DLight1551
commited on
Commit
·
89644ac
1
Parent(s):
72919e3
update
Browse files- added_tokens.json +8 -0
- build_mlp.py +209 -0
- config.json +34 -0
- configuration_internlm2.py +151 -0
- generation_config.json +9 -0
- modeling_internlm2.py +1535 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +38 -0
- tokenization_internlm2.py +236 -0
- tokenizer.model +3 -0
- tokenizer_config.json +99 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
added_tokens.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|action_end|>": 92547,
|
3 |
+
"<|action_start|>": 92546,
|
4 |
+
"<|im_end|>": 92545,
|
5 |
+
"<|im_start|>": 92544,
|
6 |
+
"<|interpreter|>": 92548,
|
7 |
+
"<|plugin|>": 92549
|
8 |
+
}
|
build_mlp.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import re
|
4 |
+
import math
|
5 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
|
6 |
+
|
7 |
+
|
8 |
+
def build_vision_tower():
|
9 |
+
#vision_tower = '/mnt/petrelfs/share_data/dongxiaoyi/share_models/clip_l_336'
|
10 |
+
vision_tower = '/mnt/hwfile/mllm/zhangpan/share/from/xiaoyi/clip_l_336'
|
11 |
+
return CLIPVisionTower(vision_tower)
|
12 |
+
|
13 |
+
|
14 |
+
def build_vision_projector():
|
15 |
+
projector_type = 'mlp2x_gelu'
|
16 |
+
mm_hidden_size = 4096
|
17 |
+
mid_hidden_size = 4096
|
18 |
+
hidden_size = 4096
|
19 |
+
|
20 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
21 |
+
if mlp_gelu_match:
|
22 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
23 |
+
modules = [nn.Linear(mm_hidden_size, mid_hidden_size)]
|
24 |
+
for _ in range(1, mlp_depth):
|
25 |
+
modules.append(nn.GELU())
|
26 |
+
modules.append(nn.Linear(mid_hidden_size, mid_hidden_size))
|
27 |
+
|
28 |
+
return nn.Sequential(*modules)
|
29 |
+
|
30 |
+
if projector_type == 'identity':
|
31 |
+
return IdentityMap()
|
32 |
+
|
33 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
34 |
+
|
35 |
+
class IdentityMap(nn.Module):
|
36 |
+
def __init__(self):
|
37 |
+
super().__init__()
|
38 |
+
|
39 |
+
def forward(self, x, *args, **kwargs):
|
40 |
+
return x
|
41 |
+
|
42 |
+
@property
|
43 |
+
def config(self):
|
44 |
+
return {"mm_projector_type": 'identity'}
|
45 |
+
|
46 |
+
|
47 |
+
class CLIPVisionTower(nn.Module):
|
48 |
+
def __init__(self, vision_tower):
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
self.is_loaded = False
|
52 |
+
|
53 |
+
self.vision_tower_name = vision_tower
|
54 |
+
#self.conv_dim = 8192
|
55 |
+
#self.conv = torch.nn.Conv2d(1024, self.conv_dim,3,2,1)
|
56 |
+
self.select_layer = -1
|
57 |
+
self.select_feature = 'patch'
|
58 |
+
self.load_model()
|
59 |
+
|
60 |
+
def load_model(self):
|
61 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
|
62 |
+
self.vision_tower.requires_grad_(False)
|
63 |
+
|
64 |
+
self.is_loaded = True
|
65 |
+
|
66 |
+
def resize_pos(self):
|
67 |
+
print ('Dummy Resized')
|
68 |
+
|
69 |
+
def feature_select(self, image_forward_outs):
|
70 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
71 |
+
if self.select_feature == 'patch':
|
72 |
+
image_features = image_features[:, 1:]
|
73 |
+
elif self.select_feature == 'cls_patch':
|
74 |
+
image_features = image_features
|
75 |
+
else:
|
76 |
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
77 |
+
return image_features
|
78 |
+
|
79 |
+
def forward(self, images, glb_GN, sub_GN):
|
80 |
+
if not self.is_loaded:
|
81 |
+
self.load_model()
|
82 |
+
assert type(images) is list
|
83 |
+
shapes = []
|
84 |
+
input_imgs = []
|
85 |
+
for img in images:
|
86 |
+
_, C, H, W = img.shape
|
87 |
+
shapes.append([H//336, W//336])
|
88 |
+
sub_img = img.reshape(1,3,H//336,336,W//336,336).permute(0,2,4,1,3,5).reshape(-1,3,336,336).contiguous()
|
89 |
+
glb_img = torch.nn.functional.interpolate(img.float(), size=(336,336), mode='bicubic',).to(sub_img.dtype)
|
90 |
+
input_imgs.append(glb_img)
|
91 |
+
input_imgs.append(sub_img)
|
92 |
+
input_imgs = torch.cat(input_imgs, dim=0)
|
93 |
+
|
94 |
+
image_forward_outs = self.vision_tower(input_imgs.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
95 |
+
image_features = self.feature_select(image_forward_outs).to(input_imgs.dtype) ### B*?, N, C
|
96 |
+
_, N, C = image_features.shape
|
97 |
+
H = int(math.sqrt(N))
|
98 |
+
assert N == 24 ** 2
|
99 |
+
|
100 |
+
output_imgs = []
|
101 |
+
output_len = []
|
102 |
+
for [h, w] in shapes:
|
103 |
+
B_ = h*w
|
104 |
+
glb_img = image_features[:1] ### 1, N, C
|
105 |
+
glb_img = glb_img.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous()
|
106 |
+
temp_glb_GN = sub_GN.repeat(1, H//2, 1, 1)
|
107 |
+
glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C)
|
108 |
+
|
109 |
+
sub_img = image_features[1:1+B_] ### ?, N, C
|
110 |
+
sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous()
|
111 |
+
sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C)
|
112 |
+
temp_sub_GN = sub_GN.repeat(1, h*12, 1, 1)
|
113 |
+
sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C)
|
114 |
+
|
115 |
+
output_imgs.append(torch.cat([glb_img, glb_GN, sub_img], dim=1))
|
116 |
+
temp_len = int((h*w+1)*144 + 1 + (h+1)*12)
|
117 |
+
assert temp_len == output_imgs[-1].shape[1]
|
118 |
+
output_len.append(temp_len)
|
119 |
+
|
120 |
+
image_features = image_features[1+h*w:]
|
121 |
+
|
122 |
+
output_imgs = torch.cat(output_imgs, dim=1)
|
123 |
+
|
124 |
+
return output_imgs, output_len
|
125 |
+
|
126 |
+
@property
|
127 |
+
def dummy_feature(self):
|
128 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
129 |
+
|
130 |
+
@property
|
131 |
+
def dtype(self):
|
132 |
+
return self.vision_tower.dtype
|
133 |
+
|
134 |
+
@property
|
135 |
+
def device(self):
|
136 |
+
return self.vision_tower.device
|
137 |
+
|
138 |
+
@property
|
139 |
+
def config(self):
|
140 |
+
if self.is_loaded:
|
141 |
+
return self.vision_tower.config
|
142 |
+
else:
|
143 |
+
return self.cfg_only
|
144 |
+
|
145 |
+
@property
|
146 |
+
def hidden_size(self):
|
147 |
+
return self.config.hidden_size
|
148 |
+
|
149 |
+
@property
|
150 |
+
def num_patches(self):
|
151 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
152 |
+
|
153 |
+
class PLoRA(nn.Linear):
|
154 |
+
def __init__(self,
|
155 |
+
in_features: int,
|
156 |
+
out_features: int,
|
157 |
+
bias: bool = True,
|
158 |
+
device=None,
|
159 |
+
dtype=None,
|
160 |
+
lora_r=8,
|
161 |
+
lora_alpha=16,
|
162 |
+
lora_dropout=0.05,
|
163 |
+
lora_len=0,
|
164 |
+
**kwargs) -> None:
|
165 |
+
super().__init__(in_features, out_features, bias, device, dtype)
|
166 |
+
self.lora_r = lora_r
|
167 |
+
self.lora_alpha = lora_alpha
|
168 |
+
self.lora_len = lora_len
|
169 |
+
if lora_dropout > 0.:
|
170 |
+
self.lora_dropout = nn.Dropout(p=lora_dropout)
|
171 |
+
else:
|
172 |
+
self.lora_dropout = lambda x: x
|
173 |
+
self.lora_scaling = self.lora_alpha / self.lora_r
|
174 |
+
|
175 |
+
self.Plora_A = nn.Linear(in_features,
|
176 |
+
self.lora_r,
|
177 |
+
bias=False,
|
178 |
+
device=device,
|
179 |
+
dtype=dtype)
|
180 |
+
self.Plora_B = nn.Linear(self.lora_r,
|
181 |
+
out_features,
|
182 |
+
bias=False,
|
183 |
+
device=device,
|
184 |
+
dtype=dtype)
|
185 |
+
|
186 |
+
self.reset_parameters()
|
187 |
+
|
188 |
+
def reset_parameters(self):
|
189 |
+
if hasattr(self, 'lora_A'):
|
190 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
191 |
+
nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
|
192 |
+
nn.init.zeros_(self.lora_B.weight)
|
193 |
+
#print ("lora weight init {} {}".format(torch.mean(self.lora_A.weight), torch.mean(self.lora_B.weight)))
|
194 |
+
|
195 |
+
def forward(self, x, im_mask=None):
|
196 |
+
B, N, C = x.shape
|
197 |
+
x = x.reshape(-1, C)
|
198 |
+
res = super().forward(x)
|
199 |
+
if im_mask is not None:
|
200 |
+
if torch.sum(im_mask) > 0:
|
201 |
+
part_x = x[im_mask]
|
202 |
+
res[im_mask] += self.Plora_B(self.Plora_A(
|
203 |
+
self.lora_dropout(part_x))) * self.lora_scaling
|
204 |
+
else:
|
205 |
+
part_x = x[:1]
|
206 |
+
res[:1] += self.Plora_B(self.Plora_A(
|
207 |
+
self.lora_dropout(part_x))) * 0
|
208 |
+
|
209 |
+
return res.reshape(B, N, -1)
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/petrelfs/share_data/zhangpan/share/from/zhangpan/output_web/IXC2_4K_WST12/checkpoint-3600",
|
3 |
+
"architectures": [
|
4 |
+
"InternLM2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attn_implementation": "flash_attention_2",
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_internlm2.InternLM2Config",
|
9 |
+
"AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
|
10 |
+
"AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
|
11 |
+
},
|
12 |
+
"bias": false,
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 4096,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 14336,
|
19 |
+
"max_length": 2600,
|
20 |
+
"max_position_embeddings": 32768,
|
21 |
+
"model_type": "internlm2",
|
22 |
+
"num_attention_heads": 32,
|
23 |
+
"num_hidden_layers": 32,
|
24 |
+
"num_key_value_heads": 8,
|
25 |
+
"pad_token_id": 2,
|
26 |
+
"rms_norm_eps": 1e-05,
|
27 |
+
"rope_scaling": null,
|
28 |
+
"rope_theta": 1000000,
|
29 |
+
"tie_word_embeddings": false,
|
30 |
+
"torch_dtype": "bfloat16",
|
31 |
+
"transformers_version": "4.33.1",
|
32 |
+
"use_cache": false,
|
33 |
+
"vocab_size": 92544
|
34 |
+
}
|
configuration_internlm2.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" InternLM2 model configuration"""
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
25 |
+
|
26 |
+
|
27 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
28 |
+
class InternLM2Config(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
31 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
32 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
40 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
42 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
43 |
+
Dimension of the hidden representations.
