DLight1551
commited on
Commit
·
5aa1ab6
1
Parent(s):
e5373b1
update
Browse files- build_mlp.py +2 -2
- build_mlp.py~ +206 -0
- modeling_internlm2.py +5 -3
- modeling_internlm2.py~ +1548 -0
build_mlp.py
CHANGED
@@ -52,8 +52,8 @@ class CLIPVisionTower(nn.Module):
|
|
52 |
self.vision_tower_name = vision_tower
|
53 |
self.select_layer = -1
|
54 |
self.select_feature = 'patch'
|
55 |
-
self.load_model()
|
56 |
-
self.resize_pos()
|
57 |
|
58 |
def load_model(self):
|
59 |
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
|
|
|
52 |
self.vision_tower_name = vision_tower
|
53 |
self.select_layer = -1
|
54 |
self.select_feature = 'patch'
|
55 |
+
#self.load_model()
|
56 |
+
#self.resize_pos()
|
57 |
|
58 |
def load_model(self):
|
59 |
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
|
build_mlp.py~
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import re
|
4 |
+
import os
|
5 |
+
import math
|
6 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
|
7 |
+
|
8 |
+
|
9 |
+
def build_vision_tower(path):
|
10 |
+
vision_tower = os.path.join(path, 'clip_l_336')
|
11 |
+
return CLIPVisionTower(vision_tower)
|
12 |
+
|
13 |
+
|
14 |
+
def build_vision_projector():
|
15 |
+
projector_type = 'mlp2x_gelu'
|
16 |
+
mm_hidden_size = 1024
|
17 |
+
hidden_size = 4096
|
18 |
+
|
19 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
20 |
+
if mlp_gelu_match:
|
21 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
22 |
+
modules = [nn.Linear(mm_hidden_size, hidden_size)]
|
23 |
+
for _ in range(1, mlp_depth):
|
24 |
+
modules.append(nn.GELU())
|
25 |
+
modules.append(nn.Linear(hidden_size, hidden_size))
|
26 |
+
return nn.Sequential(*modules)
|
27 |
+
|
28 |
+
if projector_type == 'identity':
|
29 |
+
return IdentityMap()
|
30 |
+
|
31 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
32 |
+
|
33 |
+
class IdentityMap(nn.Module):
|
34 |
+
def __init__(self):
|
35 |
+
super().__init__()
|
36 |
+
|
37 |
+
def forward(self, x, *args, **kwargs):
|
38 |
+
return x
|
39 |
+
|
40 |
+
@property
|
41 |
+
def config(self):
|
42 |
+
return {"mm_projector_type": 'identity'}
|
43 |
+
|
44 |
+
|
45 |
+
class CLIPVisionTower(nn.Module):
|
46 |
+
def __init__(self, vision_tower):
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
self.is_loaded = False
|
50 |
+
self.is_resize_pos = False
|
51 |
+
|
52 |
+
self.vision_tower_name = vision_tower
|
53 |
+
self.select_layer = -1
|
54 |
+
self.select_feature = 'patch'
|
55 |
+
#self.load_model()
|
56 |
+
#self.resize_pos()
|
57 |
+
|
58 |
+
def load_model(self):
|
59 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
|
60 |
+
self.vision_tower.requires_grad_(False)
|
61 |
+
|
62 |
+
self.is_loaded = True
|
63 |
+
def resize_pos(self):
|
64 |
+
pos_embed_checkpoint = self.vision_tower.vision_model.embeddings.position_embedding.weight
|
65 |
+
pos_embed_checkpoint = pos_embed_checkpoint.unsqueeze(0)
|
66 |
+
orig_size = 24
|
67 |
+
new_size = 16
|
68 |
+
|
69 |
+
if pos_embed_checkpoint.shape[1] == new_size ** 2 + 1:
|
70 |
+
self.is_resize_pos = True
|
71 |
+
else:
|
72 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
73 |
+
num_extra_tokens = 1
|
74 |
+
new_num = new_size ** 2 + num_extra_tokens
|
75 |
+
print("Position interpolate from %dx%d to %dx%d" %
|
76 |
+
(orig_size, orig_size, new_size, new_size))
|
77 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
78 |
+
# only the position tokens are interpolated
|
79 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
80 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
|
81 |
+
embedding_size).permute(
|
82 |
+
0, 3, 1, 2)
|
83 |
+
pos_tokens = torch.nn.functional.interpolate(pos_tokens,
|
84 |
+
size=(new_size,
|
85 |
+
new_size),
|
86 |
+
mode='bicubic',
|
87 |
+
align_corners=False)
|
88 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
89 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
90 |
+
|
91 |
+
new_pos_embed = new_pos_embed.squeeze(0)
|
92 |
+
|
93 |
+
self.vision_tower.vision_model.embeddings.position_embedding = torch.nn.Embedding(new_num, 1024)
|
94 |
+
self.vision_tower.vision_model.embeddings.position_embedding.weight = torch.nn.Parameter(new_pos_embed.to(pos_embed_checkpoint.dtype))
|
95 |
+
self.vision_tower.vision_model.embeddings.position_ids = torch.arange(new_num).expand((1, -1))
|
96 |
+
|
97 |
+
#self.vision_tower.vision_model.embeddings.position_embedding.weight = torch.nn.Parameter(new_pos_embed.to(pos_embed_checkpoint.device).to(pos_embed_checkpoint.dtype))
|
98 |
+
#self.vision_tower.vision_model.embeddings.position_ids = torch.arange(new_num).expand((1, -1)).to(pos_embed_checkpoint.device)
|
99 |
+
self.is_resize_pos = True
|
100 |
+
|
101 |
+
def feature_select(self, image_forward_outs):
|
102 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
103 |
+
if self.select_feature == 'patch':
|
104 |
+
image_features = image_features[:, 1:]
|
105 |
+
elif self.select_feature == 'cls_patch':
|
106 |
+
image_features = image_features
|
107 |
+
else:
|
108 |
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
109 |
+
return image_features
|
110 |
+
|
111 |
+
def forward(self, images):
|
112 |
+
if not self.is_loaded:
|
113 |
+
self.load_model()
|
114 |
+
if type(images) is list:
|
115 |
+
image_features = []
|
116 |
+
for image in images:
|
117 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
118 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
119 |
+
image_features.append(image_feature)
|
120 |
+
else:
|
121 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
122 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
123 |
+
|
124 |
+
return image_features
|
125 |
+
|
126 |
+
@property
|
127 |
+
def dummy_feature(self):
|
128 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
129 |
+
|
130 |
+
@property
|
131 |
+
def dtype(self):
|
132 |
+
return self.vision_tower.dtype
|
133 |
+
|
134 |
+
@property
|
135 |
+
def device(self):
|
136 |
+
return self.vision_tower.device
|
137 |
+
|
138 |
+
@property
|
139 |
+
def config(self):
|
140 |
+
if self.is_loaded:
|
141 |
+
return self.vision_tower.config
|
142 |
+
else:
|
143 |
+
return self.cfg_only
|
144 |
+
|
145 |
+
@property
|
146 |
+
def hidden_size(self):
|
147 |
+
return self.config.hidden_size
|
148 |
+
|
149 |
+
@property
|
150 |
+
def num_patches(self):
|
151 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
152 |
+
|
153 |
+
class PLoRA(nn.Linear):
|
154 |
+
def __init__(self,
|
155 |
+
in_features: int,
|
156 |
+
out_features: int,
|
157 |
+
bias: bool = True,
|
158 |
+
device=None,
|
159 |
+
dtype=None,
|
160 |
+
lora_r=8,
|
161 |
+
lora_alpha=16,
|
162 |
+
lora_dropout=0.05,
|
163 |
+
lora_len=0,
|
164 |
+
**kwargs) -> None:
|
165 |
+
super().__init__(in_features, out_features, bias, device, dtype)
|
166 |
+
self.lora_r = lora_r
|
167 |
+
self.lora_alpha = lora_alpha
|
168 |
+
self.lora_len = lora_len
|
169 |
+
if lora_dropout > 0.:
|
170 |
+
self.lora_dropout = nn.Dropout(p=lora_dropout)
|
171 |
+
else:
|
172 |
+
self.lora_dropout = lambda x: x
|
173 |
+
self.lora_scaling = self.lora_alpha / self.lora_r
|
174 |
+
|
175 |
+
self.Plora_A = nn.Linear(in_features,
|
176 |
+
self.lora_r,
|
177 |
+
bias=False,
|
178 |
+
device=device,
|
179 |
+
dtype=dtype)
|
180 |
+
self.Plora_B = nn.Linear(self.lora_r,
|
181 |
+
out_features,
|
182 |
+
bias=False,
|
183 |
+
device=device,
|
184 |
+
dtype=dtype)
|
185 |
+
|
186 |
+
self.reset_parameters()
|
187 |
+
|
188 |
+
def reset_parameters(self):
|
189 |
+
if hasattr(self, 'lora_A'):
|
190 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
191 |
+
nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
|
192 |
+
nn.init.zeros_(self.lora_B.weight)
|
193 |
+
#print ("lora weight init {} {}".format(torch.mean(self.lora_A.weight), torch.mean(self.lora_B.weight)))
|
194 |
+
|
195 |
+
def forward(self, x, im_mask=None):
|
196 |
+
res = super().forward(x)
|
197 |
+
if im_mask is not None:
|
198 |
+
if torch.sum(im_mask) > 0:
|
199 |
+
part_x = x[im_mask]
|
200 |
+
res[im_mask] += self.Plora_B(self.Plora_A(
|
201 |
+
self.lora_dropout(part_x))) * self.lora_scaling
|
202 |
+
else:
|
203 |
+
part_x = x[:, :1]
|
204 |
+
res[:, :1] += self.Plora_B(self.Plora_A(
|
205 |
+
self.lora_dropout(part_x))) * 0
|
206 |
+
return res
|
modeling_internlm2.py
CHANGED
@@ -1015,8 +1015,8 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1015 |
def _set_gradient_checkpointing(self, module, value=False):
|
1016 |
if isinstance(module, InternLM2Model):
|
1017 |
module.gradient_checkpointing = value
|
1018 |
-
if value:
|
1019 |
-
|
1020 |
|
1021 |
def get_input_embeddings(self):
|
1022 |
return self.model.tok_embeddings
|
@@ -1064,7 +1064,9 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1064 |
return img_embeds
|
1065 |
|
1066 |
def img2emb(self, image):
|
1067 |
-
|
|
|
|
|
1068 |
atts_img = torch.ones(
|
1069 |
img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
|
1070 |
|
|
|
1015 |
def _set_gradient_checkpointing(self, module, value=False):
|
1016 |
if isinstance(module, InternLM2Model):
|
1017 |
module.gradient_checkpointing = value
|
1018 |
+
#if value:
|
1019 |
+
# self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
|
1020 |
|
1021 |
def get_input_embeddings(self):
|
1022 |
return self.model.tok_embeddings
|
|
|
1064 |
return img_embeds
|
1065 |
|
1066 |
def img2emb(self, image):
|
1067 |
+
bs = image.shape[0]
|
1068 |
+
#img_embeds = self.vision_proj(self.vit(image.to(self.device)))
|
1069 |
+
img_embeds = torch.ones(bs,5,4096).to(torch.bfloat16).to(self.device)
|
1070 |
atts_img = torch.ones(
|
1071 |
img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
|
1072 |
|
modeling_internlm2.py~
ADDED
@@ -0,0 +1,1548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# # Copyright (c) InternLM. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
