Commit
·
2865a25
1
Parent(s):
99c0d45
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: xlm-roberta-large-DreamBank
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# xlm-roberta-large-DreamBank
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.2942
|
21 |
+
- F1: 0.8621
|
22 |
+
- Roc Auc: 0.9069
|
23 |
+
- Accuracy: 0.6973
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 1e-05
|
43 |
+
- train_batch_size: 4
|
44 |
+
- eval_batch_size: 4
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 10
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
|
54 |
+
| No log | 1.0 | 185 | 0.5949 | 0.0 | 0.5 | 0.0 |
|
55 |
+
| No log | 2.0 | 370 | 0.3825 | 0.6052 | 0.7481 | 0.4595 |
|
56 |
+
| 0.476 | 3.0 | 555 | 0.2891 | 0.7403 | 0.8010 | 0.5730 |
|
57 |
+
| 0.476 | 4.0 | 740 | 0.2604 | 0.8425 | 0.8852 | 0.7081 |
|
58 |
+
| 0.476 | 5.0 | 925 | 0.2484 | 0.8504 | 0.8932 | 0.6649 |
|
59 |
+
| 0.1457 | 6.0 | 1110 | 0.3092 | 0.8352 | 0.8909 | 0.6703 |
|
60 |
+
| 0.1457 | 7.0 | 1295 | 0.2882 | 0.8546 | 0.8950 | 0.6919 |
|
61 |
+
| 0.1457 | 8.0 | 1480 | 0.3099 | 0.8549 | 0.9014 | 0.6865 |
|
62 |
+
| 0.0691 | 9.0 | 1665 | 0.3080 | 0.8548 | 0.9019 | 0.6811 |
|
63 |
+
| 0.0691 | 10.0 | 1850 | 0.2942 | 0.8621 | 0.9069 | 0.6973 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.25.1
|
69 |
+
- Pytorch 1.12.1
|
70 |
+
- Datasets 2.5.1
|
71 |
+
- Tokenizers 0.12.1
|