|
""" |
|
Generador de texto usando modelos GPT locales |
|
""" |
|
import torch |
|
from typing import List, Dict |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
class TextGenerator: |
|
def __init__(self, model_loader): |
|
self.model_loader = model_loader |
|
self.chat_history_ids = None |
|
|
|
def generate_response(self, user_input: str, **kwargs) -> str: |
|
""" |
|
Genera una respuesta basada en la entrada del usuario |
|
|
|
Args: |
|
user_input (str): Mensaje del usuario |
|
**kwargs: Par谩metros de generaci贸n (max_length, temperature, etc.) |
|
|
|
Returns: |
|
str: Respuesta generada |
|
""" |
|
if not self.model_loader.is_loaded(): |
|
return "Error: No hay modelo cargado" |
|
|
|
try: |
|
|
|
max_length = kwargs.get('max_length', 512) |
|
temperature = kwargs.get('temperature', 0.7) |
|
top_p = kwargs.get('top_p', 0.9) |
|
do_sample = kwargs.get('do_sample', True) |
|
|
|
|
|
new_user_input_ids = self.model_loader.tokenizer.encode( |
|
user_input + self.model_loader.tokenizer.eos_token, |
|
return_tensors='pt' |
|
).to(self.model_loader.device) |
|
|
|
|
|
if self.chat_history_ids is not None: |
|
bot_input_ids = torch.cat([self.chat_history_ids, new_user_input_ids], dim=-1) |
|
else: |
|
bot_input_ids = new_user_input_ids |
|
|
|
|
|
with torch.no_grad(): |
|
chat_history_ids = self.model_loader.model.generate( |
|
bot_input_ids, |
|
max_length=max_length, |
|
num_beams=1, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
pad_token_id=self.model_loader.tokenizer.eos_token_id, |
|
attention_mask=torch.ones(bot_input_ids.shape, device=self.model_loader.device) |
|
) |
|
|
|
|
|
self.chat_history_ids = chat_history_ids |
|
|
|
|
|
response = self.model_loader.tokenizer.decode( |
|
chat_history_ids[:, bot_input_ids.shape[-1]:][0], |
|
skip_special_tokens=True |
|
) |
|
|
|
return str(response).strip() |
|
|
|
except Exception as e: |
|
logger.error(f"Error en la generaci贸n: {str(e)}") |
|
return f"Error al generar respuesta: {str(e)}" |
|
|
|
def generate_text(self, prompt: str, **kwargs) -> str: |
|
""" |
|
Genera texto continuando un prompt (sin historial de chat) |
|
|
|
Args: |
|
prompt (str): Texto inicial |
|
**kwargs: Par谩metros de generaci贸n |
|
|
|
Returns: |
|
str: Texto generado |
|
""" |
|
if not self.model_loader.is_loaded(): |
|
return "Error: No hay modelo cargado" |
|
|
|
try: |
|
|
|
max_length = kwargs.get('max_length', 100) |
|
temperature = kwargs.get('temperature', 0.8) |
|
top_p = kwargs.get('top_p', 0.9) |
|
do_sample = kwargs.get('do_sample', True) |
|
|
|
|
|
input_ids = self.model_loader.tokenizer.encode( |
|
prompt, |
|
return_tensors='pt' |
|
).to(self.model_loader.device) |
|
|
|
|
|
with torch.no_grad(): |
|
output = self.model_loader.model.generate( |
|
input_ids, |
|
max_length=input_ids.shape[1] + max_length, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
pad_token_id=self.model_loader.tokenizer.eos_token_id, |
|
attention_mask=torch.ones(input_ids.shape, device=self.model_loader.device) |
|
) |
|
|
|
|
|
generated_text = self.model_loader.tokenizer.decode( |
|
output[0][input_ids.shape[1]:], |
|
skip_special_tokens=True |
|
) |
|
|
|
return str(generated_text.strip()) |
|
|
|
except Exception as e: |
|
logger.error(f"Error en la generaci贸n: {str(e)}") |
|
return f"Error al generar texto: {str(e)}" |
|
|
|
def reset_chat_history(self): |
|
"""Reinicia el historial de chat""" |
|
self.chat_history_ids = None |
|
logger.info("Historial de chat reiniciado") |
|
|
|
def get_generation_stats(self) -> Dict: |
|
"""Retorna estad铆sticas de generaci贸n""" |
|
if self.chat_history_ids is not None: |
|
return { |
|
"history_length": self.chat_history_ids.shape[1], |
|
"device": str(self.chat_history_ids.device) |
|
} |
|
return {"history_length": 0, "device": "N/A"} |
|
|