4 |
+
# and OPT implementations in this library. It has been modified from its
|
5 |
+
# original forms to accommodate minor architectural differences compared
|
6 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
7 |
+
#
|
8 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
+
# you may not use this file except in compliance with the License.
|
10 |
+
# You may obtain a copy of the License at
|
11 |
+
#
|
12 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
+
#
|
14 |
+
# Unless required by applicable law or agreed to in writing, software
|
15 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
+
# See the License for the specific language governing permissions and
|
18 |
+
# limitations under the License.
|
19 |
+
"""PyTorch InternLM2 model."""
|
20 |
+
import copy
|
21 |
+
import math
|
22 |
+
import queue
|
23 |
+
import threading
|
24 |
+
import warnings
|
25 |
+
from typing import List, Optional, Tuple, Union
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from einops import rearrange
|
30 |
+
from PIL import Image
|
31 |
+
from torch import nn
|
32 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
33 |
+
from torchvision import transforms
|
34 |
+
from torchvision.transforms.functional import InterpolationMode
|
35 |
+
from transformers.activations import ACT2FN
|
36 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
37 |
+
CausalLMOutputWithPast,
|
38 |
+
SequenceClassifierOutputWithPast)
|
39 |
+
from transformers.modeling_utils import PreTrainedModel
|
40 |
+
from transformers.utils import (add_start_docstrings,
|
41 |
+
add_start_docstrings_to_model_forward, logging,
|
42 |
+
replace_return_docstrings)
|
43 |
+
|
44 |
+
try:
|
45 |
+
from transformers.generation.streamers import BaseStreamer
|
46 |
+
except: # noqa # pylint: disable=bare-except
|
47 |
+
BaseStreamer = None
|
48 |
+
|
49 |
+
from .build_mlp import PLoRA, build_vision_projector, build_vision_tower
|
50 |
+
from .configuration_internlm import InternLMConfig as InternLM2Config
|
51 |
+
|
52 |
+
logger = logging.get_logger(__name__)
|
53 |
+
|
54 |
+
_CONFIG_FOR_DOC = 'InternLM2Config'
|
55 |
+
|
56 |
+
|
57 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
58 |
+
def _make_causal_mask(input_ids_shape: torch.Size,
|
59 |
+
dtype: torch.dtype,
|
60 |
+
device: torch.device,
|
61 |
+
past_key_values_length: int = 0):
|
62 |
+
"""Make causal mask used for bi-directional self-attention."""
|
63 |
+
bsz, tgt_len = input_ids_shape
|
64 |
+
mask = torch.full((tgt_len, tgt_len),
|
65 |
+
torch.tensor(torch.finfo(dtype).min, device=device),
|
66 |
+
device=device)
|
67 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
68 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
69 |
+
mask = mask.to(dtype)
|
70 |
+
|
71 |
+
if past_key_values_length > 0:
|
72 |
+
mask = torch.cat([
|
73 |
+
torch.zeros(
|
74 |
+
tgt_len, past_key_values_length, dtype=dtype, device=device),
|
75 |
+
mask
|
76 |
+
],
|
77 |
+
dim=-1)
|
78 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len,
|
79 |
+
tgt_len + past_key_values_length)
|
80 |
+
|
81 |
+
|
82 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
83 |
+
def _expand_mask(mask: torch.Tensor,
|
84 |
+
dtype: torch.dtype,
|
85 |
+
tgt_len: Optional[int] = None):
|
86 |
+
"""Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len,
|
87 |
+
src_seq_len]`."""
|
88 |
+
bsz, src_len = mask.size()
|
89 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
90 |
+
|
91 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len,
|
92 |
+
src_len).to(dtype)
|
93 |
+
|
94 |
+
inverted_mask = 1.0 - expanded_mask
|
95 |
+
|
96 |
+
return inverted_mask.masked_fill(
|
97 |
+
inverted_mask.to(torch.bool),
|
98 |
+
torch.finfo(dtype).min)
|
99 |
+
|
100 |
+
|
101 |
+
class InternLM2RMSNorm(nn.Module):
|
102 |
+
|
103 |
+
def __init__(self, hidden_size, eps=1e-6):
|
104 |
+
"""InternLM2RMSNorm is equivalent to T5LayerNorm."""
|
105 |
+
super().__init__()
|
106 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
107 |
+
self.variance_epsilon = eps
|
108 |
+
|
109 |
+
def forward(self, hidden_states):
|
110 |
+
input_dtype = hidden_states.dtype
|
111 |
+
hidden_states = hidden_states.to(torch.float32)
|
112 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
113 |
+
hidden_states = hidden_states * torch.rsqrt(variance +
|
114 |
+
self.variance_epsilon)
|
115 |
+
return self.weight * hidden_states.to(input_dtype)
|
116 |
+
|
117 |
+
|
118 |
+
class InternLM2RotaryEmbedding(nn.Module):
|
119 |
+
|
120 |
+
def __init__(self,
|
121 |
+
dim,
|
122 |
+
max_position_embeddings=2048,
|
123 |
+
base=10000,
|
124 |
+
device=None):
|
125 |
+
super().__init__()
|
126 |
+
|
127 |
+
self.dim = dim
|
128 |
+
self.max_position_embeddings = max_position_embeddings
|
129 |
+
self.base = base
|
130 |
+
inv_freq = 1.0 / (
|
131 |
+
self.base
|
132 |
+
**(torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
133 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
134 |
+
|
135 |
+
# Build here to make `torch.jit.trace` work.
|
136 |
+
self._set_cos_sin_cache(
|
137 |
+
seq_len=max_position_embeddings,
|
138 |
+
device=self.inv_freq.device,
|
139 |
+
dtype=torch.get_default_dtype())
|
140 |
+
|
141 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
142 |
+
self.max_seq_len_cached = seq_len
|
143 |
+
t = torch.arange(
|
144 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
145 |
+
|
146 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
147 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
148 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
149 |
+
self.register_buffer(
|
150 |
+
'cos_cached', emb.cos().to(dtype), persistent=False)
|
151 |
+
self.register_buffer(
|
152 |
+
'sin_cached', emb.sin().to(dtype), persistent=False)
|
153 |
+
|
154 |
+
def forward(self, x, seq_len=None):
|
155 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
156 |
+
if seq_len > self.max_seq_len_cached:
|
157 |
+
self._set_cos_sin_cache(
|
158 |
+
seq_len=seq_len, device=x.device, dtype=x.dtype)
|
159 |
+
|
160 |
+
return (
|
161 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
162 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
163 |
+
)
|
164 |
+
|
165 |
+
|
166 |
+
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
167 |
+
"""InternLM2RotaryEmbedding extended with linear scaling.
|
168 |
+
|
169 |
+
Credits to the Reddit user /u/kaiokendev
|
170 |
+
"""
|
171 |
+
|
172 |
+
def __init__(self,
|
173 |
+
dim,
|
174 |
+
max_position_embeddings=2048,
|
175 |
+
base=10000,
|
176 |
+
device=None,
|
177 |
+
scaling_factor=1.0):
|
178 |
+
self.scaling_factor = scaling_factor
|
179 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
180 |
+
|
181 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
182 |
+
self.max_seq_len_cached = seq_len
|
183 |
+
t = torch.arange(
|
184 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
185 |
+
t = t / self.scaling_factor
|
186 |
+
|
187 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
188 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
189 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
190 |
+
self.register_buffer(
|
191 |
+
'cos_cached', emb.cos().to(dtype), persistent=False)
|
192 |
+
self.register_buffer(
|
193 |
+
'sin_cached', emb.sin().to(dtype), persistent=False)
|
194 |
+
|
195 |
+
|
196 |
+
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
197 |
+
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
198 |
+
|
199 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
200 |
+
"""
|
201 |
+
|
202 |
+
def __init__(self,
|
203 |
+
dim,
|
204 |
+
max_position_embeddings=2048,
|
205 |
+
base=10000,
|
206 |
+
device=None,
|
207 |
+
scaling_factor=1.0):
|
208 |
+
self.scaling_factor = scaling_factor
|
209 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
210 |
+
|
211 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
212 |
+
self.max_seq_len_cached = seq_len
|
213 |
+
|
214 |
+
if seq_len > self.max_position_embeddings:
|
215 |
+
base = self.base * ((self.scaling_factor * seq_len /
|
216 |
+
self.max_position_embeddings) -
|
217 |
+
(self.scaling_factor - 1))**(
|
218 |
+
self.dim / (self.dim - 2))
|
219 |
+
inv_freq = 1.0 / (
|
220 |
+
base
|
221 |
+
**(torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
222 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
223 |
+
|
224 |
+
t = torch.arange(
|
225 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
226 |
+
|
227 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
228 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
229 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
230 |
+
self.register_buffer(
|
231 |
+
'cos_cached', emb.cos().to(dtype), persistent=False)
|
232 |
+
self.register_buffer(
|
233 |
+
'sin_cached', emb.sin().to(dtype), persistent=False)
|
234 |
+
|
235 |
+
|
236 |
+
def rotate_half(x):
|
237 |
+
"""Rotates half the hidden dims of the input."""