|
44 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
45 |
+
Dimension of the MLP representations.
|
46 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
47 |
+
Number of hidden layers in the Transformer encoder.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
49 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
50 |
+
num_key_value_heads (`int`, *optional*):
|
51 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
52 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
53 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
54 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
55 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
56 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
57 |
+
`num_attention_heads`.
|
58 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
59 |
+
The non-linear activation function (function or string) in the decoder.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
61 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
62 |
+
just in case (e.g., 512 or 1024 or 2048).
|
63 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
64 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
65 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
66 |
+
The epsilon used by the rms normalization layers.
|
67 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
68 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
69 |
+
relevant if `config.is_decoder=True`.
|
70 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
71 |
+
Whether to tie weight embeddings
|
72 |
+
Example:
|
73 |
+
|
74 |
+
"""
|
75 |
+
model_type = "internlm2"
|
76 |
+
_auto_class = "AutoConfig"
|
77 |
+
|
78 |
+
def __init__( # pylint: disable=W0102
|
79 |
+
self,
|
80 |
+
vocab_size=103168,
|
81 |
+
hidden_size=4096,
|
82 |
+
intermediate_size=11008,
|
83 |
+
num_hidden_layers=32,
|
84 |
+
num_attention_heads=32,
|
85 |
+
num_key_value_heads=None,
|
86 |
+
hidden_act="silu",
|
87 |
+
max_position_embeddings=2048,
|
88 |
+
initializer_range=0.02,
|
89 |
+
rms_norm_eps=1e-6,
|
90 |
+
use_cache=True,
|
91 |
+
pad_token_id=0,
|
92 |
+
bos_token_id=1,
|
93 |
+
eos_token_id=2,
|
94 |
+
tie_word_embeddings=False,
|
95 |
+
bias=True,
|
96 |
+
rope_theta=10000,
|
97 |
+
rope_scaling=None,
|
98 |
+
attn_implementation="eager",
|
99 |
+
**kwargs,
|
100 |
+
):
|
101 |
+
self.vocab_size = vocab_size
|
102 |
+
self.max_position_embeddings = max_position_embeddings
|
103 |
+
self.hidden_size = hidden_size
|
104 |
+
self.intermediate_size = intermediate_size
|
105 |
+
self.num_hidden_layers = num_hidden_layers
|
106 |
+
self.num_attention_heads = num_attention_heads
|
107 |
+
self.bias = bias
|
108 |
+
|
109 |
+
if num_key_value_heads is None:
|
110 |
+
num_key_value_heads = num_attention_heads
|
111 |
+
self.num_key_value_heads = num_key_value_heads
|
112 |
+
|
113 |
+
self.hidden_act = hidden_act
|
114 |
+
self.initializer_range = initializer_range
|
115 |
+
self.rms_norm_eps = rms_norm_eps
|
116 |
+
self.use_cache = use_cache
|
117 |
+
self.rope_theta = rope_theta
|
118 |
+
self.rope_scaling = rope_scaling
|
119 |
+
self._rope_scaling_validation()
|
120 |
+
|
121 |
+
self.attn_implementation = attn_implementation
|
122 |
+
if self.attn_implementation is None:
|
123 |
+
self.attn_implementation = "eager"
|
124 |
+
super().__init__(
|
125 |
+
pad_token_id=pad_token_id,
|
126 |
+
bos_token_id=bos_token_id,
|
127 |
+
eos_token_id=eos_token_id,
|
128 |
+
tie_word_embeddings=tie_word_embeddings,
|
129 |
+
**kwargs,
|
130 |
+
)
|
131 |
+
|
132 |
+
def _rope_scaling_validation(self):
|
133 |
+
"""
|
134 |
+
Validate the `rope_scaling` configuration.
|
135 |
+
"""
|
136 |
+
if self.rope_scaling is None:
|
137 |
+
return
|
138 |
+
|
139 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
140 |
+
raise ValueError(
|
141 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
142 |
+
f"got {self.rope_scaling}"
|
143 |
+
)
|
144 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
145 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
146 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
147 |
+
raise ValueError(
|
148 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
149 |
+
)
|
150 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
151 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_length": 4480,
|
6 |
+
"pad_token_id": 2,
|
7 |
+
"transformers_version": "4.33.1",
|
8 |
+
"use_cache": false
|
9 |
+
}
|
modeling_internlm2.py
ADDED
@@ -0,0 +1,1535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" PyTorch InternLM2 model."""
|
17 |
+
import math
|
18 |
+
import queue
|
19 |
+
import threading
|
20 |
+
import warnings
|
21 |
+
import copy
|
22 |
+
import numpy as np
|
23 |
+
from typing import List, Optional, Tuple, Union
|
24 |
+
from torchvision import transforms
|
25 |
+
from torchvision.transforms.functional import InterpolationMode
|
26 |
+
from PIL import Image
|
27 |
+
|
28 |
+
import torch
|
29 |
+
import torch.nn.functional as F
|
30 |
+
import torch.utils.checkpoint
|
31 |
+
from einops import rearrange
|
32 |
+
from torch import nn
|
33 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
34 |
+
from transformers.activations import ACT2FN
|
35 |
+
from transformers.modeling_outputs import (
|
36 |
+
BaseModelOutputWithPast,
|
37 |
+
CausalLMOutputWithPast,
|
38 |
+
SequenceClassifierOutputWithPast,
|
39 |
+
)
|
40 |
+
from transformers.modeling_utils import PreTrainedModel
|
41 |
+
from transformers.utils import (
|
42 |
+
add_start_docstrings,
|
43 |
+
add_start_docstrings_to_model_forward,
|
44 |
+
logging,
|
45 |
+
replace_return_docstrings,
|
46 |
+
)
|
47 |
+
|
48 |
+
try:
|
49 |
+
from transformers.generation.streamers import BaseStreamer
|
50 |
+
except: # noqa # pylint: disable=bare-except
|
51 |
+
BaseStreamer = None
|
52 |
+
|
53 |
+
from .configuration_internlm2 import InternLM2Config
|
54 |
+
from .build_mlp import build_vision_tower, build_vision_projector, PLoRA
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__)
|
57 |
+
|
58 |
+
_CONFIG_FOR_DOC = "InternLM2Config"
|
59 |
+
|
60 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
61 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
62 |
+
def _import_flash_attn():
|
63 |
+
global flash_attn_func, flash_attn_varlen_func
|
64 |
+
global pad_input, index_first_axis, unpad_input
|
65 |
+
try:
|
66 |
+
from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
|
67 |
+
from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
|
68 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
69 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
70 |
+
except ImportError:
|
71 |
+
raise ImportError("flash_attn is not installed.")
|
72 |
+
|
73 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
74 |
+
def _get_unpad_data(attention_mask):
|
75 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
76 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
77 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
78 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
79 |
+
return (
|
80 |
+
indices,
|
81 |
+
cu_seqlens,
|
82 |
+
max_seqlen_in_batch,
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
87 |
+
def _make_causal_mask(
|
88 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
89 |
+
):
|
90 |
+
"""
|
91 |
+
Make causal mask used for bi-directional self-attention.
|
92 |
+
"""
|
93 |
+
bsz, tgt_len = input_ids_shape
|
94 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
95 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
96 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
97 |
+
mask = mask.to(dtype)
|
98 |
+
|
99 |
+
if past_key_values_length > 0:
|
100 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
101 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
102 |
+
|
103 |
+
|
104 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
105 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
106 |
+
"""
|
107 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
108 |
+
"""
|
109 |
+
bsz, src_len = mask.size()
|
110 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
111 |
+
|
112 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
113 |
+
|
114 |
+
inverted_mask = 1.0 - expanded_mask
|
115 |
+
|
116 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
117 |
+
|
118 |
+
|
119 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
|
120 |
+
class InternLM2RMSNorm(nn.Module):
|
121 |
+
def __init__(self, hidden_size, eps=1e-6):
|
122 |
+
"""
|
123 |
+
InternLM2RMSNorm is equivalent to T5LayerNorm
|
124 |
+
"""
|
125 |
+
super().__init__()
|
126 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
127 |
+
self.variance_epsilon = eps
|
128 |
+
|
129 |
+
def forward(self, hidden_states):
|
130 |
+
input_dtype = hidden_states.dtype
|
131 |
+
hidden_states = hidden_states.to(torch.float32)
|
132 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
133 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
134 |
+
return self.weight * hidden_states.to(input_dtype)
|
135 |
+
|
136 |
+
|
137 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
|
138 |
+
class InternLM2RotaryEmbedding(nn.Module):
|
139 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
140 |
+
super().__init__()
|
141 |
+
|
142 |
+
self.dim = dim
|
143 |
+
self.max_position_embeddings = max_position_embeddings
|
144 |
+
self.base = base
|
145 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
146 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
147 |
+
|
148 |
+
# Build here to make `torch.jit.trace` work.
|
149 |
+
self._set_cos_sin_cache(
|
150 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
151 |
+
)
|
152 |
+
|
153 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
154 |
+
self.max_seq_len_cached = seq_len
|
155 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
156 |
+
|
157 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
158 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
159 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
160 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
161 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
162 |
+
|
163 |
+
def forward(self, x, seq_len=None):
|
164 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
165 |
+
if seq_len > self.max_seq_len_cached:
|
166 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
167 |
+
|
168 |
+
return (
|
169 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
170 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
171 |
+
)
|
172 |
+
|
173 |
+
|
174 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
|
175 |
+
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
176 |
+
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
177 |
+
|
178 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
179 |
+
self.scaling_factor = scaling_factor
|
180 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
181 |
+
|
182 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
183 |
+
self.max_seq_len_cached = seq_len
|
184 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
185 |
+
t = t / self.scaling_factor
|
186 |
+
|
187 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
188 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
189 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
190 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
191 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
192 |
+
|
193 |
+
|
194 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
|
195 |
+
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
196 |
+
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
197 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
198 |
+
"""
|
199 |
+
|
200 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
201 |
+
self.scaling_factor = scaling_factor
|
202 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
203 |
+
|
204 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
205 |
+
self.max_seq_len_cached = seq_len
|
206 |
+
|
207 |
+
if seq_len > self.max_position_embeddings:
|
208 |
+
base = self.base * (
|
209 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
210 |
+
) ** (self.dim / (self.dim - 2))
|
211 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
212 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
213 |
+
|
214 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
215 |
+
|
216 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
217 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
218 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
219 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
220 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
221 |
+
|
222 |
+
|
223 |
+
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
224 |
+
def rotate_half(x):
|
225 |
+
"""Rotates half the hidden dims of the input."""
