DPalmz commited on
Commit
f11fb05
1 Parent(s): 38b0783

my attempt at training/going through the first hands on assignment from the hugging face deep reinformence learning lessons

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.47 +/- 24.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fddaf6075e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fddaf607670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fddaf607700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fddaf607790>", "_build": "<function ActorCriticPolicy._build at 0x7fddaf607820>", "forward": "<function ActorCriticPolicy.forward at 0x7fddaf6078b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fddaf607940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fddaf6079d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fddaf607a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fddaf607af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fddaf607b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fddaf67bed0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670469153760755276, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpSpb3hRLW6+uOWO8OeoDzkIg08brqKvQAAgD8AAIA/jf+OPbjnhz1swT++06rVvawz8DmA1fK8AAAAAAAAAABaqxo+UsvHPoL6Mr7uOye+QLRgvaYFBDwAAAAAAAAAABpQOD1qcpw/cEDPPSyWvb7dJ7M9Fp4OPAAAAAAAAAAAM6vfu2VqHj4emj+++lBlvoLYWL1IM248AAAAAAAAAABdIXi+OkWJP8KT6Lz/rZa+Z3wDvieZuTwAAAAAAAAAAGaWw7rpFTW8EgrUO7oHiT37L108FtksuwAAgD8AAIA/M6yxPaqImj7Cwl2+wao9vt8qDL0eZ8s7AAAAAAAAAABaRci+zT4BP53jej6GbI6+2u+mvcqCyTwAAAAAAAAAALrGlD6fjQ8//7YZviqbZ77g7tI9x3YDvgAAAAAAAAAAmtmku3tqybox15G7LGiCPI8wsjszYWO9AACAPwAAgD8NH6W9NkQxvANhnr3/CRG+5KifvW1o874AAIA/AACAP0b1er7P+zY/tqAUPiN6db7zGLy9m11vPAAAAAAAAAAAmopwvsp6jj9Sp7e+rfFQvuQ2nr4Agh++AAAAAAAAAAC9BsE+41MHP9LGiDxraqG+VXhKPl6QPb4AAAAAAAAAAIDYsL22hqY/pXrwvVC/mL6/GQq+Wo3CPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYVRSJ6CfcECUhpRSlIwBbJRNNwGMAXSUR0CVwYTy8SPEdX2UKGgGaAloD0MIY7g6AGKKckCUhpRSlGgVTToBaBZHQJXC/x7RfF91fZQoaAZoCWgPQwhBt5c0xlVxQJSGlFKUaBVNXAFoFkdAlcMp08vEj3V9lChoBmgJaA9DCESi0LJuSm5AlIaUUpRoFU1KAWgWR0CV3HYgq3EydX2UKGgGaAloD0MIqYjTSbZwcUCUhpRSlGgVTWgBaBZHQJXdhvZRKpV1fZQoaAZoCWgPQwizs+idigVxQJSGlFKUaBVNHwFoFkdAld4v9LpRoHV9lChoBmgJaA9DCGKGxhPBhXFAlIaUUpRoFU2VAWgWR0CV3jDdxhlUdX2UKGgGaAloD0MI6nsNwXGIckCUhpRSlGgVTTwBaBZHQJXetcB2fTV1fZQoaAZoCWgPQwi3tvC8VGBtQJSGlFKUaBVNOAFoFkdAld9fjKgZj3V9lChoBmgJaA9DCLr5RnTPjm9AlIaUUpRoFU1EAWgWR0CV33vAGjbjdX2UKGgGaAloD0MINgadELpCcUCUhpRSlGgVTVMBaBZHQJXfup0fYBh1fZQoaAZoCWgPQwiT/fM0oOFwQJSGlFKUaBVNRgFoFkdAleEtycTakHV9lChoBmgJaA9DCJeo3hrYKG1AlIaUUpRoFU1UAWgWR0CV4ZrrPdEcdX2UKGgGaAloD0MIg1K0cq9ob0CUhpRSlGgVTWMBaBZHQJXlH3nIQvp1fZQoaAZoCWgPQwgujspN1FprQJSGlFKUaBVNnQJoFkdAleV3kYGdJHV9lChoBmgJaA9DCCS4kbLFt3BAlIaUUpRoFU1fAWgWR0CV5seMhougdX2UKGgGaAloD0MIOV6B6Em1PUCUhpRSlGgVS/toFkdAlebZ+pfhM3V9lChoBmgJaA9DCLrA5bHmU21AlIaUUpRoFU10AWgWR0CV52MVUModdX2UKGgGaAloD0MI2XiwxW5JcECUhpRSlGgVTUEBaBZHQJXnz4REnb91fZQoaAZoCWgPQwiN1HsqJxlxQJSGlFKUaBVNPQFoFkdAlekwswtap3V9lChoBmgJaA9DCLH4TWElHHFAlIaUUpRoFU0tAWgWR0CV6i2C/XXidX2UKGgGaAloD0MIPPn02Ba7bkCUhpRSlGgVTTsBaBZHQJXqZ4rz5Gl1fZQoaAZoCWgPQwhQxY1bzIFuQJSGlFKUaBVNeQFoFkdAlerKgh8pkXV9lChoBmgJaA9DCFirdk1I73BAlIaUUpRoFU0dAWgWR0CV6xumrKeTdX2UKGgGaAloD0MITtTS3EoQcUCUhpRSlGgVTWkBaBZHQJXrxJ7LMcJ1fZQoaAZoCWgPQwgy422l15FtQJSGlFKUaBVNfQFoFkdAlevVWCEpRXV9lChoBmgJaA9DCGFREacTAW9AlIaUUpRoFU1eAWgWR0CV7WZHNHH4dX2UKGgGaAloD0MIwlHy6pzfbkCUhpRSlGgVTUgBaBZHQJXwcM4LkS51fZQoaAZoCWgPQwhCsKpevsxxQJSGlFKUaBVNYgFoFkdAlfEdJ8OTaHV9lChoBmgJaA9DCDUJ3pBGy25AlIaUUpRoFU04AWgWR0CV8TF4cFQmdX2UKGgGaAloD0MIaqSl8naNcUCUhpRSlGgVTUUBaBZHQJXxwFJQLux1fZQoaAZoCWgPQwh1WyIXnAlwQJSGlFKUaBVNTwFoFkdAlfM21c+qznV9lChoBmgJaA9DCFmHo6t08G9AlIaUUpRoFU3VA2gWR0CV81BnjABUdX2UKGgGaAloD0MIxCXHnRLkcUCUhpRSlGgVTQwBaBZHQJXzy7YkE9t1fZQoaAZoCWgPQwiY+nlTUUZwQJSGlFKUaBVNQQFoFkdAlfQjVpblinV9lChoBmgJaA9DCLFOle+ZeW9AlIaUUpRoFU14AWgWR0CV9Ea9K28adX2UKGgGaAloD0MIIsSVs/d5cECUhpRSlGgVTSkBaBZHQJX1FIQOFxp1fZQoaAZoCWgPQwiph2h0x7BwQJSGlFKUaBVNRQFoFkdAlfUXeizsyHV9lChoBmgJaA9DCD48S5ARGW9AlIaUUpRoFU1OAWgWR0CV9YEeyRjjdX2UKGgGaAloD0MIV1uxv+zuXkCUhpRSlGgVTegDaBZHQJX2jd0q6OJ1fZQoaAZoCWgPQwhCJEOOrZNsQJSGlFKUaBVNUQFoFkdAlfaxgRbr1XV9lChoBmgJaA9DCBHjNa8q43BAlIaUUpRoFU1uAWgWR0CV93qyWzF/dX2UKGgGaAloD0MIFxBaD5+CcECUhpRSlGgVTVcBaBZHQJX4ZeF+NLl1fZQoaAZoCWgPQwhaRuo9lcxvQJSGlFKUaBVNNwFoFkdAlfrylnAZbnV9lChoBmgJaA9DCP8h/fZ1s25AlIaUUpRoFU06AWgWR0CV+vyHEdeZdX2UKGgGaAloD0MIoKTAApglb0CUhpRSlGgVTVkBaBZHQJX7cs3AEdN1fZQoaAZoCWgPQwhMOPQWDxJwQJSGlFKUaBVNTAFoFkdAlfwR5Pdl/nV9lChoBmgJaA9DCHU5JSCmYXJAlIaUUpRoFU1BAWgWR0CV/PTM7lq8dX2UKGgGaAloD0MIfAvrxjuVbkCUhpRSlGgVTUUBaBZHQJX9LmPo3aV1fZQoaAZoCWgPQwjxLEFGwJtvQJSGlFKUaBVNTAFoFkdAlhB6yOaOP3V9lChoBmgJaA9DCL2rHjAPwW9AlIaUUpRoFU1PAWgWR0CWEYEpiI+GdX2UKGgGaAloD0MIG/M64pBDckCUhpRSlGgVTYIBaBZHQJYR6t8uzyB1fZQoaAZoCWgPQwimgLT/gYZvQJSGlFKUaBVNWQFoFkdAlhHiD/VAiXV9lChoBmgJaA9DCNxLGqM1rHBAlIaUUpRoFU2FAWgWR0CWEkY5ksjFdX2UKGgGaAloD0MIghq+hbUBckCUhpRSlGgVTXIBaBZHQJYTF+rlvIh1fZQoaAZoCWgPQwj5ghYScF9wQJSGlFKUaBVNVwFoFkdAlhN4RmK64HV9lChoBmgJaA9DCJJZvcPt/XBAlIaUUpRoFU1dAWgWR0CWE8Uaya/idX2UKGgGaAloD0MIrU85Jguka0CUhpRSlGgVTSYBaBZHQJYT/tzCDVZ1fZQoaAZoCWgPQwgIBaVoZUFwQJSGlFKUaBVNWAFoFkdAlhRm69TP0XV9lChoBmgJaA9DCNXnaiu2g3BAlIaUUpRoFU0nAWgWR0CWFhGqPwNLdX2UKGgGaAloD0MIJeZZSeuhckCUhpRSlGgVTUABaBZHQJYW062fChx1fZQoaAZoCWgPQwilL4Scd/twQJSGlFKUaBVNJgFoFkdAlhcYYvWYnnV9lChoBmgJaA9DCLx31JgQH1FAlIaUUpRoFUviaBZHQJYX5BomG/N1fZQoaAZoCWgPQwjHSWHe42VuQJSGlFKUaBVNWAFoFkdAlhfwfhddFHV9lChoBmgJaA9DCK3boPabrnFAlIaUUpRoFU1NAWgWR0CWGQnVoYeldX2UKGgGaAloD0MItAWE1sPsbkCUhpRSlGgVTVIBaBZHQJYZbZVXFLp1fZQoaAZoCWgPQwjoaFVLur9sQJSGlFKUaBVNRwFoFkdAlhonlwLmZHV9lChoBmgJaA9DCLNAu0MKP25AlIaUUpRoFU1BAWgWR0CWG6ZNwiqydX2UKGgGaAloD0MIZ9MRwM0jcECUhpRSlGgVTVkBaBZHQJYctEH+qBF1fZQoaAZoCWgPQwjEXihgO7ZvQJSGlFKUaBVNXwFoFkdAlh2u7HyVfXV9lChoBmgJaA9DCEkPQ6sTkWtAlIaUUpRoFU1LAWgWR0CWHfjZcs19dX2UKGgGaAloD0MIskgT7wAYbUCUhpRSlGgVTUkBaBZHQJYebJcPe551fZQoaAZoCWgPQwiWsgxxrGlxQJSGlFKUaBVNWwFoFkdAlh+UqMFUynV9lChoBmgJaA9DCKOtSiJ7mXBAlIaUUpRoFU1MAWgWR0CWIAWZqmCRdX2UKGgGaAloD0MIsW1RZgMMbUCUhpRSlGgVTWQBaBZHQJYgP20zCUJ1fZQoaAZoCWgPQwgnamluBQxwQJSGlFKUaBVNXQFoFkdAliNpmI0qIHV9lChoBmgJaA9DCBzPZ0D99XFAlIaUUpRoFU1TAWgWR0CWJJvNNahYdX2UKGgGaAloD0MISrTk8bRWb0CUhpRSlGgVTTwBaBZHQJYkxYnv2Gt1fZQoaAZoCWgPQwjKNnAHqkNwQJSGlFKUaBVNVwFoFkdAliYWqkuYhXV9lChoBmgJaA9DCK1RD9EoGHBAlIaUUpRoFU02AWgWR0CWJkEZzgdfdX2UKGgGaAloD0MIEkpfCLntcUCUhpRSlGgVTUQBaBZHQJYnVlGwzLx1fZQoaAZoCWgPQwj0bFZ9rsxxQJSGlFKUaBVNoAFoFkdAlieYUJv5xnV9lChoBmgJaA9DCMWtghhoSnFAlIaUUpRoFU1UAWgWR0CWKPwqiGnGdX2UKGgGaAloD0MIu0bLgZ6ib0CUhpRSlGgVTV4BaBZHQJYqvaIvalF1fZQoaAZoCWgPQwiX/iWpTMBwQJSGlFKUaBVNQwFoFkdAlisnMpw0f3V9lChoBmgJaA9DCOf9f5xwfnFAlIaUUpRoFU1BAWgWR0CWK1BN21UmdX2UKGgGaAloD0MIcvikEwl2cUCUhpRSlGgVTVsBaBZHQJYrS0ojOcF1fZQoaAZoCWgPQwgGf7+Y7aVxQJSGlFKUaBVNOgFoFkdAliw1U6xPf3V9lChoBmgJaA9DCBxg5ju47nFAlIaUUpRoFU1jAWgWR0CWLIrPdEb6dX2UKGgGaAloD0MI6DI1Cd4tb0CUhpRSlGgVTUgBaBZHQJYtHCvX9R91fZQoaAZoCWgPQwg9KZMa2uJwQJSGlFKUaBVNVgFoFkdAli1Rvegte3V9lChoBmgJaA9DCHi2R2+4TW5AlIaUUpRoFU0vAWgWR0CWL3LiuMdcdX2UKGgGaAloD0MIUWuadxzqbECUhpRSlGgVTU4BaBZHQJYvgaaTfSB1fZQoaAZoCWgPQwjFqkGY21tRQJSGlFKUaBVL/2gWR0CWL+4tHxz8dX2UKGgGaAloD0MIZRwj2SMpb0CUhpRSlGgVTSMBaBZHQJYw1mukk8l1fZQoaAZoCWgPQwiy1Hq/kWZxQJSGlFKUaBVNYwFoFkdAljDlbA1vVHV9lChoBmgJaA9DCBx4tdyZkmtAlIaUUpRoFU1EAWgWR0CWMPpz90ihdX2UKGgGaAloD0MI3PXSFMEpckCUhpRSlGgVTV0BaBZHQJYxuRZEDyR1fZQoaAZoCWgPQwhUyQBQRX5xQJSGlFKUaBVNKQFoFkdAljIJWilBQnV9lChoBmgJaA9DCCRfCaTE1ENAlIaUUpRoFU0OAWgWR0CWMo/s3Q2NdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 300, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22f06baefdf6da7b8a07fc2ad3f661ef8699cb80f1d2a87a48786c1723057c1d
3
+ size 147214