|
238 |
+
x1 = x[..., :x.shape[-1] // 2]
|
239 |
+
x2 = x[..., x.shape[-1] // 2:]
|
240 |
+
return torch.cat((-x2, x1), dim=-1)
|
241 |
+
|
242 |
+
|
243 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
244 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
245 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
246 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
247 |
+
cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
|
248 |
+
sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
|
249 |
+
if q.size(2) == 1:
|
250 |
+
q_embed = (q * cos[:, :, -1:, :]) + (
|
251 |
+
rotate_half(q) * sin[:, :, -1:, :])
|
252 |
+
else:
|
253 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
254 |
+
|
255 |
+
if k.size(2) == 1:
|
256 |
+
k_embed = (k * cos[:, :, -1:, :]) + (
|
257 |
+
rotate_half(k) * sin[:, :, -1:, :])
|
258 |
+
else:
|
259 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
260 |
+
|
261 |
+
return q_embed, k_embed
|
262 |
+
|
263 |
+
|
264 |
+
class InternLM2MLP(nn.Module):
|
265 |
+
|
266 |
+
def __init__(self, config):
|
267 |
+
super().__init__()
|
268 |
+
self.config = config
|
269 |
+
self.hidden_size = config.hidden_size
|
270 |
+
self.intermediate_size = config.intermediate_size
|
271 |
+
#self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
272 |
+
#self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
273 |
+
#self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
274 |
+
|
275 |
+
self.w1 = PLoRA(
|
276 |
+
self.hidden_size,
|
277 |
+
self.intermediate_size,
|
278 |
+
bias=False,
|
279 |
+
lora_r=256,
|
280 |
+
lora_alpha=256,
|
281 |
+
lora_len=576)
|
282 |
+
self.w3 = PLoRA(
|
283 |
+
self.hidden_size,
|
284 |
+
self.intermediate_size,
|
285 |
+
bias=False,
|
286 |
+
lora_r=256,
|
287 |
+
lora_alpha=256,
|
288 |
+
lora_len=576)
|
289 |
+
self.w2 = PLoRA(
|
290 |
+
self.intermediate_size,
|
291 |
+
self.hidden_size,
|
292 |
+
bias=False,
|
293 |
+
lora_r=256,
|
294 |
+
lora_alpha=256,
|
295 |
+
lora_len=576)
|
296 |
+
|
297 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
298 |
+
|
299 |
+
def forward(self, x, im_mask):
|
300 |
+
down_proj = self.w2(
|
301 |
+
self.act_fn(self.w1(x, im_mask)) * self.w3(x, im_mask), im_mask)
|
302 |
+
|
303 |
+
return down_proj
|
304 |
+
|
305 |
+
|
306 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
307 |
+
"""This is the equivalent of torch.repeat_interleave(x, dim=1,
|
308 |
+
repeats=n_rep).
|
309 |
+
|
310 |
+
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to
|
311 |
+
(batch, num_attention_heads, seqlen, head_dim)
|
312 |
+
"""
|
313 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
314 |
+
if n_rep == 1:
|
315 |
+
return hidden_states
|
316 |
+
hidden_states = hidden_states[:, :,
|
317 |
+
None, :, :].expand(batch,
|
318 |
+
num_key_value_heads,
|
319 |
+
n_rep, slen, head_dim)
|
320 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen,
|
321 |
+
head_dim)
|
322 |
+
|
323 |
+
|
324 |
+
class InternLM2Attention(nn.Module):
|
325 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper."""
|
326 |
+
|
327 |
+
def __init__(self, config: InternLM2Config):
|
328 |
+
super().__init__()
|
329 |
+
self.config = config
|
330 |
+
self.hidden_size = config.hidden_size
|
331 |
+
self.num_heads = config.num_attention_heads
|
332 |
+
self.head_dim = self.hidden_size // self.num_heads
|
333 |
+
self.num_key_value_heads = config.num_key_value_heads
|
334 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
335 |
+
self.max_position_embeddings = config.max_position_embeddings
|
336 |
+
self.is_causal = True
|
337 |
+
|
338 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
339 |
+
raise ValueError(
|
340 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
341 |
+
f' and `num_heads`: {self.num_heads}).')
|
342 |
+
|
343 |
+
#self.wqkv = nn.Linear(
|
344 |
+
self.wqkv = PLoRA(
|
345 |
+
self.hidden_size,
|
346 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
347 |
+
bias=config.bias,
|
348 |
+
lora_r=256,
|
349 |
+
lora_alpha=256,
|
350 |
+
lora_len=576)
|
351 |
+
|
352 |
+
#self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
353 |
+
self.wo = PLoRA(
|
354 |
+
self.num_heads * self.head_dim,
|
355 |
+
self.hidden_size,
|
356 |
+
bias=config.bias,
|
357 |
+
lora_r=256,
|
358 |
+
lora_alpha=256,
|
359 |
+
lora_len=576)
|
360 |
+
self._init_rope()
|
361 |
+
|
362 |
+
def _init_rope(self):
|
363 |
+
if self.config.rope_scaling is None:
|
364 |
+
self.rotary_emb = InternLM2RotaryEmbedding(
|
365 |
+
self.head_dim,
|
366 |
+
max_position_embeddings=self.max_position_embeddings,
|
367 |
+
base=self.config.rope_theta,
|
368 |
+
)
|
369 |
+
else:
|
370 |
+
scaling_type = self.config.rope_scaling['type']
|
371 |
+
scaling_factor = self.config.rope_scaling['factor']
|
372 |
+
if scaling_type == 'dynamic':
|
373 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
374 |
+
self.head_dim,
|
375 |
+
max_position_embeddings=self.max_position_embeddings,
|
376 |
+
base=self.config.rope_theta,
|
377 |
+
scaling_factor=scaling_factor)
|
378 |
+
else:
|
379 |
+
raise ValueError(
|
380 |
+
"Currently we only support rotary embedding's type being 'dynamic'."
|
381 |
+
)
|
382 |
+
return self.rotary_emb
|
383 |
+
|
384 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
385 |
+
return tensor.view(bsz, seq_len, self.num_heads,
|
386 |
+
self.head_dim).transpose(1, 2).contiguous()
|
387 |
+
|
388 |
+
def forward(
|
389 |
+
self,
|
390 |
+
hidden_states: torch.Tensor,
|
391 |
+
attention_mask: Optional[torch.Tensor] = None,
|
392 |
+
position_ids: Optional[torch.LongTensor] = None,
|
393 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
394 |
+
output_attentions: bool = False,
|
395 |
+
use_cache: bool = False,
|
396 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
397 |
+
**kwargs,
|
398 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
399 |
+
Optional[Tuple[torch.Tensor]]]:
|
400 |
+
if 'padding_mask' in kwargs:
|
401 |
+
warnings.warn(
|
402 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
403 |
+
'Please make sure use `attention_mask` instead.`')
|
404 |
+
|
405 |
+
bsz, q_len, _ = hidden_states.size()
|
406 |
+
|
407 |
+
qkv_states = self.wqkv(hidden_states, im_mask)
|
408 |
+
|
409 |
+
qkv_states = rearrange(
|
410 |
+
qkv_states,
|
411 |
+
'b q (h gs d) -> b q h gs d',
|
412 |
+
gs=2 + self.num_key_value_groups,
|
413 |
+
d=self.head_dim,
|
414 |
+
)
|
415 |
+
|
416 |
+
query_states = qkv_states[..., :self.num_key_value_groups, :]
|
417 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
418 |
+
key_states = qkv_states[..., -2, :]
|
419 |
+
value_states = qkv_states[..., -1, :]
|
420 |
+
|
421 |
+
query_states = query_states.transpose(1, 2)
|
422 |
+
key_states = key_states.transpose(1, 2)
|
423 |
+
value_states = value_states.transpose(1, 2)
|
424 |
+
|
425 |
+
kv_seq_len = key_states.shape[-2]
|
426 |
+
if past_key_value is not None:
|
427 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
428 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
429 |
+
query_states, key_states = apply_rotary_pos_emb(
|
430 |
+
query_states, key_states, cos, sin, position_ids)
|
431 |
+
|
432 |
+
if past_key_value is not None:
|
433 |
+
# reuse k, v, self_attention
|
434 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
435 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
436 |
+
|
437 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
438 |
+
|
439 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
440 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
441 |
+
|
442 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(
|
443 |
+
2, 3)) / math.sqrt(self.head_dim)
|
444 |
+
|
445 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
446 |
+
raise ValueError(
|
447 |
+
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
448 |
+
f' {attn_weights.size()}')
|
449 |
+
|
450 |
+
if attention_mask is not None:
|
451 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
452 |
+
raise ValueError(
|
453 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
454 |
+
)
|
455 |
+
attn_weights = attn_weights + attention_mask
|
456 |
+
|
457 |
+
# upcast attention to fp32
|
458 |
+
attn_weights = nn.functional.softmax(
|
459 |
+
attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
460 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
461 |
+
|
462 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
463 |
+
raise ValueError(
|
464 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
465 |
+
f' {attn_output.size()}')
|
466 |
+
|
467 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
468 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
469 |
+
|
470 |
+
attn_output = self.wo(attn_output, im_mask)
|
471 |
+
|
472 |
+
if not output_attentions:
|
473 |
+
attn_weights = None
|
474 |
+
|
475 |
+
return attn_output, attn_weights, past_key_value
|
476 |
+
|
477 |
+
|
478 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
479 |
+
"""InternLM2 flash attention module.