|
226 |
+
x1 = x[..., : x.shape[-1] // 2]
|
227 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
228 |
+
return torch.cat((-x2, x1), dim=-1)
|
229 |
+
|
230 |
+
|
231 |
+
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
232 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
233 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
234 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
235 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
236 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
237 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
238 |
+
return q_embed, k_embed
|
239 |
+
|
240 |
+
|
241 |
+
class InternLM2MLP(nn.Module):
|
242 |
+
def __init__(self, config):
|
243 |
+
super().__init__()
|
244 |
+
self.config = config
|
245 |
+
self.hidden_size = config.hidden_size
|
246 |
+
self.intermediate_size = config.intermediate_size
|
247 |
+
#self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
248 |
+
#self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
249 |
+
#self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
250 |
+
|
251 |
+
self.w1 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
|
252 |
+
lora_r=256, lora_alpha=256, lora_len=1225)
|
253 |
+
self.w3 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
|
254 |
+
lora_r=256, lora_alpha=256, lora_len=1225)
|
255 |
+
self.w2 = PLoRA(self.intermediate_size, self.hidden_size, bias=False,
|
256 |
+
lora_r=256, lora_alpha=256, lora_len=1225)
|
257 |
+
|
258 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
259 |
+
|
260 |
+
def forward(self, x, im_mask):
|
261 |
+
down_proj = self.w2(self.act_fn(self.w1(x, im_mask)) * self.w3(x, im_mask), im_mask)
|
262 |
+
|
263 |
+
return down_proj
|
264 |
+
|
265 |
+
|
266 |
+
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
267 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
268 |
+
"""
|
269 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
270 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
271 |
+
"""
|
272 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
273 |
+
if n_rep == 1:
|
274 |
+
return hidden_states
|
275 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
276 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
277 |
+
|
278 |
+
|
279 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
280 |
+
class InternLM2Attention(nn.Module):
|
281 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
282 |
+
|
283 |
+
def __init__(self, config: InternLM2Config):
|
284 |
+
super().__init__()
|
285 |
+
self.config = config
|
286 |
+
self.hidden_size = config.hidden_size
|
287 |
+
self.num_heads = config.num_attention_heads
|
288 |
+
self.head_dim = self.hidden_size // self.num_heads
|
289 |
+
self.num_key_value_heads = config.num_key_value_heads
|
290 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
291 |
+
self.max_position_embeddings = config.max_position_embeddings
|
292 |
+
self.is_causal = True
|
293 |
+
|
294 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
295 |
+
raise ValueError(
|
296 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
297 |
+
f" and `num_heads`: {self.num_heads})."
|
298 |
+
)
|
299 |
+
|
300 |
+
#self.wqkv = nn.Linear(
|
301 |
+
self.wqkv = PLoRA(
|
302 |
+
self.hidden_size,
|
303 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
304 |
+
bias=config.bias,
|
305 |
+
)
|
306 |
+
|
307 |
+
#self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
308 |
+
self.wo = PLoRA(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias,
|
309 |
+
lora_r=256, lora_alpha=256, lora_len=1225)
|
310 |
+
self._init_rope()
|
311 |
+
|
312 |
+
def _init_rope(self):
|
313 |
+
if self.config.rope_scaling is None:
|
314 |
+
self.rotary_emb = InternLM2RotaryEmbedding(
|
315 |
+
self.head_dim,
|
316 |
+
max_position_embeddings=self.max_position_embeddings,
|
317 |
+
base=self.config.rope_theta,
|
318 |
+
)
|
319 |
+
else:
|
320 |
+
scaling_type = self.config.rope_scaling["type"]
|
321 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
322 |
+
if scaling_type == "dynamic":
|
323 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
324 |
+
self.head_dim,
|
325 |
+
max_position_embeddings=self.max_position_embeddings,
|
326 |
+
base=self.config.rope_theta,
|
327 |
+
scaling_factor=scaling_factor,
|
328 |
+
)
|
329 |
+
elif scaling_type == "linear":
|
330 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
331 |
+
self.head_dim,
|
332 |
+
max_position_embeddings=self.max_position_embeddings,
|
333 |
+
base=self.config.rope_theta,
|
334 |
+
scaling_factor=scaling_factor,
|
335 |
+
)
|
336 |
+
else:
|
337 |
+
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
|
338 |
+
return self.rotary_emb
|
339 |
+
|
340 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
341 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
342 |
+
|
343 |
+
def forward(
|
344 |
+
self,
|
345 |
+
hidden_states: torch.Tensor,
|
346 |
+
attention_mask: Optional[torch.Tensor] = None,
|
347 |
+
position_ids: Optional[torch.LongTensor] = None,
|
348 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
349 |
+
output_attentions: bool = False,
|
350 |
+
use_cache: bool = False,
|
351 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
352 |
+
**kwargs,
|
353 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
354 |
+
if "padding_mask" in kwargs:
|
355 |
+
warnings.warn(
|
356 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
357 |
+
"Please make sure use `attention_mask` instead.`"
|
358 |
+
)
|
359 |
+
|
360 |
+
bsz, q_len, _ = hidden_states.size()
|
361 |
+
|
362 |
+
qkv_states = self.wqkv(hidden_states, im_mask)
|
363 |
+
|
364 |
+
qkv_states = rearrange(
|
365 |
+
qkv_states,
|
366 |
+
"b q (h gs d) -> b q h gs d",
|
367 |
+
gs=2 + self.num_key_value_groups,
|
368 |
+
d=self.head_dim,
|
369 |
+
)
|
370 |
+
|
371 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
372 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
|
373 |
+
key_states = qkv_states[..., -2, :]
|
374 |
+
value_states = qkv_states[..., -1, :]
|
375 |
+
|
376 |
+
query_states = query_states.transpose(1, 2)
|
377 |
+
key_states = key_states.transpose(1, 2)
|
378 |
+
value_states = value_states.transpose(1, 2)
|
379 |
+
|
380 |
+
kv_seq_len = key_states.shape[-2]
|
381 |
+
if past_key_value is not None:
|
382 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
383 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
384 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
385 |
+
|
386 |
+
if past_key_value is not None:
|
387 |
+
# reuse k, v, self_attention
|
388 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
389 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
390 |
+
|
391 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
392 |
+
|
393 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
394 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
395 |
+
|
396 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
397 |
+
|
398 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
399 |
+
raise ValueError(
|
400 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
401 |
+
f" {attn_weights.size()}"
|
402 |
+
)
|
403 |
+
|
404 |
+
if attention_mask is not None:
|
405 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
406 |
+
raise ValueError(
|
407 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
408 |
+
)
|
409 |
+
attn_weights = attn_weights + attention_mask
|
410 |
+
|
411 |
+
# upcast attention to fp32
|
412 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
413 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
414 |
+
|
415 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
416 |
+
raise ValueError(
|
417 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
418 |
+
f" {attn_output.size()}"
|
419 |
+
)
|
420 |
+
|
421 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
422 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
423 |
+
|
424 |
+
attn_output = self.wo(attn_output, im_mask)
|
425 |
+
|
426 |
+
if not output_attentions:
|
427 |
+
attn_weights = None
|
428 |
+
|
429 |
+
return attn_output, attn_weights, past_key_value
|
430 |
+
|
431 |
+
|
432 |
+
# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
|
433 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
434 |
+
"""
|
435 |
+
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
436 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
437 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
438 |
+
"""
|
439 |
+
|
440 |
+
def forward(
|
441 |
+
self,
|
442 |
+
hidden_states: torch.Tensor,
|
443 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
444 |
+
position_ids: Optional[torch.LongTensor] = None,
|
445 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
446 |
+
output_attentions: bool = False,
|
447 |
+
use_cache: bool = False,
|
448 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
449 |
+
**kwargs,
|
450 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
451 |
+
# InternLM2FlashAttention2 attention does not support output_attentions
|
452 |
+
if "padding_mask" in kwargs:
|
453 |
+
warnings.warn(
|
454 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
455 |
+
"Please make sure use `attention_mask` instead.`"
|
456 |
+
)
|
457 |
+
|
458 |
+
# overwrite attention_mask with padding_mask
|
459 |
+
attention_mask = kwargs.pop("padding_mask")
|
460 |
+
|
461 |
+
output_attentions = False
|
462 |
+
|
463 |
+
bsz, q_len, _ = hidden_states.size()
|
464 |
+
|
465 |
+
qkv_states = self.wqkv(hidden_states, im_mask)
|
466 |
+
|
467 |
+
qkv_states = rearrange(
|
468 |
+
qkv_states,
|
469 |
+
"b q (h gs d) -> b q h gs d",
|
470 |
+
gs=2 + self.num_key_value_groups,
|
471 |
+
d=self.head_dim,
|
472 |
+
)
|
473 |
+
|
474 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
475 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
|
476 |
+
key_states = qkv_states[..., -2, :]
|
477 |
+
value_states = qkv_states[..., -1, :]
|
478 |
+
|
479 |
+
query_states = query_states.transpose(1, 2)
|
480 |
+
key_states = key_states.transpose(1, 2)
|
481 |
+
value_states = value_states.transpose(1, 2)
|
482 |
+
|
483 |
+
kv_seq_len = key_states.shape[-2]
|
484 |
+
if past_key_value is not None:
|
485 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
486 |
+
|
487 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
488 |
+
|
489 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
490 |
+
|
491 |
+
if past_key_value is not None:
|
492 |
+
# reuse k, v, self_attention
|
493 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
494 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
495 |
+
|
496 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
497 |
+
|
498 |
+
query_states = query_states.transpose(1, 2)
|
499 |
+
key_states = key_states.transpose(1, 2)
|
500 |
+
value_states = value_states.transpose(1, 2)
|
501 |
+
|
502 |
+
attn_output = self._flash_attention_forward(
|
503 |
+
query_states, key_states, value_states, attention_mask, q_len
|
504 |
+
)
|
505 |
+
|
506 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
507 |
+
attn_output = self.wo(attn_output, im_mask)
|
508 |
+
|
509 |
+
if not output_attentions:
|
510 |
+
attn_weights = None
|
511 |
+
|
512 |
+
return attn_output, attn_weights, past_key_value
|
513 |
+
|
514 |
+
def _flash_attention_forward(
|
515 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
516 |
+
):
|
517 |
+
"""
|
518 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
519 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
520 |
+
|
521 |
+
Args:
|
522 |
+
query_states (`torch.Tensor`):
|
523 |
+
Input query states to be passed to Flash Attention API
|
524 |
+
key_states (`torch.Tensor`):
|
525 |
+
Input key states to be passed to Flash Attention API
|
526 |
+
value_states (`torch.Tensor`):
|
527 |
+
Input value states to be passed to Flash Attention API
|
528 |
+
attention_mask (`torch.Tensor`):
|
529 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
530 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
531 |
+
dropout (`int`, *optional*):
|
532 |
+
Attention dropout
|
533 |
+
softmax_scale (`float`, *optional*):
|
534 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
535 |
+
"""
|
536 |
+
# Contains at least one padding token in the sequence
|
537 |
+
causal = self.is_causal and query_length != 1
|
538 |
+
if attention_mask is not None:
|
539 |
+
batch_size = query_states.shape[0]
|
540 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
541 |
+
query_states, key_states, value_states, attention_mask, query_length
|
542 |
+
)
|
543 |
+
|
544 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
545 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
546 |
+
|
547 |
+
attn_output_unpad = flash_attn_varlen_func(
|
548 |
+
query_states,
|
549 |
+
key_states,
|
550 |
+
value_states,
|
551 |
+
cu_seqlens_q=cu_seqlens_q,
|
552 |
+
cu_seqlens_k=cu_seqlens_k,
|
553 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
554 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
555 |
+
dropout_p=dropout,
|
556 |
+
softmax_scale=softmax_scale,
|
557 |
+
causal=causal,
|
558 |
+
)
|
559 |
+
|
560 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
561 |
+
else:
|
562 |
+
attn_output = flash_attn_func(
|
563 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
564 |
+
)
|
565 |
+
|
566 |
+
return attn_output
|
567 |
+
|
568 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
569 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
570 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
571 |
+
|
572 |
+
key_layer = index_first_axis(
|
573 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
574 |
+
)
|
575 |
+
value_layer = index_first_axis(
|
576 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
577 |
+
)
|
578 |
+
|
579 |
+
if query_length == kv_seq_len:
|
580 |
+
query_layer = index_first_axis(
|
581 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
582 |
+
)
|
583 |
+
cu_seqlens_q = cu_seqlens_k
|
584 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
585 |
+
indices_q = indices_k
|
586 |
+
elif query_length == 1:
|
587 |
+
max_seqlen_in_batch_q = 1
|
588 |
+
cu_seqlens_q = torch.arange(
|
589 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
590 |
+
) # There is a memcpy here, that is very bad.
