Dabe's picture
Upload DQN LunarLander-v2 trained agent
921c6c7
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
"__module__": "stable_baselines3.dqn.policies",
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function DQNPolicy.__init__ at 0x0000024BBF666CA0>",
"_build": "<function DQNPolicy._build at 0x0000024BBF666D30>",
"make_q_net": "<function DQNPolicy.make_q_net at 0x0000024BBF666DC0>",
"forward": "<function DQNPolicy.forward at 0x0000024BBF666E50>",
"_predict": "<function DQNPolicy._predict at 0x0000024BBF666EE0>",
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x0000024BBF666F70>",
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x0000024BBF670040>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x0000024BBF66E940>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVNQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBSMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgKjAJ1NJSJiIeUUpQoSwNoDk5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 16,
"num_timesteps": 10000000,
"_total_timesteps": 10000000,
"_num_timesteps_at_start": 0,
"seed": 42,
"action_noise": null,
"start_time": 1680542714560892800,
"learning_rate": 0.0001,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVpwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdUM6XFByb2dyYW0gRmlsZXMgKHg4NilcTWljcm9zb2Z0IFZpc3VhbCBTdHVkaW9cU2hhcmVkXFB5dGhvbjM5XzY0XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANUi9b5nCXY/OnmuvoL0K74cJDG+kGNyOQAAAAAAAAAAANhDvexCoz9ugNi97NOvvS3Js7s+ndS8AAAAAAAAAABK4A2/mPZKP04aoD2hLle+APoDvYFoArwAAAAAAAAAADNt570pOGa6U92COWHoHbYzTrK5AemUuAAAgD8AAIA/akFyvt/xiT8/xw89PBlHvjFUNb2eHh08AAAAAAAAAAAz6KQ9BTVTP1KpAj72ZWe+IcmsvJIEhTwAAAAAAAAAAA31ND9cEh07avSNO+UY8DlYPuA9Tmk6ugAAgD8AAIA/rfEevjqGiT8fozs95AA0vsKP0bxxgrU8AAAAAAAAAAD6z5s+gd9YPtiwHD6waCC+GuwhPC+CHzwAAAAAAAAAAJNMcz8FZAk+dUkIvk5JOr05Sl89auJbvQAAAAAAAAAA7ayUvirWj71dyLa9FGIVvInC9D5IJrs8AACAPwAAgD+NJ7Y+F3UbveapLb08CQC7AXbpvR7CAr0AAIA/AACAP9BTVj8nuWy+zr4rvTHakr5U7C8/kswdPwAAgD8AAIA/Zh1MPZEnjj/L8bQ8EkcqvnfrkTqm6Mo8AAAAAAAAAADzPxY+/M0eP+ss8D1HW2G+imO5vK29srsAAAAAAAAAACO8176+DWk/BboqPSnGL76Hklu9hn6EOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADJk874EAXc/Gm6pvqIgEr4kJzG+M/IlvQAAAAAAAAAAs3U/vTmCoz9aDsi9YPqqvV9DibsmipO8AAAAAAAAAABCEw6/cCxMPyyHtz0U4Wi+sVgCvbcTqTsAAAAAAAAAAIBu571cM2a6QkjcuBuZgjXaW7C5Or76NwAAgD8AAIA/s55yvjyBij9CPcY8NO0rvvtKN72YyVk9AAAAAAAAAADaRqI9QYJUP1o/7j26vXq+w2+zvJY73TsAAAAAAAAAAEDyND9cZBw7E654O4m7kzl4UeA9EviSugAAAAAAAIA/umwfvtoHij9CDfg8i84