|
480 |
+
|
481 |
+
This module inherits from `InternLM2Attention` as the weights of the module
|
482 |
+
stays untouched. The only required change would be on the forward pass
|
483 |
+
where it needs to correctly call the public API of flash attention and deal
|
484 |
+
with padding tokens in case the input contains any of them.
|
485 |
+
"""
|
486 |
+
|
487 |
+
def forward(
|
488 |
+
self,
|
489 |
+
hidden_states: torch.Tensor,
|
490 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
491 |
+
position_ids: Optional[torch.LongTensor] = None,
|
492 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
493 |
+
output_attentions: bool = False,
|
494 |
+
use_cache: bool = False,
|
495 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
496 |
+
**kwargs,
|
497 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
498 |
+
Optional[Tuple[torch.Tensor]]]:
|
499 |
+
# InternLM2FlashAttention2 attention does not support output_attentions
|
500 |
+
if 'padding_mask' in kwargs:
|
501 |
+
warnings.warn(
|
502 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
503 |
+
'Please make sure use `attention_mask` instead.`')
|
504 |
+
|
505 |
+
# overwrite attention_mask with padding_mask
|
506 |
+
attention_mask = kwargs.pop('padding_mask')
|
507 |
+
|
508 |
+
output_attentions = False
|
509 |
+
|
510 |
+
bsz, q_len, _ = hidden_states.size()
|
511 |
+
|
512 |
+
qkv_states = self.wqkv(hidden_states, im_mask)
|
513 |
+
|
514 |
+
qkv_states = rearrange(
|
515 |
+
qkv_states,
|
516 |
+
'b q (h gs d) -> b q h gs d',
|
517 |
+
gs=self.num_heads + 2 * self.num_key_value_heads,
|
518 |
+
d=self.head_dim,
|
519 |
+
q=q_len,
|
520 |
+
)
|
521 |
+
|
522 |
+
query_states = qkv_states[..., :self.num_key_value_groups, :]
|
523 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
524 |
+
key_states = qkv_states[..., -2, :]
|
525 |
+
value_states = qkv_states[..., -1, :]
|
526 |
+
|
527 |
+
kv_seq_len = key_states.shape[-2]
|
528 |
+
if past_key_value is not None:
|
529 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
530 |
+
|
531 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
532 |
+
|
533 |
+
query_states, key_states = apply_rotary_pos_emb(
|
534 |
+
query_states, key_states, cos, sin, position_ids)
|
535 |
+
|
536 |
+
if past_key_value is not None:
|
537 |
+
# reuse k, v, self_attention
|
538 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
539 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
540 |
+
|
541 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
542 |
+
|
543 |
+
query_states = query_states.transpose(1, 2)
|
544 |
+
key_states = key_states.transpose(1, 2)
|
545 |
+
value_states = value_states.transpose(1, 2)
|
546 |
+
|
547 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
548 |
+
|
549 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
550 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
551 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
552 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
553 |
+
# in fp32. (InternLM2RMSNorm handles it correctly)
|
554 |
+
|
555 |
+
input_dtype = query_states.dtype
|
556 |
+
if input_dtype == torch.float32:
|
557 |
+
# Handle the case where the model is quantized
|
558 |
+
if hasattr(self.config, '_pre_quantization_dtype'):
|
559 |
+
target_dtype = self.config._pre_quantization_dtype
|
560 |
+
else:
|
561 |
+
target_dtype = self.q_proj.weight.dtype
|
562 |
+
|
563 |
+
logger.warning_once(
|
564 |
+
f'The input hidden states seems to be silently casted in float32, this might be related to'
|
565 |
+
f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back '
|
566 |
+
f'the input in {target_dtype}.')
|
567 |
+
|
568 |
+
query_states = query_states.to(target_dtype)
|
569 |
+
key_states = key_states.to(target_dtype)
|
570 |
+
value_states = value_states.to(target_dtype)
|
571 |
+
|
572 |
+
attn_output = self._flash_attention_forward(
|
573 |
+
query_states,
|
574 |
+
key_states,
|
575 |
+
value_states,
|
576 |
+
attention_mask,
|
577 |
+
q_len,
|
578 |
+
dropout=dropout_rate)
|
579 |
+
|
580 |
+
attn_output = attn_output.reshape(bsz, q_len,
|
581 |
+
self.hidden_size).contiguous()
|
582 |
+
attn_output = self.wo(attn_output, im_mask)
|
583 |
+
|
584 |
+
if not output_attentions:
|
585 |
+
attn_weights = None
|
586 |
+
|
587 |
+
return attn_output, attn_weights, past_key_value
|
588 |
+
|
589 |
+
|
590 |
+
class InternLM2DecoderLayer(nn.Module):
|
591 |
+
|
592 |
+
def __init__(self, config: InternLM2Config):
|
593 |
+
super().__init__()
|
594 |
+
self.hidden_size = config.hidden_size
|
595 |
+
self.attention = (
|
596 |
+
InternLM2Attention(config=config)
|
597 |
+
if not getattr(config, '_flash_attn_2_enabled', False) else
|
598 |
+
InternLM2FlashAttention2(config=config))
|
599 |
+
self.feed_forward = InternLM2MLP(config)
|
600 |
+
self.attention_norm = InternLM2RMSNorm(
|
601 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
602 |
+
self.ffn_norm = InternLM2RMSNorm(
|
603 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
604 |
+
|
605 |
+
def forward(
|
606 |
+
self,
|
607 |
+
hidden_states: torch.Tensor,
|
608 |
+
attention_mask: Optional[torch.Tensor] = None,
|
609 |
+
position_ids: Optional[torch.LongTensor] = None,
|
610 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
611 |
+
output_attentions: Optional[bool] = False,
|
612 |
+
use_cache: Optional[bool] = False,
|
613 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
614 |
+
**kwargs,
|
615 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
|
616 |
+
torch.FloatTensor]]]:
|
617 |
+
"""
|
618 |
+
Args:
|
619 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
620 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
621 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
622 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
623 |
+
output_attentions (`bool`, *optional*):
|
624 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
625 |
+
returned tensors for more detail.
|
626 |
+
use_cache (`bool`, *optional*):
|
627 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
628 |
+
(see `past_key_values`).
|
629 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
630 |
+
"""
|
631 |
+
if 'padding_mask' in kwargs:
|
632 |
+
warnings.warn(
|
633 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
634 |
+
'Please make sure use `attention_mask` instead.`')
|
635 |
+
|
636 |
+
residual = hidden_states
|
637 |
+
|
638 |
+
hidden_states = self.attention_norm(hidden_states)
|
639 |
+
|
640 |
+
# Self Attention
|
641 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
642 |
+
hidden_states=hidden_states,
|
643 |
+
attention_mask=attention_mask,
|
644 |
+
position_ids=position_ids,
|
645 |
+
past_key_value=past_key_value,
|
646 |
+
output_attentions=output_attentions,
|
647 |
+
use_cache=use_cache,
|
648 |
+
im_mask=im_mask,
|
649 |
+
**kwargs,
|
650 |
+
)
|
651 |
+
hidden_states = residual + hidden_states
|
652 |
+
|
653 |
+
# Fully Connected
|
654 |
+
residual = hidden_states
|
655 |
+
hidden_states = self.ffn_norm(hidden_states)
|
656 |
+
hidden_states = self.feed_forward(hidden_states, im_mask)
|
657 |
+
hidden_states = residual + hidden_states
|
658 |
+
|
659 |
+
outputs = (hidden_states, )
|
660 |
+
|
661 |
+
if output_attentions:
|
662 |
+
outputs += (self_attn_weights, )
|
663 |
+
|
664 |
+
if use_cache:
|
665 |
+
outputs += (present_key_value, )
|
666 |
+
|
667 |
+
return outputs
|
668 |
+
|
669 |
+
|
670 |
+
InternLM2_START_DOCSTRING = r"""
|
671 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
672 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
673 |
+
etc.)
|
674 |
+
|
675 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
676 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
677 |
+
and behavior.
|
678 |
+
|
679 |
+
Parameters:
|
680 |
+
config ([`InternLM2Config`]):
|
681 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
682 |
+
load the weights associated with the model, only the configuration. Check out the
|
683 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
684 |
+
"""
|
685 |
+
|
686 |
+
|
687 |
+
@add_start_docstrings(
|
688 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
689 |
+
InternLM2_START_DOCSTRING,
|
690 |
+
)
|
691 |
+
class InternLM2PreTrainedModel(PreTrainedModel):
|
692 |
+
config_class = InternLM2Config
|
693 |
+
base_model_prefix = 'model'
|
694 |
+
supports_gradient_checkpointing = True
|
695 |
+
_no_split_modules = ['InternLM2DecoderLayer']
|
696 |
+
_skip_keys_device_placement = 'past_key_values'
|
697 |
+
_supports_flash_attn_2 = True
|
698 |
+
|
699 |
+
def _init_weights(self, module):
|
700 |
+
std = self.config.initializer_range
|
701 |
+
if isinstance(module, nn.Linear):
|
702 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
703 |
+
if module.bias is not None:
|
704 |
+
module.bias.data.zero_()
|
705 |
+
elif isinstance(module, nn.Embedding):
|
706 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
707 |
+
if module.padding_idx is not None:
|
708 |
+
module.weight.data[module.padding_idx].zero_()
|
709 |
+
|
710 |
+
|
711 |
+
InternLM2_INPUTS_DOCSTRING = r"""
|
712 |
+
Args:
|
713 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
714 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
715 |
+
it.
