DILHTWD commited on
Commit
f8c8f05
1 Parent(s): 042a771

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -180
README.md CHANGED
@@ -1,199 +1,73 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
 
 
 
 
 
 
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
- ## Evaluation
 
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
 
 
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
 
112
 
113
- [More Information Needed]
 
 
 
 
114
 
115
- #### Factors
 
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
118
 
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: agpl-3.0
3
+ metrics:
4
+ - wer
5
+ base_model:
6
+ - openai/whisper-large-v3-turbo
7
+ pipeline_tag: automatic-speech-recognition
8
+ tags:
9
+ - upper_sorbian
10
  ---
11
 
 
12
 
13
+ ## Model Description
14
 
15
+ This model was fine-tuned on over 24 hours of transcribed upper sorbian speech to aid future research, conservation and revitalisation of the language.
16
 
17
 
18
+ ## Training Data
19
+ - **Source:** Stiftung für das sorbische Volk / Załožba za serbski lud (https://stiftung.sorben.com/)
20
+ - **Volume:** 1493 Minutes, 10% Validation Set, 10% Test Set
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  ## Training Details
23
+ - **Hyperparameters**:
24
+ - Batch size: 64
25
+ - Learning rate: 3e-6, linear decay
26
+ - **Optimizer**: AdamW
27
+ - **Warmup**: 1000 steps
28
+ - **Additional Techniques**: BF16 training, initial 15 layers frozen
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ ## Performance
32
+ ### Metrics
33
+ - **Word Error Rate:** 6.2
34
 
35
+ ## Usage
36
+ ### Example Code
37
 
38
+ To use the model, follow this example code:
39
 
40
+ ```python
41
+ import torch
42
+ import torchaudio
43
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
44
 
45
+ # Load the model and processor
46
+ model_name = "DILHTWD/whisper-large-v3-turbo-hsb"
47
+ processor_name = "openai/whisper-large-v3-turbo"
48
+ processor = WhisperProcessor.from_pretrained(processor_name)
49
+ model = WhisperForConditionalGeneration.from_pretrained(model_name)
50
 
51
+ # Load and preprocess the audio
52
+ audio, sample_rate = torchaudio.load("test.mp3")
53
+ if sample_rate != 16000:
54
+ audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
55
+ input_features = processor(audio.squeeze().numpy(), sampling_rate=16000, return_tensors="pt").input_features
56
 
57
+ # Generate transcription
58
+ with torch.no_grad():
59
+ predicted_ids = model.generate(input_features)
60
+ transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
61
 
62
+ # Print the transcription
63
+ print("Transcription:", transcription)
64
+ ```
65
 
66
+ ## Model Details
67
+ - **Model Name:** DILHTWD/whisper-large-v3-turbo-hsb
68
+ - **Publisher:** Data Intelligence Lab, Hochschule für Technik und Wirtschaft Dresden
69
+ - **Model Version:** 1.0.0
70
+ - **Model Date:** 2024-11-15
71
+ - **License:** [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.de.html)
72
+ - **Architecture:** Whisper Large v3 Turbo
73
+ - **Task:** Automatic Speech Recognition