIy+hUOEPO6bWrqUCZg4tZsMvu5QgzkAAIA/AACAP2Zj9r1cmiI7HkqeuRVqZjgEsfK8Ba+FtwAAgD8AAIA/Rp4yvlzIbzu12xW7D/OtOMtxFr0j6145AACAPwAAgD+OCai+EvKPPGog37oljes4WWbZvd6AEDoAAIA/AACAPwAyB75SFqO7+PwMvPHQgLpNGCc9XqdaOwAAgD8AAIA/zaSPPAMiZLy6/xq8rlVmviINj7ycTaO+AACAPwAAgD+zI+C+RDM1P06Mgr3Ja5++pV3mvfVfMD0AAAAAAAAAADP8f73lnpc/9wiCvgxRHb8qxI29hdUDvgAAAAAAAAAAwPoOvqRXCjyK6SE5FFqSt/F7nb0ryiy3AACAPwAAgD8mcKE9THyLPtB3mb4mVSy/KGLAu8nphb0AAAAAAAAAAAA7Oz1g+xs/hgUgv+LTH782HQQ+PuA2vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 4911, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITwRxHk7wUsCUhpRSlIwBbJRLwowBdJRHQMZvdAC4jKR1fZQoaAZoCWgPQwh/h6JAH6poQJSGlFKUaBVNJQNoFkdAxm+SvRqoInV9lChoBmgJaA9DCJj8T/7uvRBAlIaUUpRoFUt+aBZHQMZvvJEpiJB1fZQoaAZoCWgPQwii0/NuLMxFQJSGlFKUaBVL4WgWR0DGb8LH2h7FdX2UKGgGaAloD0MI+zxGeWZ8Z8CUhpRSlGgVS5loFkdAxm/OoJiRXHV9lChoBmgJaA9DCMJNRpVhlCHAlIaUUpRoFUvNaBZHQMZwStj9XLh1fZQoaAZoCWgPQwjYutQIfYFqQJSGlFKUaBVNWgJoFkdAxnBU42CNCXV9lChoBmgJaA9DCHtMpDSbEUJAlIaUUpRoFUteaBZHQMZwixREWqN1fZQoaAZoCWgPQwgVqMXg4eRnQJSGlFKUaBVNqAJoFkdAxnDPrX18LXV9lChoBmgJaA9DCEyN0M/Url9AlIaUUpRoFU3oA2gWR0DGcOCOLiuMdX2UKGgGaAloD0MIB33p7c8WckCUhpRSlGgVTTwBaBZHQMZxGpGFzuF1fZQoaAZoCWgPQwisb2Byo/JJwJSGlFKUaBVNdgFoFkdAxnEkYekpJHV9lChoBmgJaA9DCJBLHHkgUiDAlIaUUpRoFUvuaBZHQMZxjVG0/np1fZQoaAZoCWgPQwipTgeynmIoQJSGlFKUaBVLVmgWR0DGccd8LKFJdX2UKGgGaAloD0MIaQHaVrMEb0CUhpRSlGgVTSADaBZHQMZx3BRAKOV1fZQoaAZoCWgPQwhYy52ZYJglwJSGlFKUaBVLjWgWR0DGcfZ1mrbQdX2UKGgGaAloD0MImGiQgudKcECUhpRSlGgVTVkBaBZHQMZyW7KzRhN1fZQoaAZoCWgPQwi14bA08KdFQJSGlFKUaBVLs2gWR0DGcqBfx+a0dX2UKGgGaAloD0MIfXkB9tGjVECUhpRSlGgVTegDaBZHQMZzOWBreqJ1fZQoaAZoCWgPQwh07KAS1w0wQJSGlFKUaBVLhGgWR0DGc+aKWLP2dX2UKGgGaAloD0MIylTBqKSbX0CUhpRSlGgVTegDaBZHQMZ0NLApKBd1fZQoaAZoCWgPQwhxV68io4RtQJSGlFKUaBVN4AJoFkdAxnSvStvGZXV9lChoBmgJaA9DCEVHcvkPtGxAlIaUUpRoFU3qAWgWR0DGdLSdYnv2dX2UKGgGaAloD0MIrd9MTJf8a0CUhpRSlGgVTSICaBZHQMZ0tnj6vaF1fZQoaAZoCWgPQwiHFW75SAoAwJSGlFKUaBVNEQFoFkdAxnT6plSS/3V9lChoBmgJaA9DCI4iaw2ljW5AlIaUUpRoFU2wAmgWR0DGdSrtG/etdX2UKGgGaAloD0MIJ2w/GaNcgsCUhpRSlGgVTXoBaBZHQMZ1hmNR3vB1fZQoaAZoCWgPQwivz5z1KSMzQJSGlFKUaBVLwGgWR0DGddC2Yv38dX2UKGgGaAloD0MIchb2tMPjMMCUhpRSlGgVS5poFkdAxnZkmnfl63V9lChoBmgJaA9DCOdwrfawxylAlIaUUpRoFUuPaBZHQMZ3ZG/Firl1fZQoaAZoCWgPQwhuGAXB45sFQJSGlFKUaBVL32gWR0DGd8qs8xKydX2UKGgGaAloD0MII/Qz9bqLaECUhpRSlGgVTYIDaBZHQMZ4mGtZFG51fZQoaAZoCWgPQwh2bATidT0MwJSGlFKUaBVLUmgWR0DGeKzRhMJydX2UKGgGaAloD0MIZr0YyokZbUCUhpRSlGgVTV4DaBZHQMZ45DdpItl1fZQoaAZoCWgPQwglB+xq8k5KQJSGlFKUaBVL/WgWR0DGeSO6I3zddX2UKGgGaAloD0MI+Z/83TuIR0CUhpRSlGgVS7NoFkdAxnpceI2wV3V9lChoBmgJaA9DCDze5Lfoz1xAlIaUUpRoFU3oA2gWR0DGen3e3x4IdX2UKGgGaAloD0MIri6nBERmYUCUhpRSlGgVTegDaBZHQMZ62IGIKtx1fZQoaAZoCWgPQwjWUkDa/xQ4QJSGlFKUaBVLrmgWR0DGetyO5rgwdX2UKGgGaAloD0MI3q6Xpki6cECUhpRSlGgVTQUBaBZHQMZ7aqHfuTl1fZQoaAZoCWgPQwgDP6phv4hgQJSGlFKUaBVN6ANoFkdAxnuxI+4b0nV9lChoBmgJaA9DCJmEC3kEJGJAlIaUUpRoFU3oA2gWR0DGe/GVs1sMdX2UKGgGaAloD0MIYCAIkKG6XECUhpRSlGgVTegDaBZHQMZ8BB5PdmB1fZQoaAZoCWgPQwjxR1Fnrj5wQJSGlFKUaBVNDwNoFkdAxnxFpPhybXV9lChoBmgJaA9DCKWEYFW9ZDpAlIaUUpRoFUtcaBZHQMZ8qVt4zJp1fZQoaAZoCWgPQwieXFMgs281QJSGlFKUaBVLqmgWR0DGfN2w5eZ5dX2UKGgGaAloD0MIQgddwqH7SUCUhpRSlGgVTRkBaBZHQMZ89+F+NLl1fZQoaAZoCWgPQwg2HQHcLL1uQJSGlFKUaBVNTwJoFkdAxnz/6Rhc7nV9lChoBmgJaA9DCP+Tv3vHlW9AlIaUUpRoFU0/AWgWR0DGfSpagVXWdX2UKGgGaAloD0MIIO1/gLVaO0CUhpRSlGgVS7doFkdAxn0wOc2BKHV9lChoBmgJaA9DCNCbilTYdHBAlIaUUpRoFU3jAmgWR0DGfTt85S3tdX2UKGgGaAloD0MIJxWNtb9JYECUhpRSlGgVTegDaBZHQMZ9P3kYGdJ1fZQoaAZoCWgPQwhW8xyR75IuQJSGlFKUaBVLvWgWR0DGfXgzxgAqdX2UKGgGaAloD0MIyO2XT1YcIcCUhpRSlGgVS3hoFkdAxn2S7p3X7XV9lChoBmgJaA9DCEc82c0Mm2tAlIaUUpRoFU1KAWgWR0DGfZgz1scidX2UKGgGaAloD0MI6dZrelDIRUCUhpRSlGgVS3doFkdAxn3Q2Xsw+XV9lChoBmgJaA9DCFjFG5lHYkBAlIaUUpRoFUuoaBZHQMZ+DkZ75VR1fZQoaAZoCWgPQwieYWpLnQRjQJSGlFKUaBVN6ANoFkdAxn46th/iHnV9lChoBmgJaA9DCG1Wfa42OmJAlIaUUpRoFU3oA2gWR0DGfjy2OQyRdX2UKGgGaAloD0MIeLeyRGfhKkCUhpRSlGgVS3loFkdAxn5iTewcHXV9lChoBmgJaA9DCOavkLkyND1AlIaUUpRoFUu3aBZHQMZ+aFq8Djl1fZQoaAZoCWgPQwgOLEfIwPhhQJSGlFKUaBVN6ANoFkdAxn5uE0SAY3V9lChoBmgJaA9DCCAkC5jANTpAlIaUUpRoFUufaBZHQMZ+22G7Bft1fZQoaAZoCWgPQwi2MXbCSzD9P5SGlFKUaBVLpWgWR0DGf4pDG96DdX2UKGgGaAloD0MIa524HC+oakCUhpRSlGgVTX8BaBZHQMZ/sBpQDV91fZQoaAZoCWgPQwgqc/ON6O49QJSGlFKUaBVLhGgWR0DGf+I2hqTKdX2UKGgGaAloD0MIAOMZNHSUb0CUhpRSlGgVTQcBaBZHQMaAInMdLg51fZQoaAZoCWgPQwikbmdfee1rQJSGlFKUaBVNpgFoFkdAxoA/i7TUiXV9lChoBmgJaA9DCLlxi/m5gQNAlIaUUpRoFUtWaBZHQMaAmLxI8Qt1fZQoaAZoCWgPQwhJ9DKK5QYTQJSGlFKUaBVLkWgWR0DGgMYD/2kBdX2UKGgGaAloD0MICvX0EfhXN8CUhpRSlGgVS5FoFkdAxoDq/s3Q2XV9lChoBmgJaA9DCI8YPbfQtF9AlIaUUpRoFU3oA2gWR0DGgPB+jM3ZdX2UKGgGaAloD0MItjF2wksIKkCUhpRSlGgVS3hoFkdAxoFBvJA+p3V9lChoBmgJaA9DCMoa9RANTWdAlIaUUpRoFU3sAmgWR0DGgfwOFxn4dX2UKGgGaAloD0MIGAYsuYrJSECUhpRSlGgVS4hoFkdAxoISBUaQ3nV9lChoBmgJaA9DCP3BwHPv3ThAlIaUUpRoFUuOaBZHQMaCGAdOqNp1fZQoaAZoCWgPQwhkPiDQmYQYQJSGlFKUaBVL3GgWR0DGgpQDRtxddX2UKGgGaAloD0MI0nE1squBYECUhpRSlGgVTegDaBZHQMaCxcbBGhF1fZQoaAZoCWgPQwgaFw6EZIlGQJSGlFKUaBVLn2gWR0DGg0WymhugdX2UKGgGaAloD0MIJ02DonmgEkCUhpRSlGgVS5poFkdAxoPV0Eovz3V9lChoBmgJaA9DCGu5MxMMlx7AlIaUUpRoFUumaBZHQMaEId2HLzR1fZQoaAZoCWgPQwiWWYRiKyAzQJSGlFKUaBVLjGgWR0DGhHjs6aLGdX2UKGgGaAloD0MIU8vW+iLBGkCUhpRSlGgVTUwBaBZHQMaE7svRJEp1fZQoaAZoCWgPQwgteTwtPyA+wJSGlFKUaBVLiGgWR0DGhRarmyPddX2UKGgGaAloD0MIUBvV6cDTYECUhpRSlGgVTegDaBZHQMaFHHMUypJ1fZQoaAZoCWgPQwi54uKo3ENfQJSGlFKUaBVN6ANoFkdAxoUwHYYixHV9lChoBmgJaA9DCBrCMcse3mFAlIaUUpRoFU3oA2gWR0DGhYFn27FsdX2UKGgGaAloD0MIM+IC0CidGkCUhpRSlGgVS3NoFkdAxoWJs+mm+HV9lChoBmgJaA9DCH5Uw37PaGBAlIaUUpRoFU3oA2gWR0DGhaL6BRQ8dX2UKGgGaAloD0MIpFTCE3pVM8CUhpRSlGgVS4hoFkdAxoYSL2pQ13V9lChoBmgJaA9DCLiumBFetWJAlIaUUpRoFU3oA2gWR0DGhivMINVjdX2UKGgGaAloD0MIDD7NyYv7bkCUhpRSlGgVS+hoFkdAxoYtl+Vkc3V9lChoBmgJaA9DCMKGp1fK8inAlIaUUpRoFUuNaBZHQMaGQUoScsl1fZQoaAZoCWgPQwjsoX2s4IdjQJSGlFKUaBVN6ANoFkdAxoZaRODaoXV9lChoBmgJaA9DCHsvvmgPp2BAlIaUUpRoFU3oA2gWR0DGho57RfF8dX2UKGgGaAloD0MIp1mg3aGUYkCUhpRSlGgVTegDaBZHQMaGkkwevIR1fZQoaAZoCWgPQwjYD7HBwhdGQJSGlFKUaBVLuWgWR0DGhpRMBZIQdX2UKGgGaAloD0MIlltaDYk7C0CUhpRSlGgVS7RoFkdAxoacEr5IpnV9lChoBmgJaA9DCIY97fDXBAlAlIaUUpRoFUuWaBZHQMaGqlNUOut1fZQoaAZoCWgPQwg+WTFcHcgkQJSGlFKUaBVL52gWR0DGhx96HCXQdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 125000, "buffer_size": 100000, "batch_size": 128, "learning_starts": 0, "tau": 1.0, "gamma": 0.99, "gradient_steps": 4, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x0000016C0E5D9430>", "add": "<function ReplayBuffer.add at 0x0000016C0E5D94C0>", "sample": "<function ReplayBuffer.sample at 0x0000016C0E5D9550>", "_get_samples": "<function ReplayBuffer._get_samples at 0x0000016C0E5D95E0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000016C0D311C40>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.08, "target_update_interval": 1, "_n_calls": 125000, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVSwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIx1QzpcUHJvZ3JhbSBGaWxlcyAoeDg2KVxNaWNyb3NvZnQgVmlzdWFsIFN0dWRpb1xTaGFyZWRcUHl0aG9uMzlfNjRcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHClSlGgcKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCJ9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgudYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDZHP7R64UeuFHuFlFKUaDZHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.9.13", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cpu", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}} |