|
591 |
+
indices_q = cu_seqlens_q[:-1]
|
592 |
+
query_layer = query_layer.squeeze(1)
|
593 |
+
else:
|
594 |
+
# The -q_len: slice assumes left padding.
|
595 |
+
attention_mask = attention_mask[:, -query_length:]
|
596 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
597 |
+
|
598 |
+
return (
|
599 |
+
query_layer,
|
600 |
+
key_layer,
|
601 |
+
value_layer,
|
602 |
+
indices_q.to(torch.int64),
|
603 |
+
(cu_seqlens_q, cu_seqlens_k),
|
604 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
605 |
+
)
|
606 |
+
|
607 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
608 |
+
"eager": InternLM2Attention,
|
609 |
+
"flash_attention_2": InternLM2FlashAttention2,
|
610 |
+
}
|
611 |
+
|
612 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
|
613 |
+
class InternLM2DecoderLayer(nn.Module):
|
614 |
+
def __init__(self, config: InternLM2Config):
|
615 |
+
super().__init__()
|
616 |
+
self.hidden_size = config.hidden_size
|
617 |
+
|
618 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
619 |
+
|
620 |
+
self.feed_forward = InternLM2MLP(config)
|
621 |
+
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
622 |
+
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
623 |
+
|
624 |
+
def forward(
|
625 |
+
self,
|
626 |
+
hidden_states: torch.Tensor,
|
627 |
+
attention_mask: Optional[torch.Tensor] = None,
|
628 |
+
position_ids: Optional[torch.LongTensor] = None,
|
629 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
630 |
+
output_attentions: Optional[bool] = False,
|
631 |
+
use_cache: Optional[bool] = False,
|
632 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
633 |
+
**kwargs,
|
634 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
635 |
+
"""
|
636 |
+
Args:
|
637 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
638 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
639 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
640 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
641 |
+
output_attentions (`bool`, *optional*):
|
642 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
643 |
+
returned tensors for more detail.
|
644 |
+
use_cache (`bool`, *optional*):
|
645 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
646 |
+
(see `past_key_values`).
|
647 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
648 |
+
"""
|
649 |
+
if "padding_mask" in kwargs:
|
650 |
+
warnings.warn(
|
651 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
652 |
+
"Please make sure use `attention_mask` instead.`"
|
653 |
+
)
|
654 |
+
|
655 |
+
residual = hidden_states
|
656 |
+
|
657 |
+
hidden_states = self.attention_norm(hidden_states)
|
658 |
+
|
659 |
+
# Self Attention
|
660 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
661 |
+
hidden_states=hidden_states,
|
662 |
+
attention_mask=attention_mask,
|
663 |
+
position_ids=position_ids,
|
664 |
+
past_key_value=past_key_value,
|
665 |
+
output_attentions=output_attentions,
|
666 |
+
use_cache=use_cache,
|
667 |
+
im_mask=im_mask,
|
668 |
+
**kwargs,
|
669 |
+
)
|
670 |
+
hidden_states = residual + hidden_states
|
671 |
+
|
672 |
+
# Fully Connected
|
673 |
+
residual = hidden_states
|
674 |
+
hidden_states = self.ffn_norm(hidden_states)
|
675 |
+
hidden_states = self.feed_forward(hidden_states, im_mask)
|
676 |
+
hidden_states = residual + hidden_states
|
677 |
+
|
678 |
+
outputs = (hidden_states,)
|
679 |
+
|
680 |
+
if output_attentions:
|
681 |
+
outputs += (self_attn_weights,)
|
682 |
+
|
683 |
+
if use_cache:
|
684 |
+
outputs += (present_key_value,)
|
685 |
+
|
686 |
+
return outputs
|
687 |
+
|
688 |
+
|
689 |
+
InternLM2_START_DOCSTRING = r"""
|
690 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
691 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
692 |
+
etc.)
|
693 |
+
|
694 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
695 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
696 |
+
and behavior.
|
697 |
+
|
698 |
+
Parameters:
|
699 |
+
config ([`InternLM2Config`]):
|
700 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
701 |
+
load the weights associated with the model, only the configuration. Check out the
|
702 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
703 |
+
"""
|
704 |
+
|
705 |
+
|
706 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
707 |
+
@add_start_docstrings(
|
708 |
+
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
709 |
+
InternLM2_START_DOCSTRING,
|
710 |
+
)
|
711 |
+
class InternLM2PreTrainedModel(PreTrainedModel):
|
712 |
+
config_class = InternLM2Config
|
713 |
+
base_model_prefix = "model"
|
714 |
+
supports_gradient_checkpointing = True
|
715 |
+
_no_split_modules = ["InternLM2DecoderLayer"]
|
716 |
+
_skip_keys_device_placement = "past_key_values"
|
717 |
+
|
718 |
+
def _init_weights(self, module):
|
719 |
+
std = self.config.initializer_range
|
720 |
+
if isinstance(module, nn.Linear):
|
721 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
722 |
+
if module.bias is not None:
|
723 |
+
module.bias.data.zero_()
|
724 |
+
elif isinstance(module, nn.Embedding):
|
725 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
726 |
+
if module.padding_idx is not None:
|
727 |
+
module.weight.data[module.padding_idx].zero_()
|
728 |
+
|
729 |
+
|
730 |
+
InternLM2_INPUTS_DOCSTRING = r"""
|
731 |
+
Args:
|
732 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
733 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
734 |
+
it.
|
735 |
+
|
736 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
737 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
738 |
+
|
739 |
+
[What are input IDs?](../glossary#input-ids)
|
740 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
741 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
742 |
+
|
743 |
+
- 1 for tokens that are **not masked**,
|
744 |
+
- 0 for tokens that are **masked**.
|
745 |
+
|
746 |
+
[What are attention masks?](../glossary#attention-mask)
|
747 |
+
|
748 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
749 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
750 |
+
|
751 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
752 |
+
`past_key_values`).
|
753 |
+
|
754 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
755 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
756 |
+
information on the default strategy.
|
757 |
+
|
758 |
+
- 1 indicates the head is **not masked**,
|
759 |
+
- 0 indicates the head is **masked**.
|
760 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
761 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
762 |
+
config.n_positions - 1]`.
|
763 |
+
|
764 |
+
[What are position IDs?](../glossary#position-ids)
|
765 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
766 |
+
when `config.use_cache=True`):
|
767 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
768 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
769 |
+
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
770 |
+
|
771 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
772 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
773 |
+
|
774 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
775 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
776 |
+
of shape `(batch_size, sequence_length)`.
|
777 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
778 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
779 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
780 |
+
model's internal embedding lookup matrix.
|
781 |
+
use_cache (`bool`, *optional*):
|
782 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
783 |
+
`past_key_values`).
|
784 |
+
output_attentions (`bool`, *optional*):
|
785 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
786 |
+
tensors for more detail.
|
787 |
+
output_hidden_states (`bool`, *optional*):
|
788 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
789 |
+
more detail.