|
716 |
+
|
717 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
718 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
719 |
+
|
720 |
+
[What are input IDs?](../glossary#input-ids)
|
721 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
722 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
723 |
+
|
724 |
+
- 1 for tokens that are **not masked**,
|
725 |
+
- 0 for tokens that are **masked**.
|
726 |
+
|
727 |
+
[What are attention masks?](../glossary#attention-mask)
|
728 |
+
|
729 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
730 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
731 |
+
|
732 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
733 |
+
`past_key_values`).
|
734 |
+
|
735 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
736 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
737 |
+
information on the default strategy.
|
738 |
+
|
739 |
+
- 1 indicates the head is **not masked**,
|
740 |
+
- 0 indicates the head is **masked**.
|
741 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
742 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
743 |
+
config.n_positions - 1]`.
|
744 |
+
|
745 |
+
[What are position IDs?](../glossary#position-ids)
|
746 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
747 |
+
when `config.use_cache=True`):
|
748 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
749 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
750 |
+
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
751 |
+
|
752 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
753 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
754 |
+
|
755 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
756 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
757 |
+
of shape `(batch_size, sequence_length)`.
|
758 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
759 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
760 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
761 |
+
model's internal embedding lookup matrix.
|
762 |
+
use_cache (`bool`, *optional*):
|
763 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
764 |
+
`past_key_values`).
|
765 |
+
output_attentions (`bool`, *optional*):
|
766 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
767 |
+
tensors for more detail.
|
768 |
+
output_hidden_states (`bool`, *optional*):
|
769 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
770 |
+
more detail.
|
771 |
+
return_dict (`bool`, *optional*):
|
772 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
773 |
+
"""
|
774 |
+
|
775 |
+
|
776 |
+
@add_start_docstrings(
|
777 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
778 |
+
InternLM2_START_DOCSTRING,
|
779 |
+
)
|
780 |
+
class InternLM2Model(InternLM2PreTrainedModel):
|
781 |
+
"""Transformer decoder consisting of *config.num_hidden_layers* layers.
|
782 |
+
Each layer is a [`InternLM2DecoderLayer`]
|
783 |
+
|
784 |
+
Args:
|
785 |
+
config: InternLM2Config
|
786 |
+
"""
|
787 |
+
|
788 |
+
_auto_class = 'AutoModel'
|
789 |
+
|
790 |
+
def __init__(self, config: InternLM2Config):
|
791 |
+
super().__init__(config)
|
792 |
+
self.padding_idx = config.pad_token_id
|
793 |
+
self.vocab_size = config.vocab_size
|
794 |
+
|
795 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size,
|
796 |
+
config.hidden_size,
|
797 |
+
self.padding_idx)
|
798 |
+
self.layers = nn.ModuleList([
|
799 |
+
InternLM2DecoderLayer(config)
|
800 |
+
for _ in range(config.num_hidden_layers)
|
801 |
+
])
|
802 |
+
self.norm = InternLM2RMSNorm(
|
803 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
804 |
+
|
805 |
+
self.gradient_checkpointing = False
|
806 |
+
# Initialize weights and apply final processing
|
807 |
+
self.post_init()
|
808 |
+
|
809 |
+
def get_input_embeddings(self):
|
810 |
+
return self.tok_embeddings
|
811 |
+
|
812 |
+
def set_input_embeddings(self, value):
|
813 |
+
self.tok_embeddings = value
|
814 |
+
|
815 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
816 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape,
|
817 |
+
inputs_embeds, past_key_values_length):
|
818 |
+
# create causal mask
|
819 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
820 |
+
combined_attention_mask = None
|
821 |
+
if input_shape[-1] > 1:
|
822 |
+
combined_attention_mask = _make_causal_mask(
|
823 |
+
input_shape,
|
824 |
+
inputs_embeds.dtype,
|
825 |
+
device=inputs_embeds.device,
|
826 |
+
past_key_values_length=past_key_values_length,
|
827 |
+
)
|
828 |
+
|
829 |
+
if attention_mask is not None:
|
830 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
831 |
+
expanded_attn_mask = _expand_mask(
|
832 |
+
attention_mask, inputs_embeds.dtype,
|
833 |
+
tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
834 |
+
combined_attention_mask = (
|
835 |
+
expanded_attn_mask if combined_attention_mask is None else
|
836 |
+
expanded_attn_mask + combined_attention_mask)
|
837 |
+
|
838 |
+
return combined_attention_mask
|
839 |
+
|
840 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
841 |
+
def forward(self,
|
842 |
+
input_ids: torch.LongTensor = None,
|
843 |
+
attention_mask: Optional[torch.Tensor] = None,
|
844 |
+
position_ids: Optional[torch.LongTensor] = None,
|
845 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
846 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
847 |
+
use_cache: Optional[bool] = None,
|
848 |
+
output_attentions: Optional[bool] = None,
|
849 |
+
output_hidden_states: Optional[bool] = None,
|
850 |
+
return_dict: Optional[bool] = None,
|
851 |
+
**kwargs) -> Union[Tuple, BaseModelOutputWithPast]:
|
852 |
+
|
853 |
+
im_mask = kwargs.get('im_mask', None)
|
854 |
+
|
855 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
856 |
+
output_hidden_states = (
|
857 |
+
output_hidden_states if output_hidden_states is not None else
|
858 |
+
self.config.output_hidden_states)
|
859 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
860 |
+
|
861 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
862 |
+
|
863 |
+
# retrieve input_ids and inputs_embeds
|
864 |
+
if input_ids is not None and inputs_embeds is not None:
|
865 |
+
raise ValueError(
|
866 |
+
'You cannot specify both input_ids and inputs_embeds at the same time'
|
867 |
+
)
|
868 |
+
elif input_ids is not None:
|
869 |
+
batch_size, seq_length = input_ids.shape[:2]
|
870 |
+
elif inputs_embeds is not None:
|
871 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
872 |
+
else:
|
873 |
+
raise ValueError(
|
874 |
+
'You have to specify either input_ids or inputs_embeds')
|
875 |
+
|
876 |
+
seq_length_with_past = seq_length
|
877 |
+
past_key_values_length = 0
|
878 |
+
if past_key_values is not None:
|
879 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
880 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
881 |
+
|
882 |
+
if position_ids is None:
|
883 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
884 |
+
position_ids = torch.arange(
|
885 |
+
past_key_values_length,
|
886 |
+
seq_length + past_key_values_length,
|
887 |
+
dtype=torch.long,
|
888 |
+
device=device)
|
889 |
+
position_ids = position_ids.unsqueeze(0)
|
890 |
+
|
891 |
+
if inputs_embeds is None:
|
892 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
893 |
+
im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
|
894 |
+
inputs_embeds.device).bool()
|
895 |
+
# embed positions
|
896 |
+
if attention_mask is None:
|
897 |
+
attention_mask = torch.ones((batch_size, seq_length_with_past),
|
898 |
+
dtype=torch.bool,
|
899 |
+
device=inputs_embeds.device)
|
900 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
901 |
+
attention_mask, (batch_size, seq_length), inputs_embeds,
|
902 |
+
past_key_values_length)
|
903 |
+
|
904 |
+
# embed positions
|
905 |
+
hidden_states = inputs_embeds
|
906 |
+
|
907 |
+
if self.gradient_checkpointing and self.training:
|
908 |
+
if use_cache:
|
909 |
+
logger.warning_once(
|
910 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
911 |
+
)
|
912 |
+
use_cache = False
|
913 |
+
|
914 |
+
# decoder layers
|
915 |
+
all_hidden_states = () if output_hidden_states else None