+vg2j2rx87As8AAAAAAAAAADDBps+cntcPt2YET5HfwW+YfIZPEC3WT0AAAAAAAAAAJOlcz/hcAo+vtzyvd9ipr26SGo9rpU3vQAAAAAAAAAATjmUvtVuj71GxMS9MKyGOsIs9D6Ofk67AACAPwAAgD86YbY+5EkbvXopF73QGd66KDHmvaOU47wAAIA/AACAP0BfVj+waWa+sjz1vPvgkb5wCCg/EyCPPgAAAAAAAAAAsyhLPSuijj/VPAQ9jkUPvsZBA7kaqYO8AAAAAAAAAABADRU+fhIgP4Jv4D2X1EW+iye3vEa4zzwAAAAAAAAAAAjz177eCmo//9IHPVMIFL6EZly9ytwcPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_episode_num": 15465,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIehowSPqUB0CUhpRSlIwBbJRNBwGMAXSUR0D3Zh46FuejdX2UKGgGaAloD0MIiIOEKN9MbUCUhpRSlGgVTWkBaBZHQPdmHneO4oZ1fZQoaAZoCWgPQwgQAvIl1H9qQJSGlFKUaBVN8AFoFkdA92Yf4wdsBXV9lChoBmgJaA9DCA1slWBxmD7AlIaUUpRoFU0TAWgWR0D3ZiYKAJ9idX2UKGgGaAloD0MIFr8prNR9Z0CUhpRSlGgVTeABaBZHQPdmMJyyUs51fZQoaAZoCWgPQwghy4KJP6FrQJSGlFKUaBVNlgFoFkdA92Y0/8hs7HV9lChoBmgJaA9DCH7+e/BafmtAlIaUUpRoFU0bAWgWR0D3ZlAVxCIDdX2UKGgGaAloD0MISOLl6dwJaUCUhpRSlGgVTfEBaBZHQPdmZFK5Cnh1fZQoaAZoCWgPQwgFwHgGDdlPwJSGlFKUaBVNJQFoFkdA92ZkUrkKeHV9lChoBmgJaA9DCB8Svvc3/GhAlIaUUpRoFU1VAmgWR0D3ZmWmL9/CdX2UKGgGaAloD0MIYTYBhuXua0CUhpRSlGgVTeYBaBZHQPdmaIJNTLp1fZQoaAZoCWgPQwihoupXOvBsQJSGlFKUaBVNDAFoFkdA92Z0rg0j1XV9lChoBmgJaA9DCKGDLuHQaGNAlIaUUpRoFU1LAmgWR0D3ZnXpCa7VdX2UKGgGaAloD0MIa378pUXlTsCUhpRSlGgVTasBaBZHQPdmeJqk/KR1fZQoaAZoCWgPQwiI8gUtpPNrQJSGlFKUaBVNkgFoFkdA92aA36hxpHV9lChoBmgJaA9DCJ2DZ0KTMWpAlIaUUpRoFU0OAmgWR0D3ZpeZRbbDdX2UKGgGaAloD0MIgzEiUWhRPsCUhpRSlGgVTegDaBZHQPdmpSQEIPd1fZQoaAZoCWgPQwjmlettM2dEwJSGlFKUaBVLqmgWR0D3ZqjZdv87dX2UKGgGaAloD0MIQPm7d1RPYkCUhpRSlGgVTW8CaBZHQPdmsJMCcPR1fZQoaAZoCWgPQwjYCwVsBxVrQJSGlFKUaBVNNAJoFkdA92aygDV6NXV9lChoBmgJaA9DCCnpYWh12knAlIaUUpRoFUt+aBZHQPdmurqoqCp1fZQoaAZoCWgPQwh3n+OjxdZtQJSGlFKUaBVNhwFoFkdA92a9+54GEHV9lChoBmgJaA9DCIjaNoyCBmNAlIaUUpRoFU3/AWgWR0D3Zr67ngYQdX2UKGgGaAloD0MIV19dFahsb0CUhpRSlGgVTX8BaBZHQPdmy6eZof11fZQoaAZoCWgPQwgmVdtN8L0fQJSGlFKUaBVLfWgWR0D3ZtDYLsrvdX2UKGgGaAloD0MI5pKq7abHZ0CUhpRSlGgVTa4BaBZHQPdm11NSIgx1fZQoaAZoCWgPQwg6Pe/GgmIcQJSGlFKUaBVNqAFoFkdA92baFmWdE3V9lChoBmgJaA9DCPeRW5PuIWhAlIaUUpRoFU15AWgWR0D3ZuUgFotddX2UKGgGaAloD0MIbqXXZuPZYkCUhpRSlGgVTTMCaBZHQPdm+sre67N1fZQoaAZoCWgPQwiiemtgK5BhQJSGlFKUaBVNAQJoFkdA92b9F7IDHXV9lChoBmgJaA9DCDhorz4eOVRAlIaUUpRoFU3oA2gWR0D3Zv2k3S8bdX2UKGgGaAloD0MIPNnNjP6NakCUhpRSlGgVTXsBaBZHQPdnBd/WlM11fZQoaAZoCWgPQwgTYi6pWrRlQJSGlFKUaBVNOwJoFkdA92cMUsWfsnV9lChoBmgJaA9DCBOCVfVy/2VAlIaUUpRoFU3IAWgWR0D3ZxwT3IuHdX2UKGgGaAloD0MIyLH1DOFkPMCUhpRSlGgVTRgBaBZHQPdnHZPhybR1fZQoaAZoCWgPQwjJk6RrJiJjQJSGlFKUaBVNyQFoFkdA92cjSGrS3XV9lChoBmgJaA9DCLZMhuP57k1AlIaUUpRoFU3oA