|
790 |
+
return_dict (`bool`, *optional*):
|
791 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
792 |
+
"""
|
793 |
+
|
794 |
+
|
795 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaModel
|
796 |
+
@add_start_docstrings(
|
797 |
+
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
798 |
+
InternLM2_START_DOCSTRING,
|
799 |
+
)
|
800 |
+
class InternLM2Model(InternLM2PreTrainedModel):
|
801 |
+
"""
|
802 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
|
803 |
+
|
804 |
+
Args:
|
805 |
+
config: InternLM2Config
|
806 |
+
"""
|
807 |
+
|
808 |
+
_auto_class = "AutoModel"
|
809 |
+
|
810 |
+
def __init__(self, config: InternLM2Config):
|
811 |
+
super().__init__(config)
|
812 |
+
self.padding_idx = config.pad_token_id
|
813 |
+
self.vocab_size = config.vocab_size
|
814 |
+
self.config = config
|
815 |
+
|
816 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
817 |
+
|
818 |
+
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
819 |
+
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
820 |
+
|
821 |
+
self.gradient_checkpointing = False
|
822 |
+
# Initialize weights and apply final processing
|
823 |
+
self.post_init()
|
824 |
+
|
825 |
+
def get_input_embeddings(self):
|
826 |
+
return self.tok_embeddings
|
827 |
+
|
828 |
+
def set_input_embeddings(self, value):
|
829 |
+
self.tok_embeddings = value
|
830 |
+
|
831 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
832 |
+
# create causal mask
|
833 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
834 |
+
combined_attention_mask = None
|
835 |
+
if input_shape[-1] > 1:
|
836 |
+
combined_attention_mask = _make_causal_mask(
|
837 |
+
input_shape,
|
838 |
+
inputs_embeds.dtype,
|
839 |
+
device=inputs_embeds.device,
|
840 |
+
past_key_values_length=past_key_values_length,
|
841 |
+
)
|
842 |
+
|
843 |
+
if attention_mask is not None:
|
844 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
845 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
846 |
+
inputs_embeds.device
|
847 |
+
)
|
848 |
+
combined_attention_mask = (
|
849 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
850 |
+
)
|
851 |
+
|
852 |
+
return combined_attention_mask
|
853 |
+
|
854 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
855 |
+
def forward(
|
856 |
+
self,
|
857 |
+
input_ids: torch.LongTensor = None,
|
858 |
+
attention_mask: Optional[torch.Tensor] = None,
|
859 |
+
position_ids: Optional[torch.LongTensor] = None,
|
860 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
861 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
862 |
+
use_cache: Optional[bool] = None,
|
863 |
+
output_attentions: Optional[bool] = None,
|
864 |
+
output_hidden_states: Optional[bool] = None,
|
865 |
+
return_dict: Optional[bool] = None,
|
866 |
+
**kwargs
|
867 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
868 |
+
|
869 |
+
im_mask = kwargs.get('im_mask', None)
|
870 |
+
|
871 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
872 |
+
output_hidden_states = (
|
873 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
874 |
+
)
|
875 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
876 |
+
|
877 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
878 |
+
|
879 |
+
if self.config.attn_implementation == "flash_attention_2":
|
880 |
+
_import_flash_attn()
|
881 |
+
|
882 |
+
# retrieve input_ids and inputs_embeds
|
883 |
+
if input_ids is not None and inputs_embeds is not None:
|
884 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
885 |
+
elif input_ids is not None:
|
886 |
+
batch_size, seq_length = input_ids.shape[:2]
|
887 |
+
elif inputs_embeds is not None:
|
888 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
889 |
+
else:
|
890 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
891 |
+
|
892 |
+
seq_length_with_past = seq_length
|
893 |
+
past_key_values_length = 0
|
894 |
+
if past_key_values is not None:
|
895 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
896 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
897 |
+
|
898 |
+
if position_ids is None:
|
899 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
900 |
+
position_ids = torch.arange(
|
901 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
902 |
+
)
|
903 |
+
position_ids = position_ids.unsqueeze(0)
|
904 |
+
|
905 |
+
if inputs_embeds is None:
|
906 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
907 |
+
im_mask = torch.zeros(inputs_embeds.shape[:2]).to(inputs_embeds.device).bool()
|
908 |
+
|
909 |
+
if self.config.attn_implementation == "flash_attention_2":
|
910 |
+
# 2d mask is passed through the layers
|
911 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
912 |
+
else:
|
913 |
+
if attention_mask is None:
|
914 |
+
attention_mask = torch.ones(
|
915 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
916 |
+
)
|
917 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
918 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
919 |
+
)
|
920 |
+
|
921 |
+
# embed positions
|
922 |
+
hidden_states = inputs_embeds
|
923 |
+
|
924 |
+
if self.gradient_checkpointing and self.training:
|
925 |
+
if use_cache:
|
926 |
+
logger.warning_once(
|
927 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
928 |
+
)
|
929 |
+
use_cache = False
|
930 |
+
|
931 |
+
# decoder layers
|
932 |
+
all_hidden_states = () if output_hidden_states else None
|
933 |
+
all_self_attns = () if output_attentions else None
|
934 |
+
next_decoder_cache = () if use_cache else None
|
935 |
+
|
936 |
+
for idx, decoder_layer in enumerate(self.layers):
|
937 |
+
if output_hidden_states:
|
938 |
+
all_hidden_states += (hidden_states,)
|
939 |
+
|
940 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
941 |
+
|
942 |
+
if self.gradient_checkpointing and self.training:
|
943 |
+
|
944 |
+
def create_custom_forward(module):
|
945 |
+
def custom_forward(*inputs):
|
946 |
+
# None for past_key_value
|
947 |
+
return module(*inputs, output_attentions, None, im_mask)
|
948 |
+
|
949 |
+
return custom_forward
|
950 |
+
|
951 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
952 |
+
create_custom_forward(decoder_layer),
|
953 |
+
hidden_states,
|
954 |
+
attention_mask,
|
955 |
+
position_ids,
|
956 |
+
None,
|
957 |
+
)
|
958 |
+
else:
|
959 |
+
layer_outputs = decoder_layer(
|
960 |
+
hidden_states,
|
961 |
+
attention_mask=attention_mask,
|
962 |
+
position_ids=position_ids,
|
963 |
+
past_key_value=past_key_value,
|
964 |
+
output_attentions=output_attentions,
|
965 |
+
use_cache=use_cache,
|
966 |
+
im_mask=im_mask,
|
967 |
+
)
|
968 |
+
|
969 |
+
hidden_states = layer_outputs[0]
|
970 |
+
|
971 |
+
if use_cache:
|
972 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
973 |
+
|
974 |
+
if output_attentions:
|
975 |
+
all_self_attns += (layer_outputs[1],)
|
976 |
+
|
977 |
+
hidden_states = self.norm(hidden_states)
|
978 |
+
|
979 |
+
# add hidden states from the last decoder layer
|
980 |
+
if output_hidden_states:
|
981 |
+
all_hidden_states += (hidden_states,)
|
982 |
+
|
983 |
+
next_cache = next_decoder_cache if use_cache else None
|
984 |
+
if not return_dict:
|
985 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
986 |
+
return BaseModelOutputWithPast(
|
987 |
+
last_hidden_state=hidden_states,
|
988 |
+
past_key_values=next_cache,
|
989 |
+
hidden_states=all_hidden_states,
|
990 |
+
attentions=all_self_attns,
|
991 |
+
)
|
992 |
+
|
993 |
+
|
994 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
|
995 |
+
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
996 |
+
_auto_class = "AutoModelForCausalLM"
|
997 |
+
|
998 |
+
_tied_weights_keys = ["output.weight"]
|
999 |
+
|
1000 |
+
def __init__(self, config):
|
1001 |
+
super().__init__(config)
|
1002 |
+
self.model = InternLM2Model(config)
|
1003 |
+
self.vocab_size = config.vocab_size
|
1004 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1005 |
+
self.debug_flag = 1
|
1006 |
+
self.mask_flag = 1
|
1007 |
+
self.tokenizer = None
|
1008 |
+
|
1009 |
+
self.max_length = config.max_length
|
1010 |
+
print (f'Set max length to {self.max_length}')
|
1011 |
+
self.debug_flag = 1
|
1012 |
+
# Initialize weights and apply final processing
|
1013 |
+
self.post_init()
|
1014 |
+
self.plora_glb_GN = nn.Parameter(torch.zeros([1, 1, 4096]))
|
1015 |
+
self.plora_sub_GN = nn.Parameter(torch.zeros([1, 1, 1, 4096]))
|
1016 |
+
|
1017 |
+
self.vit = build_vision_tower()
|
1018 |
+
self.vision_proj = build_vision_projector()
|
1019 |
+
self.im_size = 490
|
1020 |
+
self.vis_processor = transforms.Compose([
|
1021 |
+
transforms.ToTensor(),
|
1022 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
|
1023 |
+
(0.26862954, 0.26130258, 0.27577711)),
|
1024 |
+
])
|
1025 |
+
|
1026 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
1027 |
+
if isinstance(module, InternLM2Model):
|
1028 |
+
module.gradient_checkpointing = value
|
1029 |
+
if value:
|
1030 |
+
self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
|
1031 |
+
|
1032 |
+
def get_input_embeddings(self):
|
1033 |
+
return self.model.tok_embeddings
|
1034 |
+
|
1035 |
+