|
916 |
+
all_self_attns = () if output_attentions else None
|
917 |
+
next_decoder_cache = () if use_cache else None
|
918 |
+
|
919 |
+
for idx, decoder_layer in enumerate(self.layers):
|
920 |
+
if output_hidden_states:
|
921 |
+
all_hidden_states += (hidden_states, )
|
922 |
+
|
923 |
+
past_key_value = past_key_values[
|
924 |
+
idx] if past_key_values is not None else None
|
925 |
+
|
926 |
+
if self.gradient_checkpointing and self.training:
|
927 |
+
|
928 |
+
def create_custom_forward(module):
|
929 |
+
|
930 |
+
def custom_forward(*inputs):
|
931 |
+
# None for past_key_value
|
932 |
+
return module(*inputs, output_attentions, None,
|
933 |
+
im_mask)
|
934 |
+
|
935 |
+
return custom_forward
|
936 |
+
|
937 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
938 |
+
create_custom_forward(decoder_layer),
|
939 |
+
hidden_states,
|
940 |
+
attention_mask,
|
941 |
+
position_ids,
|
942 |
+
None,
|
943 |
+
)
|
944 |
+
else:
|
945 |
+
layer_outputs = decoder_layer(
|
946 |
+
hidden_states,
|
947 |
+
attention_mask=attention_mask,
|
948 |
+
position_ids=position_ids,
|
949 |
+
past_key_value=past_key_value,
|
950 |
+
output_attentions=output_attentions,
|
951 |
+
use_cache=use_cache,
|
952 |
+
im_mask=im_mask,
|
953 |
+
)
|
954 |
+
|
955 |
+
hidden_states = layer_outputs[0]
|
956 |
+
|
957 |
+
if use_cache:
|
958 |
+
next_decoder_cache += (
|
959 |
+
layer_outputs[2 if output_attentions else 1], )
|
960 |
+
|
961 |
+
if output_attentions:
|
962 |
+
all_self_attns += (layer_outputs[1], )
|
963 |
+
|
964 |
+
hidden_states = self.norm(hidden_states)
|
965 |
+
|
966 |
+
# add hidden states from the last decoder layer
|
967 |
+
if output_hidden_states:
|
968 |
+
all_hidden_states += (hidden_states, )
|
969 |
+
|
970 |
+
next_cache = next_decoder_cache if use_cache else None
|
971 |
+
if not return_dict:
|
972 |
+
return tuple(
|
973 |
+
v for v in
|
974 |
+
[hidden_states, next_cache, all_hidden_states, all_self_attns]
|
975 |
+
if v is not None)
|
976 |
+
return BaseModelOutputWithPast(
|
977 |
+
last_hidden_state=hidden_states,
|
978 |
+
past_key_values=next_cache,
|
979 |
+
hidden_states=all_hidden_states,
|
980 |
+
attentions=all_self_attns,
|
981 |
+
)
|
982 |
+
|
983 |
+
|
984 |
+
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
985 |
+
_auto_class = 'AutoModelForCausalLM'
|
986 |
+
|
987 |
+
_tied_weights_keys = ['output.weight']
|
988 |
+
|
989 |
+
def __init__(self, config):
|
990 |
+
super().__init__(config)
|
991 |
+
self.model = InternLM2Model(config)
|
992 |
+
self.vocab_size = config.vocab_size
|
993 |
+
self.output = nn.Linear(
|
994 |
+
config.hidden_size, config.vocab_size, bias=False)
|
995 |
+
self.debug_flag = 1
|
996 |
+
self.tokenizer = None
|
997 |
+
|
998 |
+
self.max_length = config.max_length
|
999 |
+
print(f'Set max length to {self.max_length}')
|
1000 |
+
self.debug_flag = 1
|
1001 |
+
# Initialize weights and apply final processing
|
1002 |
+
self.post_init()
|
1003 |
+
|
1004 |
+
self.vit = build_vision_tower(config._name_or_path)
|
1005 |
+
self.vision_proj = build_vision_projector()
|
1006 |
+
|
1007 |
+
self.vis_processor = transforms.Compose([
|
1008 |
+
transforms.Resize((336, 336),
|
1009 |
+
interpolation=InterpolationMode.BICUBIC),
|
1010 |
+
transforms.ToTensor(),
|
1011 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
|
1012 |
+
(0.26862954, 0.26130258, 0.27577711)),
|
1013 |
+
])
|
1014 |
+
|
1015 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
1016 |
+
if isinstance(module, InternLM2Model):
|
1017 |
+
module.gradient_checkpointing = value
|
1018 |
+
#if value:
|
1019 |
+
# self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
|
1020 |
+
|
1021 |
+
def get_input_embeddings(self):
|
1022 |
+
return self.model.tok_embeddings
|
1023 |
+
|
1024 |
+
def set_input_embeddings(self, value):
|
1025 |
+
self.model.tok_embeddings = value
|
1026 |
+
|
1027 |
+
def get_output_embeddings(self):
|
1028 |
+
return self.output
|
1029 |
+
|
1030 |
+
def set_output_embeddings(self, new_embeddings):
|
1031 |
+
self.output = new_embeddings
|
1032 |
+
|
1033 |
+
def set_decoder(self, decoder):
|
1034 |
+
self.model = decoder
|
1035 |
+
|
1036 |
+
def get_decoder(self):
|
1037 |
+
return self.model
|
1038 |
+
|
1039 |
+
def encode_text(self, t, add_special_tokens=False):
|
1040 |
+
t = t.replace('<|User|>:', '[UNUSED_TOKEN_146]user\n')
|
1041 |
+
t = t.replace('<|Bot|>:', '[UNUSED_TOKEN_146]assistant\n')
|
1042 |
+
t = t.replace('<TOKENS_UNUSED_0>', '[UNUSED_TOKEN_145]')
|
1043 |
+
t = t.replace('<TOKENS_UNUSED_1>', '[UNUSED_TOKEN_145]')
|
1044 |
+
t = t.replace('[UNUSED_TOKEN_0]', '[UNUSED_TOKEN_145]')
|
1045 |
+
t = t.replace('[UNUSED_TOKEN_1]', '[UNUSED_TOKEN_145]')
|
1046 |
+
|
1047 |
+
text = t
|
1048 |
+
token = self.tokenizer(
|
1049 |
+
text, return_tensors='pt',
|
1050 |
+
add_special_tokens=add_special_tokens).input_ids.to(self.device)
|
1051 |
+
embs = self.model.tok_embeddings(token)
|
1052 |
+
return embs
|
1053 |
+
|
1054 |
+
def encode_img(self, image):
|
1055 |
+
if image is None:
|
1056 |
+
return None
|
1057 |
+
if isinstance(image, str):
|
1058 |
+
image = Image.open(image).convert('RGB')
|
1059 |
+
image = self.vis_processor(image).unsqueeze(0).to(self.device)
|
1060 |
+
else:
|
1061 |
+
assert isinstance(image, torch.Tensor)
|
1062 |
+
|
1063 |
+
img_embeds, atts_img, img_target = self.img2emb(image)
|
1064 |
+
return img_embeds
|
1065 |
+
|
1066 |
+
def img2emb(self, image):
|
1067 |
+
bs = image.shape[0]
|
1068 |
+
#img_embeds = self.vision_proj(self.vit(image.to(self.device)))
|
1069 |
+
img_embeds =
|
1070 |
+
atts_img = torch.ones(
|
1071 |
+
img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
|
1072 |
+
|
1073 |
+
img_target = torch.ones(
|
1074 |
+
img_embeds.size()[:2], dtype=torch.long).to(
|
1075 |
+
img_embeds.device) * -100
|
1076 |
+
|
1077 |
+
return img_embeds, atts_img, img_target
|
1078 |
+
|
1079 |
+
def prompt_wrap(self, img_embeds, prompt):
|
1080 |
+
batch_size = img_embeds.shape[0]
|
1081 |
+
p_before, p_after = prompt.split('<ImageHere>')
|
1082 |
+
p_before_tokens = self.tokenizer(
|
1083 |
+
p_before, return_tensors='pt',
|
1084 |
+
add_special_tokens=True).to(img_embeds.device)
|
1085 |
+
|
1086 |
+
p_before_embeds = self.model.tok_embeddings(
|
1087 |
+
p_before_tokens.input_ids).expand(batch_size, -1, -1)
|
1088 |
+
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
|
1089 |
+
|
1090 |
+
wrapped_atts_img = torch.ones(
|
1091 |
+
wrapped_img_embeds.size()[:-1],
|
1092 |
+
dtype=torch.long).to(img_embeds.device)
|
1093 |
+
|
1094 |
+
wrapped_target = torch.ones(
|
1095 |
+
batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(
|
1096 |
+
img_embeds.device) * -100
|
1097 |
+
|
1098 |
+
return wrapped_img_embeds, wrapped_atts_img, wrapped_target
|
1099 |
+
|
1100 |
+
def text2emb(self, text, add_special=False):
|
1101 |
+
if type(text) == str:
|
1102 |
+
new_text = []
|
1103 |
+
for t in text:
|
1104 |
+
t = t.replace('<|User|>:', '[UNUSED_TOKEN_146]user\n')
|
1105 |
+
t = t.replace('<|Bot|>:', '[UNUSED_TOKEN_146]assistant\n')
|
1106 |
+
t = t.replace('<TOKENS_UNUSED_0>', '[UNUSED_TOKEN_145]')
|
1107 |
+
t = t.replace('<TOKENS_UNUSED_1>', '[UNUSED_TOKEN_145]')
|
1108 |
+
new_text.append(t)
|
1109 |
+
text = new_text
|
1110 |
+
elif type(text) == list:
|
1111 |
+
new_text = []
|
1112 |
+
text_list = text
|
1113 |
+
for text in text_list:
|
1114 |
+
for t in text:
|
1115 |
+
t = t.replace('<|User|>:', '[UNUSED_TOKEN_146]user\n')
|
1116 |
+
t = t.replace('<|Bot|>:', '[UNUSED_TOKEN_146]assistant\n')
|
1117 |
+
t = t.replace('<TOKENS_UNUSED_0>', '[UNUSED_TOKEN_145]')
|
1118 |
+
t = t.replace('<TOKENS_UNUSED_1>', '[UNUSED_TOKEN_145]')
|
1119 |
+
new_text.append(t)
|
1120 |
+
text = new_text
|
1121 |
+
to_regress_tokens = self.tokenizer(
|
1122 |
+
text,
|
1123 |
+
return_tensors='pt',
|
1124 |
+
padding='longest',
|
1125 |
+
truncation=True,
|
1126 |
+
max_length=self.max_length,
|
1127 |
+
add_special_tokens=add_special).to(self.device)
|
1128 |
+
|
1129 |
+
targets = self.mask_human_targets(to_regress_tokens.input_ids)