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fddaf6075e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fddaf607670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fddaf607700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fddaf607790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fddaf607820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fddaf6078b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fddaf607940>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fddaf6079d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fddaf607a60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fddaf607af0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fddaf607b80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fddaf67bed0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670469153760755276,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpSpb3hRLW6+uOWO8OeoDzkIg08brqKvQAAgD8AAIA/jf+OPbjnhz1swT++06rVvawz8DmA1fK8AAAAAAAAAABaqxo+UsvHPoL6Mr7uOye+QLRgvaYFBDwAAAAAAAAAABpQOD1qcpw/cEDPPSyWvb7dJ7M9Fp4OPAAAAAAAAAAAM6vfu2VqHj4emj+++lBlvoLYWL1IM248AAAAAAAAAABdIXi+OkWJP8KT6Lz/rZa+Z3wDvieZuTwAAAAAAAAAAGaWw7rpFTW8EgrUO7oHiT37L108FtksuwAAgD8AAIA/M6yxPaqImj7Cwl2+wao9vt8qDL0eZ8s7AAAAAAAAAABaRci+zT4BP53jej6GbI6+2u+mvcqCyTwAAAAAAAAAALrGlD6fjQ8//7YZviqbZ77g7tI9x3YDvgAAAAAAAAAAmtmku3tqybox15G7LGiCPI8wsjszYWO9AACAPwAAgD8NH6W9NkQxvANhnr3/CRG+5KifvW1o874AAIA/AACAP0b1er7P+zY/tqAUPiN6db7zGLy9m11vPAAAAAAAAAAAmopwvsp6jj9Sp7e+rfFQvuQ2nr4Agh++AAAAAAAAAAC9BsE+41MHP9LGiDxraqG+VXhKPl6QPb4AAAAAAAAAAIDYsL22hqY/pXrwvVC/mL6/GQq+Wo3CPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYVRSJ6CfcECUhpRSlIwBbJRNNwGMAXSUR0CVwYTy8SPEdX2UKGgGaAloD0MIY7g6AGKKckCUhpRSlGgVTToBaBZHQJXC/x7RfF91fZQoaAZoCWgPQwhBt5c0xlVxQJSGlFKUaBVNXAFoFkdAlcMp08vEj3V9lChoBmgJaA9DCESi0LJuSm5AlIaUUpRoFU1KAWgWR0CV3HYgq3EydX2UKGgGaAloD0MIqYjTSbZwcUCUhpRSlGgVTWgBaBZHQJXdhvZRKpV1fZQoaAZoCWgPQwizs+idigVxQJSGlFKUaBVNHwFoFkdAld4v9LpRoHV9lChoBmgJaA9DCGKGxhPBhXFAlIaUUpRoFU2VAWgWR0CV3jDdxhlUdX2UKGgGaAloD0MI6nsNwXGIckCUhpRSlGgVTTwBaBZHQJXetcB2fTV1fZQoaAZoCWgPQwi3tvC8VGBtQJSGlFKUaBVNOAFoFkdAld9fjKgZj3V9lChoBmgJaA9DCLr5RnTPjm9AlIaUUpRoFU1EAWgWR0CV33vAGjbjdX2UKGgGaAloD0MINgadELpCcUCUhpRSlGgVTVMBaBZHQJXfup0fYBh1fZQoaAZoCWgPQwiT/fM0oOFwQJSGlFKUaBVNRgFoFkdAleEtycTakHV9lChoBmgJaA9DCJeo3hrYKG1AlIaUUpRoFU1UAWgWR0CV4ZrrPdEcdX2UKGgGaAloD0MIg1K0cq9ob0CUhpRSlGgVTWMBaBZHQJXlH3nIQvp1fZQoaAZoCWgPQwgujspN1FprQJSGlFKUaBVNnQJoFkdAleV3kYGdJHV9lChoBmgJaA9DCCS4kbLFt3BAlIaUUpRoFU1fAWgWR0CV5seMhougdX2UKGgGaAloD0MIOV6B6Em1PUCUhpRSlGgVS/toFkdAlebZ+pfhM3V9lChoBmgJaA9DCLrA5bHmU21AlIaUUpRoFU10AWgWR0CV52MVUModdX2UKGgGaAloD0MI2XiwxW5JcECUhpRSlGgVTUEBaBZHQJXnz4REnb91fZQoaAZoCWgPQwiN1HsqJxlxQJSGlFKUaBVNPQFoFkdAlekwswtap3V9lChoBmgJaA9DCLH4TWElHHFAlIaUUpRoFU0tAWgWR0CV6i2C/XXidX2UKGgGaAloD0MIPPn02Ba7bkCUhpRSlGgVTTsBaBZHQJXqZ4rz5Gl1fZQoaAZoCWgPQwhQxY1bzIFuQJSGlFKUaBVNeQFoFkdAlerKgh8pkXV9lChoBmgJaA9DCFirdk1I73BAlIaUUpRoFU0dAWgWR0CV6xumrKeTdX2UKGgGaAloD0MITtTS3EoQcUCUhpRSlGgVTWkBaBZHQJXrxJ7LMcJ1fZQoaAZoCWgPQwgy422l15FtQJSGlFKUaBVNfQFoFkdAlevVWCEpRXV9lChoBmgJaA9DCGFREacTAW9AlIaUUpRoFU1eAWgWR0CV7WZHNHH4dX2UKGgGaAloD0MIwlHy6pzfbkCUhpRSlGgVTUgBaBZHQJXwcM4LkS51fZQoaAZoCWgPQwhCsKpevsxxQJSGlFKUaBVNYgFoFkdAlfEdJ8OTaHV9lChoBmgJaA9DCDUJ3pBGy25AlIaUUpRoFU04AWgWR0CV8TF4cFQmdX2UKGgGaAloD0MIaqSl8naNcUCUhpRSlGgVTUUBaBZHQJXxwFJQLux1fZQoaAZoCWgPQwh1WyIXnAlwQJSGlFKUaBVNTwFoFkdAlfM21c+qznV9lChoBmgJaA9DCFmHo6t08G9AlIaUUpRoFU3VA2gWR0CV81BnjABUdX2UKGgGaAloD0MIxCXHnRLkcUCUhpRSlGgVTQwBaBZHQJXzy7YkE9t1fZQoaAZoCWgPQwiY+nlTUUZwQJSGlFKUaBVNQQFoFkdAlfQjVpblinV9lChoBmgJaA9DCLFOle+ZeW9AlIaUUpRoFU14AWgWR0CV9Ea9K28adX2UKGgGaAloD0MIIsSVs/d5cECUhpRSlGgVTSkBaBZHQJX1FIQOFxp1fZQoaAZoCWgPQwiph2h0x7BwQJSGlFKUaBVNRQFoFkdAlfUXeizsyHV9lChoBmgJaA9DCD48S5ARGW9AlIaUUpRoFU1OAWgWR0CV9YEeyRjjdX2UKGgGaAloD0MIV1uxv+zuXkCUhpRSlGgVTegDaBZHQJX2jd0q6OJ1fZQoaAZoCWgPQwhCJEOOrZNsQJSGlFKUaBVNUQFoFkdAlfaxgRbr1XV9lChoBmgJaA9DCBHjNa8q43BAlIaUUpRoFU1uAWgWR0CV93qyWzF/dX2UKGgGaAloD0MIFxBaD5+CcECUhpRSlGgVTVcBaBZHQJX4ZeF+NLl1fZQoaAZoCWgPQwhaRuo9lcxvQJSGlFKUaBVNNwFoFkdAlfrylnAZbnV9lChoBmgJaA9DCP8h/fZ1s25AlIaUUpRoFU06AWgWR0CV+vyHEdeZdX2UKGgGaAloD0MIoKTAApglb0CUhpRSlGgVTVkBaBZHQJX7cs3AEdN1fZQoaAZoCWgPQwhMOPQWDxJwQJSGlFKUaBVNTAFoFkdAlfwR5Pdl/nV9lChoBmgJaA9DCHU5JSCmYXJAlIaUUpRoFU1BAWgWR0CV/PTM7lq8dX2UKGgGaAloD0MIfAvrxjuVbkCUhpRSlGgVTUUBaBZHQJX9LmPo3aV1fZQoaAZoCWgPQwjxLEFGwJtvQJSGlFKUaBVNTAFoFkdAlhB6yOaOP3V9lChoBmgJaA9DCL2rHjAPwW9AlIaUUpRoFU1PAWgWR0CWEYEpiI+GdX2UKGgGaAloD0MIG/M64pBDckCUhpRSlGgVTYIBaBZHQJYR6t8uzyB1fZQoaAZoCWgPQwimgLT/gYZvQJSGlFKUaBVNWQFoFkdAlhHiD/VAiXV9lChoBmgJaA9DCNxLGqM1rHBAlIaUUpRoFU2FAWgWR0CWEkY5ksjFdX2UKGgGaAloD0MIghq+hbUBckCUhpRSlGgVTXIBaBZHQJYTF+rlvIh1fZQoaAZoCWgPQwj5ghYScF9wQJSGlFKUaBVNVwFoFkdAlhN4RmK64HV9lChoBmgJaA9DCJJZvcPt/XBAlIaUUpRoFU1dAWgWR0CWE8Uaya/idX2UKGgGaAloD0MIrU85Jguka0CUhpRSlGgVTSYBaBZHQJYT/tzCDVZ1fZQoaAZoCWgPQwgIBaVoZUFwQJSGlFKUaBVNWAFoFkdAlhRm69TP0XV9lChoBmgJaA9DCNXnaiu2g3BAlIaUUpRoFU0nAWgWR0CWFhGqPwNLdX2UKGgGaAloD0MIJeZZSeuhckCUhpRSlGgVTUABaBZHQJYW062fChx1fZQoaAZoCWgPQwilL4Scd/twQJSGlFKUaBVNJgFoFkdAlhcYYvWYnnV9lChoBmgJaA9DCLx31JgQH1FAlIaUUpRoFUviaBZHQJYX5BomG/N1fZQoaAZoCWgPQwjHSWHe42VuQJSGlFKUaBVNWAFoFkdAlhfwfhddFHV9lChoBmgJaA9DCK3boPabrnFAlIaUUpRoFU1NAWgWR0CWGQnVoYeldX2UKGgGaAloD0MItAWE1sPsbkCUhpRSlGgVTVIBaBZHQJYZbZVXFLp1fZQoaAZoCWgPQwjoaFVLur9sQJSGlFKUaBVNRwFoFkdAlhonlwLmZHV9lChoBmgJaA9DCLNAu0MKP25AlIaUUpRoFU1BAWgWR0CWG6ZNwiqydX2UKGgGaAloD0MIZ9MRwM0jcECUhpRSlGgVTVkBaBZHQJYctEH+qBF1fZQoaAZoCWgPQwjEXihgO7ZvQJSGlFKUaBVNXwFoFkdAlh2u7HyVfXV9lChoBmgJaA9DCEkPQ6sTkWtAlIaUUpRoFU1LAWgWR0CWHfjZcs19dX2UKGgGaAloD0MIskgT7wAYbUCUhpRSlGgVTUkBaBZHQJYebJcPe551fZQoaAZoCWgPQwiWsgxxrGlxQJSGlFKUaBVNWwFoFkdAlh+UqMFUynV9lChoBmgJaA9DCKOtSiJ7mXBAlIaUUpRoFU1MAWgWR0CWIAWZqmCRdX2UKGgGaAloD0MIsW1RZgMMbUCUhpRSlGgVTWQBaBZHQJYgP20zCUJ1fZQoaAZoCWgPQwgnamluBQxwQJSGlFKUaBVNXQFoFkdAliNpmI0qIHV9lChoBmgJaA9DCBzPZ0D99XFAlIaUUpRoFU1TAWgWR0CWJJvNNahYdX2UKGgGaAloD0MISrTk8bRWb0CUhpRSlGgVTTwBaBZHQJYkxYnv2Gt1fZQoaAZoCWgPQwjKNnAHqkNwQJSGlFKUaBVNVwFoFkdAliYWqkuYhXV9lChoBmgJaA9DCK1RD9EoGHBAlIaUUpRoFU02AWgWR0CWJkEZzgdfdX2UKGgGaAloD0MIEkpfCLntcUCUhpRSlGgVTUQBaBZHQJYnVlGwzLx1fZQoaAZoCWgPQwj0bFZ9rsxxQJSGlFKUaBVNoAFoFkdAlieYUJv5xnV9lChoBmgJaA9DCMWtghhoSnFAlIaUUpRoFU1UAWgWR0CWKPwqiGnGdX2UKGgGaAloD0MIu0bLgZ6ib0CUhpRSlGgVTV4BaBZHQJYqvaIvalF1fZQoaAZoCWgPQwiX/iWpTMBwQJSGlFKUaBVNQwFoFkdAlisnMpw0f3V9lChoBmgJaA9DCOf9f5xwfnFAlIaUUpRoFU1BAWgWR0CWK1BN21UmdX2UKGgGaAloD0MIcvikEwl2cUCUhpRSlGgVTVsBaBZHQJYrS0ojOcF1fZQoaAZoCWgPQwgGf7+Y7aVxQJSGlFKUaBVNOgFoFkdAliw1U6xPf3V9lChoBmgJaA9DCBxg5ju47nFAlIaUUpRoFU1jAWgWR0CWLIrPdEb6dX2UKGgGaAloD0MI6DI1Cd4tb0CUhpRSlGgVTUgBaBZHQJYtHCvX9R91fZQoaAZoCWgPQwg9KZMa2uJwQJSGlFKUaBVNVgFoFkdAli1Rvegte3V9lChoBmgJaA9DCHi2R2+4TW5AlIaUUpRoFU0vAWgWR0CWL3LiuMdcdX2UKGgGaAloD0MIUWuadxzqbECUhpRSlGgVTU4BaBZHQJYvgaaTfSB1fZQoaAZoCWgPQwjFqkGY21tRQJSGlFKUaBVL/2gWR0CWL+4tHxz8dX2UKGgGaAloD0MIZRwj2SMpb0CUhpRSlGgVTSMBaBZHQJYw1mukk8l1fZQoaAZoCWgPQwiy1Hq/kWZxQJSGlFKUaBVNYwFoFkdAljDlbA1vVHV9lChoBmgJaA9DCBx4tdyZkmtAlIaUUpRoFU1EAWgWR0CWMPpz90ihdX2UKGgGaAloD0MI3PXSFMEpckCUhpRSlGgVTV0BaBZHQJYxuRZEDyR1fZQoaAZoCWgPQwhUyQBQRX5xQJSGlFKUaBVNKQFoFkdAljIJWilBQnV9lChoBmgJaA9DCCRfCaTE1ENAlIaUUpRoFU0OAWgWR0CWMo/s3Q2NdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 300,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:010139896b9e25c65399c7d17e3bf0dc5c7aff65952ebf0a2ccbc7a753a5da6d
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89b103603941aa52c215f9e1dab9bf345061474386c36ab6e4c059b9eb658557
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (208 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.4697246214041, "std_reward": 23.999216846782936, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T03:56:41.689792"}