def set_input_embeddings(self, value):
|
1036 |
+
self.model.tok_embeddings = value
|
1037 |
+
|
1038 |
+
def get_output_embeddings(self):
|
1039 |
+
return self.output
|
1040 |
+
|
1041 |
+
def set_output_embeddings(self, new_embeddings):
|
1042 |
+
self.output = new_embeddings
|
1043 |
+
|
1044 |
+
def set_decoder(self, decoder):
|
1045 |
+
self.model = decoder
|
1046 |
+
|
1047 |
+
def get_decoder(self):
|
1048 |
+
return self.model
|
1049 |
+
def encode_text(self, t, add_special_tokens=False):
|
1050 |
+
t = t.replace('<|User|>:', '[UNUSED_TOKEN_146]user\n')
|
1051 |
+
t = t.replace('<|Bot|>:', '[UNUSED_TOKEN_146]assistant\n')
|
1052 |
+
t = t.replace('<TOKENS_UNUSED_0>', '[UNUSED_TOKEN_145]')
|
1053 |
+
t = t.replace('<TOKENS_UNUSED_1>', '[UNUSED_TOKEN_145]')
|
1054 |
+
t = t.replace('[UNUSED_TOKEN_0]', '[UNUSED_TOKEN_145]')
|
1055 |
+
t = t.replace('[UNUSED_TOKEN_1]', '[UNUSED_TOKEN_145]')
|
1056 |
+
|
1057 |
+
text = t
|
1058 |
+
token = self.tokenizer(text,
|
1059 |
+
return_tensors='pt',
|
1060 |
+
add_special_tokens=add_special_tokens).input_ids.to(self.device)
|
1061 |
+
embs = self.model.tok_embeddings(token)
|
1062 |
+
return embs
|
1063 |
+
|
1064 |
+
def encode_img(self, image):
|
1065 |
+
if image is None:
|
1066 |
+
return None
|
1067 |
+
if isinstance(image, str):
|
1068 |
+
image = Image.open(image).convert("RGB")
|
1069 |
+
image = self.vis_processor(image).unsqueeze(0).to(self.device)
|
1070 |
+
else:
|
1071 |
+
assert isinstance(image, torch.Tensor)
|
1072 |
+
|
1073 |
+
img_embeds, _ = self.img2emb([image])
|
1074 |
+
return img_embeds
|
1075 |
+
|
1076 |
+
|
1077 |
+
|
1078 |
+
def img2emb(self, image):
|
1079 |
+
img_embeds, img_split = self.vit(image,
|
1080 |
+
self.plora_glb_GN, self.plora_sub_GN)
|
1081 |
+
img_embeds = self.vision_proj(img_embeds)
|
1082 |
+
|
1083 |
+
return img_embeds, img_split
|
1084 |
+
|
1085 |
+
def prompt_wrap(self, img_embeds, prompt):
|
1086 |
+
batch_size = img_embeds.shape[0]
|
1087 |
+
p_before, p_after = prompt.split('<ImageHere>')
|
1088 |
+
p_before_tokens = self.tokenizer(
|
1089 |
+
p_before, return_tensors="pt", add_special_tokens=True).to(img_embeds.device)
|
1090 |
+
|
1091 |
+
p_before_embeds = self.model.tok_embeddings(p_before_tokens.input_ids).expand(batch_size, -1, -1)
|
1092 |
+
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
|
1093 |
+
|
1094 |
+
wrapped_atts_img = torch.ones(wrapped_img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
|
1095 |
+
|
1096 |
+
wrapped_target = torch.ones(batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(img_embeds.device) * -100
|
1097 |
+
|
1098 |
+
|
1099 |
+
return wrapped_img_embeds, wrapped_atts_img, wrapped_target
|
1100 |
+
|
1101 |
+
def text2emb(self, text, add_special=False):
|
1102 |
+
new_text = []
|
1103 |
+
for t in text:
|
1104 |
+
t = t.replace('<|User|>:', '[UNUSED_TOKEN_146]user\n')
|
1105 |
+
t = t.replace('<|Bot|>:', '[UNUSED_TOKEN_146]assistant\n')
|
1106 |
+
t = t.replace('<TOKENS_UNUSED_0>', '[UNUSED_TOKEN_145]')
|
1107 |
+
t = t.replace('<TOKENS_UNUSED_1>', '[UNUSED_TOKEN_145]')
|
1108 |
+
new_text.append(t)
|
1109 |
+
text = new_text
|
1110 |
+
to_regress_tokens = self.tokenizer(
|
1111 |
+
text,
|
1112 |
+
return_tensors="pt",
|
1113 |
+
padding="longest",
|
1114 |
+
truncation=True,
|
1115 |
+
add_special_tokens=add_special
|
1116 |
+
).to(self.device)
|
1117 |
+
|
1118 |
+
targets = self.mask_human_targets(to_regress_tokens.input_ids)
|
1119 |
+
targets = targets.to(self.device)
|
1120 |
+
|
1121 |
+
return to_regress_tokens, targets
|
1122 |
+
|
1123 |
+
def mask_human_targets(self, input_ids, pure=False):
|
1124 |
+
target_batch = []
|
1125 |
+
for bs in range(input_ids.shape[0]):
|
1126 |
+
cur_idx = 0
|
1127 |
+
ids = input_ids[bs]
|
1128 |
+
targets = copy.deepcopy(ids)
|
1129 |
+
end_count = 0
|
1130 |
+
last_eoa = 0
|
1131 |
+
for i, temp_id in enumerate(ids):
|
1132 |
+
if temp_id == 92542:
|
1133 |
+
if end_count % 2 == 0:
|
1134 |
+
targets[last_eoa: i+6] = -100
|
1135 |
+
else:
|
1136 |
+
last_eoa = i + 1
|
1137 |
+
end_count += 1
|
1138 |
+
elif temp_id == 2: ### eos and following pad
|
1139 |
+
targets[i+1:] = -100 #### loss on eos, but not on pad
|
1140 |
+
break
|
1141 |
+
if temp_id != 2 and end_count % 2 == 0: ### trunction, end at last question
|
1142 |
+
targets[last_eoa+1:] = -100 #### mask all after the last answer
|
1143 |
+
|
1144 |
+
target_batch.append(targets.unsqueeze(0))
|
1145 |
+
if self.debug_flag and 0:
|
1146 |
+
print ('#### Warining! System meta is not support now')
|
1147 |
+
targets_vis = targets.clone()
|
1148 |
+
targets_vis[targets_vis==-100] = 92399
|
1149 |
+
targets_vis_tokens = ''.join(self.tokenizer.convert_ids_to_tokens(targets_vis)).replace('[UNUSED_TOKEN_2]', " ")
|
1150 |
+
print(''.join(self.tokenizer.convert_ids_to_tokens(ids)))
|
1151 |
+
print('-----------')
|
1152 |
+
print([targets_vis_tokens])
|
1153 |
+
print('-----------------------------')
|
1154 |
+
|
1155 |
+
target_batch = torch.cat(target_batch, dim=0)
|
1156 |
+
return target_batch
|
1157 |
+
|
1158 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1159 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1160 |
+
def forward(
|
1161 |
+
self,
|
1162 |
+
input_ids: torch.LongTensor = None,
|
1163 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1164 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1165 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1166 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1167 |
+
labels: Optional[torch.LongTensor] = None,
|
1168 |
+
use_cache: Optional[bool] = None,
|
1169 |
+
output_attentions: Optional[bool] = None,
|
1170 |
+
output_hidden_states: Optional[bool] = None,
|
1171 |
+
return_dict: Optional[bool] = None,
|
1172 |
+
**kwargs
|
1173 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1174 |
+
r"""
|
1175 |
+
Args:
|
1176 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1177 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1178 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1179 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1180 |
+
|
1181 |
+
Returns:
|
1182 |
+
|
1183 |
+
Example:
|
1184 |
+
|
1185 |
+
```python
|
1186 |
+
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
1187 |
+
|
1188 |
+
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1189 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1190 |
+
|
1191 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1192 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1193 |
+
|
1194 |
+
>>> # Generate
|
1195 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1196 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1197 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1198 |
+
```"""
|
1199 |
+
samples = kwargs.get('samples', None)
|
1200 |
+
if samples:
|
1201 |
+
if self.debug_flag:
|
1202 |
+
self.debug_flag += 1
|
1203 |
+
if self.debug_flag > 5:
|
1204 |
+
self.debug_flag = 0
|
1205 |
+
|
1206 |
+
has_img = 'image' in samples.keys()
|
1207 |
+
|
1208 |
+
### encode text
|
1209 |
+
sp_token = samples["sp_token"]
|
1210 |
+
|
1211 |
+
text = samples['text_input'][0].split(sp_token)
|
1212 |
+
text = ['<|User|>:' + t for t in text]
|
1213 |
+
to_regress_tokens, targets = self.text2emb(text, add_special = True)
|
1214 |
+
|
1215 |
+
to_regress_embeds = self.model.tok_embeddings(to_regress_tokens.input_ids)
|
1216 |
+
attention_mask = to_regress_tokens.attention_mask
|
1217 |
+
|
1218 |
+
if has_img:
|
1219 |
+
### encode image
|
1220 |
+
image = samples["image"][0]
|
1221 |
+
bs = to_regress_embeds.shape[0]
|
1222 |
+
### combine text and image
|
1223 |
+
if samples['data_type'][0] != 'nlp':
|
1224 |
+
temp_max_len = int(samples.get('max_length', [self.max_length])[0])
|
1225 |
+
assert type(image) is list and len(image) == bs
|
1226 |
+
img_embeds, img_split = self.img2emb(image)
|
1227 |
+
temp_max_len = np.max(img_split) + 320
|
1228 |
+
final_input = []
|
1229 |
+
final_atts = []
|
1230 |
+
final_tars = []
|
1231 |
+
final_masks = []
|
1232 |
+
pad = torch.ones([1, 1]) * self.tokenizer.pad_token_id
|
1233 |
+
pad = pad.long().to(to_regress_embeds.device)
|
1234 |
+
pad_emb = self.model.tok_embeddings(pad)
|
1235 |
+
|
1236 |
+
for idx, sp in enumerate(img_split):
|
1237 |
+
st = int(np.sum(img_split[:idx]))
|
1238 |
+
temp_img = img_embeds[:, st:st+sp]
|
1239 |
+
temp_img_atts = torch.ones(temp_img.size()[:-1], dtype=torch.long).to(temp_img.device)
|
1240 |
+
temp_img_tar = torch.ones(temp_img.size()[:2], dtype=torch.long).to(temp_img.device) * -100
|
1241 |
+
|
1242 |
+
temp_input = torch.cat([to_regress_embeds[idx:idx+1,:1], temp_img, to_regress_embeds[idx:idx+1,1:]], dim=1)
|
1243 |
+
temp_atts = torch.cat([attention_mask[idx:idx+1,:1], temp_img_atts, attention_mask[idx:idx+1,1:]], dim=1)
|
1244 |
+
temp_tars = torch.cat([targets[idx:idx+1,:1], temp_img_tar, targets[idx:idx+1,1:]], dim=1)
|
1245 |
+
|
1246 |
+
temp_len = temp_input.shape[1]
|
1247 |
+
if temp_len >= temp_max_len:
|
1248 |
+
final_input.append(temp_input[:, :temp_max_len])
|
1249 |