|
1130 |
+
targets = targets.to(self.device)
|
1131 |
+
|
1132 |
+
return to_regress_tokens, targets
|
1133 |
+
|
1134 |
+
def interleav_wrap(self, img_list, text_list):
|
1135 |
+
wrap_embeds_list, wrap_atts_list = [], []
|
1136 |
+
wrap_target_list, wrap_im_mask_list = [], []
|
1137 |
+
|
1138 |
+
for image, text in zip(img_list, text_list):
|
1139 |
+
img_embeds, atts_img, img_target = self.img2emb(image)
|
1140 |
+
text = text[0]
|
1141 |
+
parts = text.split('<ImageHere>')
|
1142 |
+
wrap_tokens, wrap_embeds, wrap_atts, wrap_im_mask = [], [], [], []
|
1143 |
+
temp_len = 0
|
1144 |
+
image_nums, im_len = img_embeds.shape[:2]
|
1145 |
+
need_bos = True
|
1146 |
+
for idx, part in enumerate(parts):
|
1147 |
+
if len(part) > 0:
|
1148 |
+
part_tokens = self.tokenizer(
|
1149 |
+
part,
|
1150 |
+
return_tensors='pt',
|
1151 |
+
padding='longest',
|
1152 |
+
add_special_tokens=need_bos).to(self.device)
|
1153 |
+
if need_bos:
|
1154 |
+
need_bos = False
|
1155 |
+
wrap_tokens.append(part_tokens.input_ids)
|
1156 |
+
part_embeds = self.model.tok_embeddings(
|
1157 |
+
part_tokens.input_ids)
|
1158 |
+
wrap_embeds.append(part_embeds)
|
1159 |
+
wrap_atts.append(part_tokens.attention_mask)
|
1160 |
+
wrap_im_mask.append(
|
1161 |
+
torch.zeros(part_embeds.shape[:2]).to(self.device))
|
1162 |
+
|
1163 |
+
temp_len += part_embeds.shape[1]
|
1164 |
+
if idx < image_nums:
|
1165 |
+
wrap_tokens.append(img_target[idx].unsqueeze(0))
|
1166 |
+
wrap_embeds.append(img_embeds[idx].unsqueeze(0))
|
1167 |
+
wrap_atts.append(atts_img[idx].unsqueeze(0))
|
1168 |
+
wrap_im_mask.append(
|
1169 |
+
torch.ones_like(atts_img[idx].unsqueeze(0)))
|
1170 |
+
|
1171 |
+
temp_len += im_len
|
1172 |
+
if temp_len > self.max_length:
|
1173 |
+
break
|
1174 |
+
|
1175 |
+
wrap_tokens = torch.cat(wrap_tokens, dim=1)
|
1176 |
+
wrap_embeds = torch.cat(wrap_embeds, dim=1)
|
1177 |
+
wrap_atts = torch.cat(wrap_atts, dim=1)
|
1178 |
+
wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
|
1179 |
+
|
1180 |
+
wrap_target = self.mask_human_targets(wrap_tokens).to(self.device)
|
1181 |
+
|
1182 |
+
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
|
1183 |
+
wrap_atts = wrap_atts[:, :self.max_length].to(self.device)
|
1184 |
+
wrap_target = wrap_target[:, :self.max_length].to(self.device)
|
1185 |
+
wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device)
|
1186 |
+
|
1187 |
+
wrap_embeds_list.append(wrap_embeds)
|
1188 |
+
wrap_atts_list.append(wrap_atts)
|
1189 |
+
wrap_target_list.append(wrap_target)
|
1190 |
+
wrap_im_mask_list.append(wrap_im_mask)
|
1191 |
+
|
1192 |
+
wrap_embeds = torch.cat(wrap_embeds_list)
|
1193 |
+
wrap_atts = torch.cat(wrap_atts_list)
|
1194 |
+
wrap_target = torch.cat(wrap_target_list)
|
1195 |
+
wrap_im_mask = torch.cat(wrap_im_mask_list)
|
1196 |
+
return wrap_embeds, wrap_atts, wrap_target, wrap_im_mask
|
1197 |
+
|
1198 |
+
def mask_human_targets(self, input_ids, pure=False):
|
1199 |
+
target_batch = []
|
1200 |
+
for bs in range(input_ids.shape[0]):
|
1201 |
+
cur_idx = 0
|
1202 |
+
ids = input_ids[bs]
|
1203 |
+
targets = copy.deepcopy(ids)
|
1204 |
+
end_count = 0
|
1205 |
+
last_eoa = 0
|
1206 |
+
for i, temp_id in enumerate(ids):
|
1207 |
+
if temp_id == 92542:
|
1208 |
+
if end_count % 2 == 0:
|
1209 |
+
targets[last_eoa:i + 6] = -100
|
1210 |
+
else:
|
1211 |
+
last_eoa = i + 1
|
1212 |
+
end_count += 1
|
1213 |
+
elif temp_id == 2: ### eos and following pad
|
1214 |
+
targets[i + 1:] = -100 #### loss on eos, but not on pad
|
1215 |
+
break
|
1216 |
+
if temp_id != 2 and end_count % 2 == 0: ### trunction, end at last question
|
1217 |
+
targets[last_eoa +
|
1218 |
+
1:] = -100 #### mask all after the last answer
|
1219 |
+
|
1220 |
+
target_batch.append(targets.unsqueeze(0))
|
1221 |
+
if self.debug_flag:
|
1222 |
+
print('#### Warning! System meta is not support now')
|
1223 |
+
targets_vis = targets.clone()
|
1224 |
+
targets_vis[targets_vis == -100] = 92399
|
1225 |
+
targets_vis_tokens = ''.join(
|
1226 |
+
self.tokenizer.convert_ids_to_tokens(targets_vis)).replace(
|
1227 |
+
'[UNUSED_TOKEN_2]', ' ')
|
1228 |
+
# print(''.join(self.tokenizer.convert_ids_to_tokens(ids)))
|
1229 |
+
print('-----------')
|
1230 |
+
print([targets_vis_tokens])
|
1231 |
+
print('-----------------------------')
|
1232 |
+
|
1233 |
+
target_batch = torch.cat(target_batch, dim=0)
|
1234 |
+
return target_batch
|
1235 |
+
|
1236 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1237 |
+
@replace_return_docstrings(
|
1238 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1239 |
+
def forward(self,
|
1240 |
+
input_ids: torch.LongTensor = None,
|
1241 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1242 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1243 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1244 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1245 |
+
labels: Optional[torch.LongTensor] = None,
|
1246 |
+
use_cache: Optional[bool] = None,
|
1247 |
+
output_attentions: Optional[bool] = None,
|
1248 |
+
output_hidden_states: Optional[bool] = None,
|
1249 |
+
return_dict: Optional[bool] = None,
|
1250 |
+
**kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
|
1251 |
+
r"""
|
1252 |
+
Args:
|
1253 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1254 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1255 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1256 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1257 |
+
|
1258 |
+
Returns:
|
1259 |
+
|
1260 |
+
Example:
|
1261 |
+
|
1262 |
+
```python
|
1263 |
+
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
1264 |
+
|
1265 |
+
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1266 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1267 |
+
|
1268 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1269 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1270 |
+
|
1271 |
+
>>> # Generate
|
1272 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1273 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1274 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1275 |
+
```"""
|
1276 |
+
samples = kwargs.get('samples', None)
|
1277 |
+
if samples:
|
1278 |
+
if self.debug_flag:
|
1279 |
+
self.debug_flag += 1
|
1280 |
+
if self.debug_flag > 5:
|
1281 |
+
self.debug_flag = 0
|
1282 |
+
|
1283 |
+
if samples['data_type'][0] == 'text':
|
1284 |
+
has_img = False
|
1285 |
+
elif samples['data_type'][0] == 'multi':
|
1286 |
+
has_img = True
|
1287 |
+
else:
|
1288 |
+
raise NotImplementedError
|
1289 |
+
|
1290 |
+
### encode text
|
1291 |
+
text = samples['text_input']
|
1292 |
+
if has_img:
|
1293 |
+
image = samples['image']
|
1294 |
+
to_regress_embeds, attention_mask, targets, im_mask = self.interleav_wrap(
|
1295 |
+
image, text)
|
1296 |
+
else:
|
1297 |
+
to_regress_tokens, targets = self.text2emb(
|
1298 |
+
text, add_special=True)
|
1299 |
+
to_regress_embeds = self.model.tok_embeddings(
|
1300 |
+
to_regress_tokens.input_ids)
|
1301 |
+
attention_mask = to_regress_tokens.attention_mask
|
1302 |
+
im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
|
1303 |
+
|
1304 |
+
inputs_embeds = to_regress_embeds[:, :self.max_length]
|
1305 |
+
attention_mask = attention_mask[:, :self.max_length]
|
1306 |
+
targets = targets[:, :self.max_length]
|
1307 |
+
im_mask = im_mask[:, :self.max_length].bool()
|
1308 |
+
labels = targets
|
1309 |
+
if self.debug_flag:
|
1310 |
+
print(targets.shape, inputs_embeds.shape, attention_mask.shape)
|
1311 |
+
le = len(samples['text_input'])
|
1312 |
+
data_type = samples['data_type'][0]
|
1313 |
+
print(
|
1314 |
+
f'DataType: {data_type}. Has Image: {has_img}. Current max length: {self.max_length}, BatchSize is {le}'
|
1315 |
+
)
|
1316 |
+
# if has_img:
|
1317 |
+
# print(img_embeds.shape)
|
1318 |
+
|
1319 |
+
else:
|
1320 |
+
self.debug_flag = 0
|
1321 |
+
im_mask = kwargs.get('im_mask', None)
|
1322 |
+
|
1323 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1324 |
+
output_hidden_states = (
|
1325 |
+
output_hidden_states if output_hidden_states is not None else