2gWR0D3ZyXKArhBdX2UKGgGaAloD0MI/686ciS9cECUhpRSlGgVTbIBaBZHQPdnKDpKSPl1fZQoaAZoCWgPQwjFNxQ+W6JoQJSGlFKUaBVNawFoFkdA92cxnLV4HHV9lChoBmgJaA9DCOVjd4ESymhAlIaUUpRoFU2lAWgWR0D3ZzIBreqJdX2UKGgGaAloD0MIUP9Z8+PbWECUhpRSlGgVTTgCaBZHQPdnRmgf2bp1fZQoaAZoCWgPQwjxm8JKheZoQJSGlFKUaBVNSgFoFkdA92dRTG96C3V9lChoBmgJaA9DCHuEmiHVomhAlIaUUpRoFU0dAmgWR0D3Z1HMb3oLdX2UKGgGaAloD0MIv/BKkucEYECUhpRSlGgVTXoCaBZHQPdnUj40uUV1fZQoaAZoCWgPQwhpVyHlpzhkQJSGlFKUaBVNkwFoFkdA92dXN8eCCnV9lChoBmgJaA9DCHAGf7+YQmVAlIaUUpRoFU01AWgWR0D3Z2GMR6F/dX2UKGgGaAloD0MImyFVFK/zZUCUhpRSlGgVTcEBaBZHQPdnYsxHoX91fZQoaAZoCWgPQwhKea2EbqplQJSGlFKUaBVNHwJoFkdA92dj2xD9fnV9lChoBmgJaA9DCIaRXtRukGxAlIaUUpRoFU3KAWgWR0D3Z2UDZ13ddX2UKGgGaAloD0MIaRt/orLJLsCUhpRSlGgVTTcBaBZHQPdnawz67/Z1fZQoaAZoCWgPQwgOayqLQrxmQJSGlFKUaBVNsAFoFkdA92drR8hLXnV9lChoBmgJaA9DCPX256Ih1UTAlIaUUpRoFU19AWgWR0D3Z22YTTOPdX2UKGgGaAloD0MIqP5BJEPpbkCUhpRSlGgVTVcBaBZHQPdndzNgSe11fZQoaAZoCWgPQwiuDRXjfDlrQJSGlFKUaBVNAAJoFkdA92eMC08eS3V9lChoBmgJaA9DCDW1bK2v4mpAlIaUUpRoFU33AWgWR0D3Z40TX8O1dX2UKGgGaAloD0MI3SIw1jf6S8CUhpRSlGgVTSABaBZHQPdnnRlPJq91fZQoaAZoCWgPQwh6Nqs+V+tJwJSGlFKUaBVNPwFoFkdA92emHxz7uXV9lChoBmgJaA9DCFmkiXeAoFpAlIaUUpRoFU3GAWgWR0D3Z7OAuZkTdX2UKGgGaAloD0MIp0BmZ1EYcECUhpRSlGgVTU4BaBZHQPdntYJVsDZ1fZQoaAZoCWgPQwhoBBvXP55vQJSGlFKUaBVNggFoFkdA92e1wlWwNnV9lChoBmgJaA9DCAG+27zxtmdAlIaUUpRoFU2PAWgWR0D3Z72PS2H+dX2UKGgGaAloD0MIk6mCUUnqbkCUhpRSlGgVTXYBaBZHQPdnv3CEYfp1fZQoaAZoCWgPQwhWR450BgFvQJSGlFKUaBVNaQFoFkdA92fPYCZF5XV9lChoBmgJaA9DCKwZGeQuRWxAlIaUUpRoFU1NAWgWR0D3Z+PwkxATdX2UKGgGaAloD0MIwF32604RT8CUhpRSlGgVTVYBaBZHQPdn5TCaZx91fZQoaAZoCWgPQwh00ZDxKGxrQJSGlFKUaBVNJANoFkdA92fqwcLjP3V9lChoBmgJaA9DCLKeWn118F9AlIaUUpRoFU2xAmgWR0D3Z/EIEbHZdX2UKGgGaAloD0MIRG/x8J6VaECUhpRSlGgVTbcCaBZHQPdn86pqASZ1fZQoaAZoCWgPQwiWXMXit7tiQJSGlFKUaBVNMQJoFkdA92f0+Sr5qXV9lChoBmgJaA9DCGfUfJV81C7AlIaUUpRoFU05AWgWR0D3Z/fbrkbQdX2UKGgGaAloD0MIZwqd11haZECUhpRSlGgVTQQDaBZHQPdoCr/Pw/h1fZQoaAZoCWgPQwgP8nowKcVmQJSGlFKUaBVNXQFoFkdA92gMAgPmP3V9lChoBmgJaA9DCHnOFhBafm5AlIaUUpRoFU2PAWgWR0D3aBn3FUADdX2UKGgGaAloD0MI7pQO1v87bkCUhpRSlGgVTV8BaBZHQPdoKUcOskp1fZQoaAZoCWgPQwgn+Kbps8FOwJSGlFKUaBVL52gWR0D3aC1Cpm29dX2UKGgGaAloD0MIuW3fo/4uXUCUhpRSlGgVTegDaBZHQPdoNADcM3J1fZQoaAZoCWgPQwgVONkGboJpQJSGlFKUaBVNGAJoFkdA92hAucH4XXV9lChoBmgJaA9DCLmI78SsCmFAlIaUUpRoFU3yAWgWR0D3aED5yEL6dX2UKGgGaAloD0MIrp0oCYmdXkCUhpRSlGgVTZoCaBZHQPdoSuAskIJ1fZQoaAZoCWgPQwg6eCY0SXRRwJSGlFKUaBVNeQFoFkdA92hMcBdUsHV9lChoBmgJaA9DCFJhbCFI82dAlIaUUpRoFU1KAWgWR0D3aE38U21ldX2UKGgGaAloD0MIarx0kxhQZkCUhpRSlGgVTWkBaBZHQPdoUUV58jR1fZQoaAZoCWgPQwhpN/qYDwtkQJSGlFKUaBVN9AFoFkdA92hhu+7DmHV9lChoBmgJaA9DCD/EBgsn72FAlIaUUpRoFU2LAmgWR0D3aGMIaLn+dX2UKGgGaAloD0MI3V1nQ/6BRcCUhpRSlGgVTW4BaBZHQPdoZq5/b0x1fZQoaAZoCWgPQwjZeoZwTFpnQJSGlFKUaBVN2wFoFkdA92hm7sF+u3V9lChoBmgJaA9DCMGopE5AtzrAlIaUUpRoFUuYaBZHQPdoav2nKnx1fZQoaAZoCWgPQwi3KLNBJkksQJSGlFKUaBVNLQFoFkdA92hwJCfHxXV9lChoBmgJaA9DCB1aZDvfcVHAlIaUUpRoFUt/aBZHQPdohffWMCN1fZQoaAZoCWgPQwg6dlCJ63tkQJSGlFKUaBVN2QFoFkdA92iKthd+onV9lChoBmgJaA9DCKFI93OKQ2lAlIaUUpRoFU0UAmgWR0D3aIr2Hck/dX2UKGgGaAloD0MILqwb7470LMCUhpRSlGgVTTABaBZHQPdojwAfdRB1fZQoaAZoCWgPQwjdW5GYoEBkQJSGlFKUaBVNhwFoFkdA92iYImb9ZXV9lChoBmgJaA9DCNY73A4NxmdAlIaUUpRoFU3iAWgWR0D3aJzyIpH7dX2UKGgGaAloD0MILJ/leXCbNMCUhpRSlGgVS/loFkdA92idz4DcM3V9lChoBmgJaA9DCPs/h/lyLGBAlIaUUpRoFU0cA2gWR0D3aKL4593KdX2UKGgGaAloD0MIRZvj3CZQRcCUhpRSlGgVTRUBaBZHQPdoo4I7eVN1fZQoaAZoCWgPQwiz0M5pFipFwJSGlFKUaBVLlGgWR0D3aKdPGhmHdX2UKGgGaAloD0MIJegv9IgrakCUhpRSlGgVTekBaBZHQPdoq3s8gZF1fZQoaAZoCWgPQwhgkPRpFT3zv5SGlFKUaBVNNQFoFkdA92iyt3jdYXVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 154688,
"buffer_size": 100000,
"batch_size": 32,
"learning_starts": 100000,
"tau": 1.0,
"gamma": 0.99,
"gradient_steps": 1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
"__module__": "stable_baselines3.common.buffers",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x0000024BBF648430>",
"add": "<function ReplayBuffer.add at 0x0000024BBF6484C0>",
"sample": "<function ReplayBuffer.sample at 0x0000024BBF648550>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x0000024BBF6485E0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x0000024BBF644AC0>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
},
"actor": null,
"use_sde_at_warmup": false,
"exploration_initial_eps": 1.0,
"exploration_final_eps": 0.01,
"exploration_fraction": 0.1,
"target_update_interval": 3,
"_n_calls": 625000,
"max_grad_norm": 10,
"exploration_rate": 0.01,
"exploration_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVSwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIx1QzpcUHJvZ3JhbSBGaWxlcyAoeDg2KVxNaWNyb3NvZnQgVmlzdWFsIFN0dWRpb1xTaGFyZWRcUHl0aG9uMzlfNjRcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHClSlGgcKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCJ9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgudYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP4R64UeuFHuFlFKUaDZHP7mZmZmZmZqFlFKUaDZHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
},
"batch_norm_stats": [],
"batch_norm_stats_target": []
}