+
final_atts.append(temp_atts[:, :temp_max_len])
|
1250 |
+
final_tars.append(temp_tars[:, :temp_max_len])
|
1251 |
+
else:
|
1252 |
+
final_input.append(torch.cat([temp_input, pad_emb.repeat(1, temp_max_len-temp_len, 1)], dim=1))
|
1253 |
+
final_atts.append(torch.cat([temp_atts, torch.zeros(1, temp_max_len-temp_len).to(temp_atts.dtype).to(temp_atts.device)], dim=1))
|
1254 |
+
final_tars.append(torch.cat([temp_tars, (torch.ones(1, temp_max_len-temp_len)*-100).to(temp_tars.dtype).to(temp_tars.device)], dim=1))
|
1255 |
+
|
1256 |
+
im_mask = torch.zeros(temp_max_len).cuda()
|
1257 |
+
im_mask[1:1+sp] = 1
|
1258 |
+
final_masks.append(im_mask)
|
1259 |
+
|
1260 |
+
inputs_embeds = torch.cat(final_input, dim=0)
|
1261 |
+
attention_mask = torch.cat(final_atts, dim=0)
|
1262 |
+
targets = torch.cat(final_tars, dim=0)
|
1263 |
+
im_mask = torch.cat(final_masks, dim=0).bool() ### B*N
|
1264 |
+
|
1265 |
+
else:
|
1266 |
+
img_embeds, img_split = self.img2emb([torch.zeros(1,3,336,336).to(to_regress_embeds.device).to(to_regress_embeds.dtype)])
|
1267 |
+
to_regress_embeds += img_embeds.sum() * 0
|
1268 |
+
im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
|
1269 |
+
temp_max_len = 8192
|
1270 |
+
inputs_embeds = to_regress_embeds[:2, :temp_max_len]
|
1271 |
+
attention_mask = attention_mask[:2, :temp_max_len]
|
1272 |
+
targets = targets[:2, :temp_max_len]
|
1273 |
+
im_mask = im_mask[:2, :temp_max_len].bool().view(-1)
|
1274 |
+
|
1275 |
+
|
1276 |
+
|
1277 |
+
labels = targets
|
1278 |
+
if self.debug_flag:
|
1279 |
+
print (targets.shape, inputs_embeds.shape, attention_mask.shape)
|
1280 |
+
le = len(samples['text_input'])
|
1281 |
+
data_type = samples['data_type'][0]
|
1282 |
+
print (f'DataType: {data_type}. Has Image: {has_img}. Current max length: {temp_max_len}, BatchSize is {le}')
|
1283 |
+
if has_img:
|
1284 |
+
print (img_embeds.shape, img_split)
|
1285 |
+
|
1286 |
+
else:
|
1287 |
+
self.debug_flag = 0
|
1288 |
+
im_mask = kwargs.get('im_mask', None)
|
1289 |
+
if im_mask is None and inputs_embeds is not None:
|
1290 |
+
im_mask = torch.zeros(inputs_embeds.shape[:2]).to(inputs_embeds.device)
|
1291 |
+
if self.mask_flag:
|
1292 |
+
print ('Warning! image mask will be 0')
|
1293 |
+
self.mask_flag = 0
|
1294 |
+
im_mask = im_mask.bool()
|
1295 |
+
im_mask = im_mask.view(-1)
|
1296 |
+
|
1297 |
+
|
1298 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1299 |
+
output_hidden_states = (
|
1300 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1301 |
+
)
|
1302 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1303 |
+
|
1304 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1305 |
+
outputs = self.model(
|
1306 |
+
input_ids=input_ids,
|
1307 |
+
attention_mask=attention_mask,
|
1308 |
+
position_ids=position_ids,
|
1309 |
+
past_key_values=past_key_values,
|
1310 |
+
inputs_embeds=inputs_embeds,
|
1311 |
+
use_cache=use_cache,
|
1312 |
+
output_attentions=output_attentions,
|
1313 |
+
output_hidden_states=output_hidden_states,
|
1314 |
+
return_dict=return_dict,
|
1315 |
+
im_mask = im_mask,
|
1316 |
+
)
|
1317 |
+
|
1318 |
+
hidden_states = outputs[0]
|
1319 |
+
logits = self.output(hidden_states)
|
1320 |
+
logits = logits.float()
|
1321 |
+
|
1322 |
+
loss = None
|
1323 |
+
if labels is not None:
|
1324 |
+
# Shift so that tokens < n predict n
|
1325 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1326 |
+
shift_labels = labels[..., 1:].contiguous()
|
1327 |
+
# Flatten the tokens
|
1328 |
+
loss_fct = CrossEntropyLoss(reduce=False)
|
1329 |
+
B, N = shift_logits.shape[:2]
|
1330 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1331 |
+
shift_labels = shift_labels.view(-1)
|
1332 |
+
mask = shift_labels >= 0
|
1333 |
+
# Enable model parallelism
|
1334 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1335 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1336 |
+
loss = (loss.view(B,N).sum(dim=1) / mask.view(B,N).sum(dim=1)).mean()
|
1337 |
+
|
1338 |
+
if not return_dict:
|
1339 |
+
output = (logits,) + outputs[1:]
|
1340 |
+
return (loss,) + output if loss is not None else output
|
1341 |
+
|
1342 |
+
return CausalLMOutputWithPast(
|
1343 |
+
loss=loss,
|
1344 |
+
logits=logits,
|
1345 |
+
past_key_values=outputs.past_key_values,
|
1346 |
+
hidden_states=outputs.hidden_states,
|
1347 |
+
attentions=outputs.attentions,
|
1348 |
+
)
|
1349 |
+
|
1350 |
+
def prepare_inputs_for_generation(
|
1351 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, im_mask=None, **kwargs
|
1352 |
+
):
|
1353 |
+
if past_key_values is not None:
|
1354 |
+
past_length = past_key_values[0][0].shape[2]
|
1355 |
+
|
1356 |
+
# Some generation methods already pass only the last input ID
|
1357 |
+
if input_ids.shape[1] > past_length:
|
1358 |
+
remove_prefix_length = past_length
|
1359 |
+
else:
|
1360 |
+
# Default to old behavior: keep only final ID
|
1361 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1362 |
+
|
1363 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1364 |
+
|
1365 |
+
position_ids = kwargs.get("position_ids", None)
|
1366 |
+
if attention_mask is not None and position_ids is None:
|
1367 |
+
# create position_ids on the fly for batch generation
|
1368 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1369 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1370 |
+
if past_key_values:
|
1371 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1372 |
+
|
1373 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1374 |
+
if inputs_embeds is not None and past_key_values is None:
|
1375 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1376 |
+
else:
|
1377 |
+
model_inputs = {"input_ids": input_ids}
|
1378 |
+
|
1379 |
+
im_mask = im_mask
|
1380 |
+
|
1381 |
+
model_inputs.update(
|
1382 |
+
{
|
1383 |
+
"position_ids": position_ids,
|
1384 |
+
"past_key_values": past_key_values,
|
1385 |
+
"use_cache": kwargs.get("use_cache"),
|
1386 |
+
"attention_mask": attention_mask,
|
1387 |
+
"im_mask": im_mask,
|
1388 |
+
}
|
1389 |
+
)
|
1390 |
+
return model_inputs
|
1391 |
+
|
1392 |
+
@staticmethod
|
1393 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1394 |
+
reordered_past = ()
|
1395 |
+
for layer_past in past_key_values:
|
1396 |
+
reordered_past += (
|
1397 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1398 |
+
)
|
1399 |
+
return reordered_past
|
1400 |
+
|
1401 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=""):
|
1402 |
+
if tokenizer.add_bos_token:
|
1403 |
+
prompt = ""
|
1404 |
+
else:
|
1405 |
+
prompt = tokenizer.bos_token
|
1406 |
+
if meta_instruction:
|
1407 |
+
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
1408 |
+
for record in history:
|
1409 |
+
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
1410 |
+
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
1411 |
+
return tokenizer([prompt], return_tensors="pt")
|
1412 |
+
|
1413 |
+
@torch.no_grad()
|
1414 |
+
def chat(
|
1415 |
+
self,
|
1416 |
+
tokenizer,
|
1417 |
+
query: str,
|
1418 |
+
history: List[Tuple[str, str]] = [],
|
1419 |
+
streamer: Optional[BaseStreamer] = None,
|
1420 |
+
max_new_tokens: int = 1024,
|
1421 |
+
do_sample: bool = True,
|
1422 |
+
temperature: float = 0.8,
|
1423 |
+
top_p: float = 0.8,
|
1424 |
+
meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
|
1425 |
+
"- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
|
1426 |
+
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.",
|
1427 |
+
**kwargs,
|
1428 |
+
):
|
1429 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
1430 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
1431 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
1432 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]]
|
1433 |
+
outputs = self.generate(
|
1434 |
+
**inputs,
|
1435 |
+
streamer=streamer,
|
1436 |
+
max_new_tokens=max_new_tokens,
|
1437 |
+
do_sample=do_sample,
|
1438 |
+
temperature=temperature,
|
1439 |
+
top_p=top_p,
|
1440 |
+
eos_token_id=eos_token_id,
|
1441 |
+
**kwargs,
|
1442 |
+
)
|
1443 |
+
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
|
1444 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1445 |
+
response = response.split("<|im_end|>")[0]
|
1446 |
+
history = history + [(query, response)]
|
1447 |
+
return response, history
|
1448 |
+
|
1449 |
+
@torch.no_grad()
|
1450 |
+
def stream_chat(
|
1451 |
+
self,
|
1452 |
+
tokenizer,
|
1453 |
+
query: str,
|
1454 |
+
history: List[Tuple[str, str]] = [],
|
1455 |
+
max_new_tokens: int = 1024,
|
1456 |
+
do_sample: bool = True,
|
1457 |
+
temperature: float = 0.8,
|
1458 |
+
top_p: float = 0.8,
|
1459 |
+
**kwargs,
|
1460 |
+
):
|
1461 |
+
"""
|
1462 |
+
Return a generator in format: (response, history)
|
1463 |
+
Eg.
|
1464 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
1465 |
+
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
1466 |
+
"""
|
1467 |
+
if BaseStreamer is None:
|
1468 |
+
raise ModuleNotFoundError(
|
1469 |
+
"The version of `transformers` is too low. Please make sure "
|
1470 |
+
"that you have installed `transformers>=4.28.0`."