|
1326 |
+
self.config.output_hidden_states)
|
1327 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1328 |
+
|
1329 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1330 |
+
outputs = self.model(
|
1331 |
+
input_ids=input_ids,
|
1332 |
+
attention_mask=attention_mask,
|
1333 |
+
position_ids=position_ids,
|
1334 |
+
past_key_values=past_key_values,
|
1335 |
+
inputs_embeds=inputs_embeds,
|
1336 |
+
use_cache=use_cache,
|
1337 |
+
output_attentions=output_attentions,
|
1338 |
+
output_hidden_states=output_hidden_states,
|
1339 |
+
return_dict=return_dict,
|
1340 |
+
im_mask=im_mask,
|
1341 |
+
)
|
1342 |
+
|
1343 |
+
hidden_states = outputs[0]
|
1344 |
+
logits = self.output(hidden_states)
|
1345 |
+
logits = logits.float()
|
1346 |
+
|
1347 |
+
loss = None
|
1348 |
+
if labels is not None:
|
1349 |
+
# Shift so that tokens < n predict n
|
1350 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1351 |
+
shift_labels = labels[..., 1:].contiguous()
|
1352 |
+
# Flatten the tokens
|
1353 |
+
loss_fct = CrossEntropyLoss()
|
1354 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1355 |
+
shift_labels = shift_labels.view(-1)
|
1356 |
+
# Enable model parallelism
|
1357 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1358 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1359 |
+
|
1360 |
+
if not return_dict:
|
1361 |
+
output = (logits, ) + outputs[1:]
|
1362 |
+
return (loss, ) + output if loss is not None else output
|
1363 |
+
|
1364 |
+
return CausalLMOutputWithPast(
|
1365 |
+
loss=loss,
|
1366 |
+
logits=logits,
|
1367 |
+
past_key_values=outputs.past_key_values,
|
1368 |
+
hidden_states=outputs.hidden_states,
|
1369 |
+
attentions=outputs.attentions,
|
1370 |
+
)
|
1371 |
+
|
1372 |
+
def prepare_inputs_for_generation(self,
|
1373 |
+
input_ids,
|
1374 |
+
past_key_values=None,
|
1375 |
+
attention_mask=None,
|
1376 |
+
inputs_embeds=None,
|
1377 |
+
im_mask=None,
|
1378 |
+
**kwargs):
|
1379 |
+
if past_key_values is not None:
|
1380 |
+
past_length = past_key_values[0][0].shape[2]
|
1381 |
+
|
1382 |
+
# Some generation methods already pass only the last input ID
|
1383 |
+
if input_ids.shape[1] > past_length:
|
1384 |
+
remove_prefix_length = past_length
|
1385 |
+
else:
|
1386 |
+
# Default to old behavior: keep only final ID
|
1387 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1388 |
+
|
1389 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1390 |
+
|
1391 |
+
position_ids = kwargs.get('position_ids', None)
|
1392 |
+
if attention_mask is not None and position_ids is None:
|
1393 |
+
# create position_ids on the fly for batch generation
|
1394 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1395 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1396 |
+
if past_key_values:
|
1397 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
1398 |
+
|
1399 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1400 |
+
if inputs_embeds is not None and past_key_values is None:
|
1401 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
1402 |
+
else:
|
1403 |
+
model_inputs = {'input_ids': input_ids}
|
1404 |
+
|
1405 |
+
im_mask = im_mask
|
1406 |
+
|
1407 |
+
model_inputs.update({
|
1408 |
+
'position_ids': position_ids,
|
1409 |
+
'past_key_values': past_key_values,
|
1410 |
+
'use_cache': kwargs.get('use_cache'),
|
1411 |
+
'attention_mask': attention_mask,
|
1412 |
+
'im_mask': im_mask,
|
1413 |
+
})
|
1414 |
+
return model_inputs
|
1415 |
+
|
1416 |
+
@staticmethod
|
1417 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1418 |
+
reordered_past = ()
|
1419 |
+
for layer_past in past_key_values:
|
1420 |
+
reordered_past += (tuple(
|
1421 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1422 |
+
for past_state in layer_past), )
|
1423 |
+
return reordered_past
|
1424 |
+
|
1425 |
+
def build_inputs(self,
|
1426 |
+
tokenizer,
|
1427 |
+
query: str,
|
1428 |
+
history: List[Tuple[str, str]] = []):
|
1429 |
+
prompt = ''
|
1430 |
+
for record in history:
|
1431 |
+
prompt += f"""<|User|>:{record[0]}\n<|Bot|>:{record[1]}[UNUSED_TOKEN_0]\n"""
|
1432 |
+
prompt += f"""<|User|>:{query}\n<|Bot|>:"""
|
1433 |
+
return tokenizer([prompt], return_tensors='pt')
|
1434 |
+
|
1435 |
+
@torch.no_grad()
|
1436 |
+
def chat(
|
1437 |
+
self,
|
1438 |
+
tokenizer,
|
1439 |
+
query: str,
|
1440 |
+
history: List[Tuple[str, str]] = [],
|
1441 |
+
streamer: Optional[BaseStreamer] = None,
|
1442 |
+
max_new_tokens: int = 1024,
|
1443 |
+
do_sample: bool = True,
|
1444 |
+
temperature: float = 0.8,
|
1445 |
+
top_p: float = 0.8,
|
1446 |
+
**kwargs,
|
1447 |
+
):
|
1448 |
+
inputs = self.build_inputs(tokenizer, query, history)
|
1449 |
+
inputs = {
|
1450 |
+
k: v.to(self.device)
|
1451 |
+
for k, v in inputs.items() if torch.is_tensor(v)
|
1452 |
+
}
|
1453 |
+
outputs = self.generate(
|
1454 |
+
**inputs,
|
1455 |
+
streamer=streamer,
|
1456 |
+
max_new_tokens=max_new_tokens,
|
1457 |
+
do_sample=do_sample,
|
1458 |
+
temperature=temperature,
|
1459 |
+
top_p=top_p,
|
1460 |
+
**kwargs,
|
1461 |
+
)
|
1462 |
+
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
|
1463 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1464 |
+
response = response.split('[UNUSED_TOKEN_0]')[0]
|
1465 |
+
history = history + [(query, response)]
|
1466 |
+
return response, history
|
1467 |
+
|
1468 |
+
@torch.no_grad()
|
1469 |
+
def stream_chat(
|
1470 |
+
self,
|
1471 |
+
tokenizer,
|
1472 |
+
query: str,
|
1473 |
+
history: List[Tuple[str, str]] = [],
|
1474 |
+
max_new_tokens: int = 1024,
|
1475 |
+
do_sample: bool = True,
|
1476 |
+
temperature: float = 0.8,
|
1477 |
+
top_p: float = 0.8,
|
1478 |
+
**kwargs,
|
1479 |
+
):
|
1480 |
+
"""Return a generator in format: (response, history) Eg.
|
1481 |
+
|
1482 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) ('你好,有什么可以帮助您的吗?', [('你好',
|
1483 |
+
'你好,有什么可以帮助您的吗?')])
|
1484 |
+
"""
|
1485 |
+
if BaseStreamer is None:
|
1486 |
+
raise ModuleNotFoundError(
|
1487 |
+
'The version of `transformers` is too low. Please make sure '
|
1488 |
+
'that you have installed `transformers>=4.28.0`.')
|
1489 |
+
|
1490 |
+
response_queue = queue.Queue(maxsize=20)
|
1491 |
+
|
1492 |
+
class ChatStreamer(BaseStreamer):
|
1493 |
+
|
1494 |
+
def __init__(self, tokenizer) -> None:
|
1495 |
+
super().__init__()
|
1496 |
+
self.tokenizer = tokenizer
|
1497 |
+
self.queue = response_queue
|
1498 |
+
self.query = query
|
1499 |
+
self.history = history
|
1500 |
+
self.response = ''
|
1501 |
+
self.received_inputs = False
|
1502 |
+
self.queue.put(
|
1503 |
+
(self.response, history + [(self.query, self.response)]))
|
1504 |
+
|
1505 |
+
def put(self, value):
|
1506 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
1507 |
+
raise ValueError('ChatStreamer only supports batch size 1')
|
1508 |
+
elif len(value.shape) > 1:
|
1509 |
+
value = value[0]
|
1510 |
+
|
1511 |
+
if not self.received_inputs:
|
1512 |
+
# The first received value is input_ids, ignore here
|
1513 |
+
self.received_inputs = True
|
1514 |
+
return
|
1515 |
+
|
1516 |
+
token = self.tokenizer.decode([value[-1]],
|
1517 |
+
skip_special_tokens=True)
|
1518 |
+
if token.strip() != '[UNUSED_TOKEN_0]':
|
1519 |
+
self.response = self.response + token
|
1520 |
+
history = self.history + [(self.query, self.response)]
|
1521 |
+
self.queue.put((self.response, history))
|
1522 |
+
|
1523 |
+
def end(self):
|
1524 |
+
self.queue.put(None)
|
1525 |
+
|
1526 |
+
def stream_producer():
|
1527 |
+
return self.chat(
|
1528 |
+
tokenizer=tokenizer,
|
1529 |
+
query=query,
|
1530 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
1531 |
+
history=history,
|
1532 |
+
max_new_tokens=max_new_tokens,
|
1533 |
+
do_sample=do_sample,
|
1534 |
+
temperature=temperature,
|
1535 |
+
top_p=top_p,
|
1536 |
+
**kwargs,
|
1537 |
+
)
|
1538 |
+
|
1539 |
+
def consumer():
|
1540 |
+
producer = threading.Thread(target=stream_producer)
|
1541 |
+
producer.start()
|
1542 |
+
while True:
|
1543 |
+
res = response_queue.get()
|
1544 |
+
if res is None:
|
1545 |
+
return
|
1546 |
+
yield res
|
1547 |
+
|
1548 |
+
return consumer()
|