|
1471 |
+
)
|
1472 |
+
|
1473 |
+
response_queue = queue.Queue(maxsize=20)
|
1474 |
+
|
1475 |
+
class ChatStreamer(BaseStreamer):
|
1476 |
+
def __init__(self, tokenizer) -> None:
|
1477 |
+
super().__init__()
|
1478 |
+
self.tokenizer = tokenizer
|
1479 |
+
self.queue = response_queue
|
1480 |
+
self.query = query
|
1481 |
+
self.history = history
|
1482 |
+
self.response = ""
|
1483 |
+
self.cache = []
|
1484 |
+
self.received_inputs = False
|
1485 |
+
self.queue.put((self.response, history + [(self.query, self.response)]))
|
1486 |
+
|
1487 |
+
def put(self, value):
|
1488 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
1489 |
+
raise ValueError("ChatStreamer only supports batch size 1")
|
1490 |
+
elif len(value.shape) > 1:
|
1491 |
+
value = value[0]
|
1492 |
+
|
1493 |
+
if not self.received_inputs:
|
1494 |
+
# The first received value is input_ids, ignore here
|
1495 |
+
self.received_inputs = True
|
1496 |
+
return
|
1497 |
+
|
1498 |
+
self.cache.extend(value.tolist())
|
1499 |
+
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
1500 |
+
if token.strip() != "<|im_end|>":
|
1501 |
+
self.response = self.response + token
|
1502 |
+
history = self.history + [(self.query, self.response)]
|
1503 |
+
self.queue.put((self.response, history))
|
1504 |
+
self.cache = []
|
1505 |
+
else:
|
1506 |
+
self.end()
|
1507 |
+
|
1508 |
+
def end(self):
|
1509 |
+
self.queue.put(None)
|
1510 |
+
|
1511 |
+
def stream_producer():
|
1512 |
+
return self.chat(
|
1513 |
+
tokenizer=tokenizer,
|
1514 |
+
query=query,
|
1515 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
1516 |
+
history=history,
|
1517 |
+
max_new_tokens=max_new_tokens,
|
1518 |
+
do_sample=do_sample,
|
1519 |
+
temperature=temperature,
|
1520 |
+
top_p=top_p,
|
1521 |
+
**kwargs,
|
1522 |
+
)
|
1523 |
+
|
1524 |
+
def consumer():
|
1525 |
+
producer = threading.Thread(target=stream_producer)
|
1526 |
+
producer.start()
|
1527 |
+
while True:
|
1528 |
+
res = response_queue.get()
|
1529 |
+
if res is None:
|
1530 |
+
return
|
1531 |
+
yield res
|
1532 |
+
|
1533 |
+
return consumer()
|
1534 |
+
|
1535 |
+
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a3817238a1a7b7d22e0860fd8c272dd611f371f697835b834ddfd955993922d
|
3 |
+
size 17195150492
|
special_tokens_map.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|action_start|>",
|
6 |
+
"<|action_end|>",
|
7 |
+
"<|interpreter|>",
|
8 |
+
"<|plugin|>"
|
9 |
+
],
|
10 |
+
"bos_token": {
|
11 |
+
"content": "<s>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
"eos_token": {
|
18 |
+
"content": "</s>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "</s>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"unk_token": {
|
32 |
+
"content": "<unk>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": false,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
}
|
38 |
+
}
|
tokenization_internlm2.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""Tokenization classes for InternLM."""
|
19 |
+
import os
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, List, Optional, Tuple
|
22 |
+
|
23 |
+
import sentencepiece as spm
|
24 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
30 |
+
|
31 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
32 |
+
|
33 |
+
|
34 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
35 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
36 |
+
"""
|
37 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_file (`str`):
|
41 |
+
Path to the vocabulary file.
|
42 |
+
"""
|
43 |
+
|
44 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
45 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
46 |
+
model_input_names = ["input_ids", "attention_mask"]
|
47 |
+
_auto_class = "AutoTokenizer"
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
vocab_file,
|
52 |
+
unk_token="<unk>",
|
53 |
+
bos_token="<s>",
|
54 |
+
eos_token="</s>",
|
55 |
+
pad_token="</s>",
|
56 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
57 |
+
add_bos_token=True,
|
58 |
+
add_eos_token=False,
|
59 |
+
decode_with_prefix_space=False,
|
60 |
+
clean_up_tokenization_spaces=False,
|
61 |
+
**kwargs,
|
62 |
+
):
|
63 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
64 |
+
self.vocab_file = vocab_file
|
65 |
+
self.add_bos_token = add_bos_token
|
66 |
+
self.add_eos_token = add_eos_token
|
67 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
68 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
69 |
+
self.sp_model.Load(vocab_file)
|
70 |
+
self._no_prefix_space_tokens = None
|
71 |
+
super().__init__(
|
72 |
+
bos_token=bos_token,
|
73 |
+
eos_token=eos_token,
|
74 |
+
unk_token=unk_token,
|
75 |
+
pad_token=pad_token,
|
76 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
77 |
+
**kwargs,
|
78 |
+
)
|
79 |
+
|
80 |
+
@property
|
81 |
+
def no_prefix_space_tokens(self):
|
82 |
+
if self._no_prefix_space_tokens is None:
|
83 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
84 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
85 |
+
return self._no_prefix_space_tokens
|
86 |
+
|
87 |
+
@property
|
88 |
+
def vocab_size(self):
|
89 |
+
"""Returns vocab size"""
|
90 |
+
return self.sp_model.get_piece_size()
|
91 |
+
|
92 |
+
@property
|
93 |
+
def bos_token_id(self) -> Optional[int]:
|
94 |
+
return self.sp_model.bos_id()
|
95 |
+
|
96 |
+
@property
|
97 |
+
def eos_token_id(self) -> Optional[int]:
|
98 |
+
return self.sp_model.eos_id()
|
99 |
+
|
100 |
+
def get_vocab(self):
|
101 |
+
"""Returns vocab as a dict"""
|
102 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
103 |
+
vocab.update(self.added_tokens_encoder)
|
104 |
+
return vocab
|
105 |
+
|
106 |
+
def _tokenize(self, text):
|
107 |
+
"""Returns a tokenized string."""
|
108 |
+
return self.sp_model.encode(text, out_type=str)
|
109 |
+
|
110 |
+
def _convert_token_to_id(self, token):
|
111 |
+
"""Converts a token (str) in an id using the vocab."""
|
112 |
+
return self.sp_model.piece_to_id(token)
|
113 |
+
|
114 |
+
def _convert_id_to_token(self, index):
|
115 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
116 |
+
token = self.sp_model.IdToPiece(index)
|
117 |
+
return token
|
118 |
+
|
119 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
120 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
121 |
+
return " " + decoded
|
122 |
+
else:
|
123 |
+
return decoded
|
124 |
+
|
125 |
+
def convert_tokens_to_string(self, tokens):
|
126 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
127 |
+
current_sub_tokens = []
|
128 |
+
out_string = ""
|
129 |
+
prev_is_special = False
|
130 |
+
for token in tokens:
|
131 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
132 |
+
if token in self.all_special_tokens:
|
133 |
+
if not prev_is_special:
|
134 |
+
out_string += " "
|
135 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
136 |
+
prev_is_special = True
|
137 |
+
current_sub_tokens = []
|
138 |
+
else:
|
139 |
+
current_sub_tokens.append(token)
|
140 |
+
prev_is_special = False
|
141 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
142 |
+
out_string = self.clean_up_tokenization(out_string)
|
143 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
144 |
+
return out_string[1:]
|
145 |
+
|
146 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
147 |
+
"""
|
148 |
+
Save the vocabulary and special tokens file to a directory.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
save_directory (`str`):
|
152 |
+
The directory in which to save the vocabulary.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
`Tuple(str)`: Paths to the files saved.
|
156 |
+
"""
|
157 |
+
if not os.path.isdir(save_directory):
|
158 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
159 |
+
return
|
160 |
+
out_vocab_file = os.path.join(
|
161 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
162 |
+
)
|
163 |
+
|
164 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
165 |
+
copyfile(self.vocab_file, out_vocab_file)
|
166 |
+
elif not os.path.isfile(self.vocab_file):
|
167 |
+
with open(out_vocab_file, "wb") as fi:
|
168 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
169 |
+
fi.write(content_spiece_model)
|
170 |
+
|
171 |
+
return (out_vocab_file,)
|
172 |
+
|
173 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
174 |
+
if self.add_bos_token:
|
175 |
+
bos_token_ids = [self.bos_token_id]
|
176 |
+
else:
|
177 |
+
bos_token_ids = []
|
178 |
+
|
179 |
+
output = bos_token_ids + token_ids_0
|
180 |
+
|
181 |
+
if token_ids_1 is not None:
|
182 |
+
output = output + token_ids_1
|
183 |
+
|
184 |
+
if self.add_eos_token:
|
185 |
+
output = output + [self.eos_token_id]
|
186 |
+
|
187 |
+
return output
|
188 |
+
|
189 |
+
def get_special_tokens_mask(
|
190 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
191 |
+
) -> List[int]:
|
192 |
+
"""
|
193 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
194 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
token_ids_0 (`List[int]`):
|
198 |
+
List of IDs.
|
199 |
+
token_ids_1 (`List[int]`, *optional*):
|
200 |
+
Optional second list of IDs for sequence pairs.
|
201 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
202 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
206 |
+
"""
|
207 |
+
if already_has_special_tokens:
|
208 |
+
return super().get_special_tokens_mask(
|
209 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
210 |
+
)
|
211 |
+
|
212 |
+
if token_ids_1 is None:
|
213 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
214 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
215 |
+
|
216 |
+
def create_token_type_ids_from_sequences(
|
217 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
218 |
+
) -> List[int]:
|
219 |
+
"""
|
220 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
221 |
+
use of token type ids, therefore a list of zeros is returned.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
token_ids_0 (`List[int]`):
|
225 |
+
List of IDs.
|
226 |
+
token_ids_1 (`List[int]`, *optional*):
|
227 |
+
Optional second list of IDs for sequence pairs.
|
228 |
+
|
229 |
+
Returns:
|
230 |
+
`List[int]`: List of zeros.
|
231 |
+
"""
|
232 |
+
eos = [self.eos_token_id]
|
233 |
+
|
234 |
+
if token_ids_1 is None:
|
235 |
+
return len(token_ids_0 + eos) * [0]
|
236 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
3 |
+
size 1477754
|
tokenizer_config.json
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"92538": {
|
28 |
+
"content": "<|plugin|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"92539": {
|
36 |
+
"content": "<|interpreter|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"92540": {
|
44 |
+
"content": "<|action_end|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"92541": {
|
52 |
+
"content": "<|action_start|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"92542": {
|
60 |
+
"content": "<|im_end|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"92543": {
|
68 |
+
"content": "<|im_start|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
}
|
75 |
+
},
|
76 |
+
"additional_special_tokens": [
|
77 |
+
"<|im_start|>",
|
78 |
+
"<|im_end|>",
|
79 |
+
"<|action_start|>",
|
80 |
+
"<|action_end|>",
|
81 |
+
"<|interpreter|>",
|
82 |
+
"<|plugin|>"
|
83 |
+
],
|
84 |
+
"auto_map": {
|
85 |
+
"AutoTokenizer": [
|
86 |
+
"tokenization_internlm2.InternLM2Tokenizer",
|
87 |
+
null
|
88 |
+
]
|
89 |
+
},
|
90 |
+
"bos_token": "<s>",
|
91 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
92 |
+
"clean_up_tokenization_spaces": false,
|
93 |
+
"eos_token": "</s>",
|
94 |
+
"model_max_length": 1000000000000000019884624838656,
|
95 |
+
"pad_token": "</s>",
|
96 |
+
"padding_side": "right",
|
97 |
+
"tokenizer_class": "InternLM2Tokenizer",
|
98 |
+
"unk_token": "<unk>"
|
99 |
+
}
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa13c8e2467054b520a582031b9605bd8b2feca3daf939acf1e221d5e9df957e
|
3 |
+
size 6011
|